首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Electrophoresis continues to be a mainstay in molecular genetic laboratories for checking, sizing and separating both PCR products, nucleic acids derived from in vivo or in vitro sources and nucleic acid–protein complexes. Many genomic and genetic applications demand high throughput, such as the checking of amplification products from many loci, from many clones, from many cell lines or from many individuals at once. These applications include microarray resource development and expression analysis, genome mapping, library and DNA bank screening, mutagenesis experiments and single nucleotide polymorphism (SNP) genotyping. PCR hardware compatible with industry standard 96 and 384 well microplates is commonplace. We have previously described a simple system for submerged horizontal 96 and 192 well polyacrylamide or agarose microplate array diagonal gel electrophoresis (MADGE) which is microplate compatible and suitable for PCR checking, SNP typing (restriction fragment length polymorphism or amplification refractory mutation system), microsatellite sizing and identification of unknown mutations. By substantial redesign of format and operations, we have derived an efficient ‘dry’ gel system that enables direct 96 pin manual transfer from PCR or other reactions in microplates, into 768 or 384 well gels. Combined with direct electrode contact in clamshell electrophoresis boxes which plug directly to contacts in a powered stacking frame and using 5–10 min electrophoresis times, it would be possible (given a sufficient supply of PCRs for examination) for 1 million gel tracks to be run per day for a minimal hardware investment and at minimal reagent costs. Applications of this system for PCR checking and SNP genotyping are illustrated.  相似文献   

2.
Chen XH  O'Dell SD  Day IN 《BioTechniques》2002,32(5):1080-2, 1084, 1086 passim
After PCR amplification, we have achieved precise sizing of trinucleotide and tetranucleotide microsatellite alleles on 96-well open-faced polyacrylamide microplate array diagonal gel electrophoresis (MADGE) gels: two tetranucleotide repeats, HUMTHOI (five alleles 248-263 bp) and DYS390 (eight alleles 200-228 bp), and DYS392, a trinucleotide repeat (eight alleles 210-231 bp). A gel matrix of Duracryl, a high mechanical strength polyacrylamide derivative, and appropriate ionic conditions provide the 1.3%-1.5% band resolution required. No end-labeling of primers is needed, as the sensitive Vistra Green intercalating dye is used for the visualization of bands. Co-run markers bracketing the PCR fragments ensure accurate sizing without inter-lane variability. Electrophoresis of multiple gels in a thermostatically controlled tank allows up to 1000 samples to be run in 90 min. Gel images were analyzed using a Fluorlmager 595 fluorescent scanning system, and alleles were identified using Phoretix software for band migration measurement and Microsoft Excel to compute fragment sizes. Estimated sizes were interpolated precisely to achieve accurate binning. Microsatellite-MADGE represents a utilitarian methodfor high-throughput genotyping in cohort studies, using standard laboratory equipment.  相似文献   

3.
Instrumentation, chemistry, and software for high-throughput genotyping using fluorescent melting curves are described. The LightTyper system provides post-amplification genotyping within 10 min using samples in 96- or 384-well microplate formats. The system is homogenous because all reagents are added at the beginning of the reaction and there is no sample manipulation between amplification and genotyping. High-resolution melting curves are achieved by slow and steady heating. As samples are heated, panels of blue light-emitting diodes excite the probes, and fluorescence emission is acquired with a cooled charge-coupled device camera. A variety of probe chemistries are compatible for genotyping on the LightTyper, including dsDNA dyes, single-labeled probes, and fluorescence resonance energy transfer systems. Genotyping is performed automatically, and each sample is given a score reflecting the similarity of the genotype to the standards provided. Standard genotypes can be selected from within the run or imported from other files. Samples and genotypes can be grouped to allow multiple-allele detection on one or many samples. The utility of the LightTyper is illustrated by genotyping samples for the Factor V Leiden mutation and for mutations in the CFTR gene.  相似文献   

4.
Recently, we have developed a method of adapter-ligation mediated allele-specific amplification (ALM-ASA) for simultaneously typing multiple single nucleotide polymorphisms (SNPs) at a low cost. We usually use agarose gel-electrophoresis for analyzing PCR products. As the processes of sampling and PCR can be carried out at a format of 96-well or 384-well, the throughput-bottleneck of whole process of ALM-ASA is only the agarose gel-electrophoresis. Here we improved the typing throughput of ALM-ASA by using a microplate array parallel gel electrophoresis (MAPGE) system, with which 96 amplicons can be detected at a time. By coupling with multiplexed preamplification, seven SNPs distributed on four different human genes (IL1A (549C>T), 1L1B (794C>T and 5277C>T), IL10 (2940G>A, 3203C>T, and 3430C>A), and TNFA (1431G>A)) were successfully typed. The optimization of allele-specific primers in ALM-ASA was performed by the software of “SNiPdesigner” which was designed especially for ALM-ASA. We also demonstrated that the specificity of ALM-ASA assay for SNP typing is superior to that of amplification refractory mutation system (ARMS).  相似文献   

5.
High-throughput SNP genotyping by single-tube PCR with Tm-shift primers   总被引:5,自引:0,他引:5  
Despite many recent advances in high-throughput single nucleotide polymorphism (SNP) genotyping technologies, there is still a great need for inexpensive and flexible methods with a reasonable throughput. Here we report substantial modifications and improvements to an existing homogenous allele-specific PCR-based SNP genotyping method, making it an attractive new option for researchers engaging in candidate gene studies or following up on genome-wide scans. In this advanced version of the melting temperature (Tm)-shift SNP genotyping method, we attach two GC-rich tails of different lengths to allele-specific PCR primers, such that SNP alleles in genomic DNA samples can be discriminated by the Tms of the PCR products. We have validated 306 SNP assays using this method and achieved a success rate in assay development of greater than 83% under uniform PCR conditions. We have developed a standalone software application to automatically assign genotypes directly from melting curve data. To demonstrate the accuracy of this method, we typed 592 individuals for 6 SNPs and showed a high call rate (>98%) and high accuracy (>99.9%). With this method, 6-10,000 samples can be genotyped per day using a single 384-well real-time thermal cycler with 2-4 standard 384-well PCR instruments.  相似文献   

6.
An efficient procedure for genotyping single nucleotide polymorphisms   总被引:16,自引:0,他引:16       下载免费PDF全文
Analysis of single nucleotide polymorphisms (SNPs) has been and will be increasingly utilized in various genetic disciplines, particularly in studying genetic determinants of complex diseases. Such studies will be facilitated by rapid, simple, low cost and high throughput methodologies for SNP genotyping. One such method is reported here, named tetra-primer ARMS-PCR, which employs two primer pairs to amplify, respectively, the two different alleles of a SNP in a single PCR reaction. A computer program for designing primers was developed. Tetra-primer ARMS-PCR was combined with microplate array diagonal gel electrophoresis, gaining the advantage of high throughput for gel-based resolution of tetra-primer ARMS-PCR products. The technique was applied to analyse a number of SNPs and the results were completely consistent with those from an independent method, restriction fragment length polymorphism analysis.  相似文献   

7.
O'Dell SD  Gaunt TR  Day IN 《BioTechniques》2000,29(3):500-4, 505-6
A new modification of the microplate array diagonal gel electrophoresis (MADGE) system accommodates the dual amplification refractory mutation system (ARMS) products of 96 samples on one 192-well gel. Simultaneous electrophoresis of a number of horizontal ARMS-MADGE gels achieves high throughput. Gels are imaged digitally, here using the FluorImager 595 fluorescent scanning system. Customized software by Phoretix enables rapid computerized calling of band patterns in ARMS-MADGE arrays, in which the two wells receiving a pair of allele-specific assays for a single template are juxtaposed to form one virtual track, with genotype data exported directly into Microsoft Excel for statistical analysis. An ARMS assay of the A/T base change at the -23/HphI RFLP in the insulin gene promoter, which initiates from 2.5 ng template DNA, was used here to demonstrate this improved general approach for population SNP analyses.  相似文献   

8.
Microfabricated capillary array electrophoresis (microCAE) microchannel plates are the next generation of bioanalytical separation devices. To fully exploit the capabilities of microCAE devices, supporting technology such as robotic sample loading, gel loading, microplate washing, and data analysis must be developed. Here, we describe a device for loading gel into radial capillary array electrophoresis microplates and for plate washing and drying. The microplates are locked into a loading module, and high-pressure helium is used to drive aqueous separation media or wash solutions into the microchannels through fixtures connected to the central anode reservoir. Microplates are rapidly (30 s to 5 min) loaded with separation media, such as 3%-4.8% linear polyacrylamide or 0.7%-3.0% hydroxyethyl cellulose, for electrophoresis. The effective and rapid gel-filling and plate-cleaning methods together with short electrophoretic analysis times (2-30 min) make microCAE systems versatile and powerful nucleic acid analysis platforms.  相似文献   

9.
Single nucleotide polymorphism (SNP) genotyping is playing an increasing role in genome mapping, pharmacogenetic studies, and drug discovery. To date, genome-wide scans and studies involving thousands of SNPs and samples have been hampered by the lack of a system that can perform genotyping with cost-effective throughput, accuracy, and reliability. To address this need, Orrhid has developed an automated, ultra-high throughput system, SNPstream UHT, which uses multiplexed PCR in conjunction with our next generation SNP-IT tag array single base extension genotyping technology The system employs oligonucleotide microarrays manufactured in a 384-well format on a novel glass-bottomed plate. Multiplexed PCR and genotyping are performed in homogeneous reactions, and assay results are read by direct two-color fluorescence on the SNPstream UHTArray Imager. The systems flexibility enables large projects involving thousands of SNPs and thousands of samples as well as small projects that have hundreds of SNPs and hundreds of samples to be done cost effectively. We have successfully demonstrated this system in greater than 1,000,000 genotyping assays with >96% of samples giving genotypes with >99% accuracy  相似文献   

10.
Royo JL  Hidalgo M  Ruiz A 《Nature protocols》2007,2(7):1734-1739
DNA sequencing has markedly changed the nature of biomedical research, identifying millions of polymorphisms along the human genome that now require further analysis to study the genetic basis of human diseases. Among the DNA-sequencing platforms available, Pyrosequencing has become a useful tool for medium-throughput single nucleotide polymorphism (SNP) genotyping, mutation detection, copy-number studies and DNA methylation analysis. Its 96-well genotyping format allows reliable results to be obtained at reasonable costs in a few minutes. However, a specific biotinylated primer is usually required for each SNP under study to allow the capture of single-stranded DNA template for the Pyrosequencing assay. Here, we present an alternative to the standard labeling of PCR products for analysis by Pyrosequencing that circumvents the requirement of specific biotinylated primers for each SNP of interest. This protocol uses a single biotinylated primer that is simultaneously incorporated into all M13-tagged PCR products during the amplification reaction. The protocol covers all steps from the PCR amplification and capture of single-stranded template, its preparation, and the Pyrosequencing assay itself. Once the correct primer stoichiometry has been determined, the assay takes around 2 h for PCR amplification, followed by 15-20 min (per plate) to obtain the genotypes.  相似文献   

11.
This protocol describes a single nucleotide polymorphism (SNP) genotyping strategy for highly degraded DNA, using a two-stage multiplex whereby multiple fragments are first amplified in a single exponential reaction and the products of this PCR are added to a linear single-base-extension reaction. It utilizes the analytical power of a capillary electrophoresis system to simultaneously type all the target sites. The protocol is specifically written for use with severely fragmented templates, typical of ancient DNA, and can be adapted to widely used detection platforms. The addition of the single-phase genotyping step avoids the need for the re-amplification and cloning of PCR products, while providing its own controls for the detection of contamination and allelic drop-out. This protocol can facilitate the routine analysis of up to 52 SNP markers (haploid or diploid) in 96 samples in a single day, and is recommended for the authentication of data in all areas of DNA research (population and medical genetics, forensics, ancient DNA).  相似文献   

12.
The aim of this investigation was to exploit the vast comparative data generated by comparative genome hybridization (CGH) studies of Campylobacter jejuni in developing a genotyping method. We examined genes in C. jejuni that exhibit binary status (present or absent between strains) within known plasticity regions, in order to identify a minimal subset of gene targets that provide high-resolution genetic fingerprints. Using CGH data from three studies as input, binary gene sets were identified with "Minimum SNPs" software. "Minimum SNPs" selects for the minimum number of targets required to obtain a predefined resolution, based on Simpson's index of diversity (D). After implementation of stringent criteria for gene presence/absence, eight binary genes were found that provided 100% resolution (D=1) of 20 C. jejuni strains. A real-time PCR assay was developed and tested on 181 C. jejuni and Campylobacter coli isolates, a subset of which have previously been characterized by multilocus sequence typing, flaA short variable region sequencing, and pulsed-field gel electrophoresis. In addition to the binary gene real-time PCR assay, we refined the seven-member single nucleotide polymorphism (SNP) real-time PCR assay previously described for C. jejuni and C. coli. By normalizing the SNP assay with the respective C. jejuni and C. coli ubiquitous genes, mapA and ceuE, the polymorphisms at each SNP could be determined without separate reactions for every polymorphism. We have developed and refined a rapid, highly discriminatory genotyping method for C. jejuni and C. coli that uses generic technology and is amenable to high-throughput analyses.  相似文献   

13.
To date, various methods have been developed to facilitate the genotyping of a single nucleotide polymorphism (SNP) for aiding in the diagnosis and treatment of inherited diseases. The most commonly used method for SNP genotyping is an allele-specific hybridization procedure using an expensive fluorochrome-labeled oligonucleotide probe and a specialized fluorescence analyzer. Here, we introduce a simple and reliable genotyping method using a 1:1 mixture of 5'-phosphate-labeled and nonlabeled allele-specific polymerase chain reaction (PCR) primers. The method is based on the difference in mobility of the phosphorylated and nonphosphorylated PCR products (in the same number of basepairs) on phosphate-affinity polyacrylamide gel electrophoresis. The phosphate-affinity site is a polyacrylamide-bound dinuclear zinc(II) complex, which preferentially captures the 5'-phosphate-labeled allele-specific product compared with the corresponding nonlabeled product. The obtained DNA migration bands can be visualized by ethidium bromide staining. We demonstrate the genotyping of a SNP reported in a human cardiac sodium channel gene, SCN5A, using this novel procedure.  相似文献   

14.
The capability of molecular markers to provide information of genetic structure is influenced by their number and the way they are chosen. This study evaluates the effects of single nucleotide polymorphism (SNP) number and selection strategy on estimates of germplasm diversity and population structure for different types of barley germplasm, namely cultivar and landrace. One hundred and sixty-nine barley landraces from Syria and Jordan and 171 European barley cultivars were genotyped with 1536 SNPs. Different subsets of 384 and 96 SNPs were selected from the 1536 set, based on their ability to detect diversity in landraces or cultivated barley in addition to corresponding randomly chosen subsets. All SNP sets except the landrace-optimised subsets underestimated the diversity present in the landrace germplasm, and all subsets of SNP gave similar estimates for cultivar germplasm. All marker subsets gave qualitatively similar estimates of the population structure in both germplasm sets, but the 96 SNP sets showed much lower data resolution values than the larger SNP sets. From these data we deduce that pre-selecting markers for their diversity in a germplasm set is very worthwhile in terms of the quality of data obtained. Second, we suggest that a properly chosen 384 SNP subset gives a good combination of power and economy for germplasm characterization, whereas the rather modest gain from using 1536 SNPs does not justify the increased cost and 96 markers give unacceptably low performance. Lastly, we propose a specific 384 SNP subset as a standard genotyping tool for middle-eastern landrace barley.  相似文献   

15.
As the number of single-nucleotide polymorphism (SNP) screening and other mutation scanning studies have increased explosively, following the development of high-throughput instrumentation, it becomes even more important to have sufficient template DNA. The source of DNA is often limited, especially in epidemiological studies, which require many samples as well as enough DNA to perform numerous SNP screenings or mutation scannings. Therefore, the aim is to solve the problem of stock DNA limitation. This need has been an important reason for the development of whole genome amplification (WGA) methods. Several systems are based on Phi29 polymerase multiple displacement amplification (MDA) or on DNA fragmentation (OmniPlex). Using TaqMan SNP genotyping assays, we have tested four WGA systems -- AmpliQ Genomic Amplifier Kit, GenomiPhi, Repli-g, and GenomePlex -- on DNA extracted from Guthrie cards to evaluate the amplification bias, concordance- and call rates, cost efficiency, and flexibility. All systems successfully amplified picograms of DNA from Guthrie cards to micrograms of product without loss of heterozygosity and with minimal allelic bias. A modified AmpliQ set up was chosen for further evaluation. In all, 2,000 SNP genotyping results from amplified and nonamplified samples were compared and the concordance rates between the samples were 99.7%. The call rate using the TaqMan system was 99.8%. DNA extracted from Guthrie cards and amplified with one of the four evaluated WGA systems is applicable in epidemiological genetic screenings. System choice should be based on requirements for system flexibility, product yield, and use in subsequent analysis.  相似文献   

16.
Biallelic marker, most commonly single nucleotide polymorphism (SNP), is widely utilized in genetic association analysis, which can be speeded up by estimating allele frequency in pooled DNA instead of individual genotyping. Several methods have shown high accuracy and precision for allele frequency estimation in pools. Here, we explored PCR restriction fragment length polymorphism (PCR–RFLP) combined with microchip electrophoresis as a possible strategy for allele frequency estimation in DNA pools. We have used the commercial available Agilent 2100 microchip electrophoresis analysis system for quantifying the enzymatically digested DNA fragments and the fluorescence intensities to estimate the allele frequencies in the DNA pools. In this study, we have estimated the allele frequencies of five SNPs in a DNA pool composed of 141 previously genotyped health controls and a DNA pool composed of 96 previously genotyped gastric cancer patients with a frequency representation of 10–90% for the variant allele. Our studies show that accurate, quantitative data on allele frequencies, suitable for investigating the association of SNPs with complex disorders, can be estimated from pooled DNA samples by using this assay. This approach, being independent of the number of samples, promises to drastically reduce the labor and cost of genotyping in the initial association analysis.  相似文献   

17.
The wide development of single nucleotide polymorphism (SNP) markers also in non-model species increases the need for inexpensive methods that do not require sophisticated equipment and time for optimization. This work presents a new method for polymerase chain reaction (PCR) amplification of multiple specific alleles (PAMSA), which allows efficient discrimination of SNP polymorphisms in one reaction tube with standard PCR conditions. This improved PAMSA requires only three unlabeled primers: a common reverse primer and two allele-specific primers having a tail of different length to differentiate the two SNP alleles by the size of amplification products on agarose gel. A destabilizing mismatch within the five bases of the 3′ end is also added to improve the allele specificity. To validate the accuracy of this method, 94 full-sib individuals were genotyped with three SNPs and compared to the genotypes obtained by cleaved amplified polymorphic sequence (CAPS) or derived CAPS. This method is flexible, inexpensive, and well suited for high throughput and automated genotyping.  相似文献   

18.
Melting gel techniques have proven to be amenable and powerful tools in point mutation and single nucleotide polymorphism (SNP) analysis. With the introduction of commercially available capillary electrophoresis instruments, a partly automated platform for denaturant capillary electrophoresis with potential for routine screening of selected target sequences has been established. The aim of this article is to demonstrate the use of automated constant denaturant capillary electrophoresis (ACDCE) in single nucleotide polymorphism analysis of various target sequences. Optimal analysis conditions for different single nucleotide polymorphisms on ACDCE are evaluated with the Poland algorithm. Laboratory procedures include only PCR and electrophoresis. For direct genotyping of individual SNPs, the samples are analyzed with an internal standard and the alleles are identified by co-migration of sample and standard peaks.In conclusion, SNPs suitable for melting gel analysis based on theoretical thermodynamics were separated by ACDCE under appropriate conditions. With this instrumentation (ABI 310 Genetic Analyzer), 48 samples could be analyzed without any intervention. Several institutions have capillary instrumentation in-house, thus making this SNP analysis method accessible to large groups of researchers without any need for instrument modification.  相似文献   

19.
High-throughput SNP genotyping on universal bead arrays   总被引:16,自引:0,他引:16  
We have developed a flexible, accurate and highly multiplexed SNP genotyping assay for high-throughput genetic analysis of large populations on a bead array platform. The novel genotyping system combines high assay conversion rate and data quality with >1500 multiplexing, and Array of Arrays formats. Genotyping assay oligos corresponding to specific SNP sequences are each linked to a unique sequence (address) that can hybridize to its complementary strand on universal arrays. The arrays are made of beads located in microwells of optical fiber bundles (Sentrix Array Matrix) or silicon slides (Sentrix BeadChip). The optical fiber bundles are further organized into a matrix that matches a 96-well microtiter plate. The arrays on the silicon slides are multi-channel pipette compatible for loading multiple samples onto a single silicon slide. These formats allow many samples to be processed in parallel. This genotyping system enables investigators to generate approximately 300,000 genotypes per day with minimal equipment requirements and greater than 1.6 million genotypes per day in a robotics-assisted process. With a streamlined and comprehensive assay, this system brings a new level of flexibility, throughput, and affordability to genetic research.  相似文献   

20.
We describe a convenient, cost-effective and flexible medium-throughput single nucleotide polymorphism (SNP) genotyping method, Multiplex SNP-SCALE, which enables the simultaneous amplification by polymerase chain reaction (PCR) of up to 25 (or potentially more) loci followed by electrophoresis in an automated DNA sequencer. We extended the original SNP-SCALE method to include (i) use of a commercial multiplex PCR kit, (ii) a four-dye system, (iii) much-reduced (2-μL) reaction volumes, (iv) drying down of template DNA before PCR, (v) use of pig-tailed primers, (vi) a PCR product weighting system, (vii) a standard optimized touchdown PCR thermocycling programme, and (viii) software (SNP-SCALE Primer Designer) that automatically designs suitable SNP-SCALE primers for a batch of loci. This new protocol was validated for different types of SNPs. The method is cost- and time-effective for medium-scale evolutionary and ecological projects involving 10s to 100s of loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号