共查询到20条相似文献,搜索用时 15 毫秒
1.
桑树二倍体及人工诱导的同源四倍体遗传差异的AFLP分析 总被引:20,自引:0,他引:20
利用AFLP(AmplifiedFragmentLengthPolymorphism)分子标记技术 ,即扩增片段长度多态性 ,从DNA分子水平探讨二倍体桑 (2n =2X =2 8)与经秋水仙素诱变得到的同源四倍体桑 (2n =4X =5 6 )在遗传结构上的差异。根据对供试材料DNA多态性及遗传距离分析 ,认为经秋水仙素诱变得到的同源 4X与 2X相比在DNA分子遗传结构上产生一定程度的改变 ,在种内变异水平上 ,2X与同源 4X桑间的遗传差异小于种间差异。 相似文献
2.
C. N. Neeraja N. Sarla E. A. Siddiq 《Journal of plant biochemistry and biotechnology.》2002,11(2):93-97
The study aims at determining genetic diversity in a set of land races in comparison to a representative sample of improved rice Varieties, using random amplified polymorphic DNA (RAPD). Analysis of 36 accessions using 10 arbitrary decamer random primers, revealed 97.1 6% polymorphism. Similarity values among the land races ranged from 0.58 to 0.89 indicating wide diversity.The extent of diversity of the accessions was assessed using heterozygosity arithmetic mean value in land races (0.71) and cultivars (0.54). Marker Index (MI) revealed higher values in land races (120.83) than improved varieties (51.74).The land races and improved varieties formed separate clusters at 0.65 similarity suggesting that genetically distant land races could be potentially valuable sources for enlarging and enriching the genepool of improved varieties. 相似文献
3.
Twenty-nine accessions of Triticum including ancestral diploidsand primitive and modern tetraploid and hexaploid froms wereexamined for differences in yield components. Mean whole plant and main shoot harvest index for the ploidygroups exhibited significant (P < 001) increascs from thediploids to the tetraploids and from the tetraploids to thehexaploids. Mean biological yield per plant for the ploidy groupsincreased significantly (P < 001) from the diploid to thehexaploid but declined significantly (P < 001) from thetetraploid to the hexaploid level. There were marked reductions in shoot number and percentageof infertile shoots per plant and increases in grain numberper spikelet and grain size from diploid what (Triticum monococcum)to the early tetraploids. Yield component variation in early and recent Australian wheatsrevealed that the semi-dwarf (gibberellininsensitive) wheatswere significantly higher in whole plant and main shoot harvestindex over normal height (gibberellin-sensitive) wheats. Triticum aestivum, wheat, Aegilops spp, harvest index, polyploidy, yield components, evolution 相似文献
4.
基于表型性状的陆地棉种质资源遗传多样性分析 总被引:3,自引:0,他引:3
通过田间性状观测、室内考种分析及纤维品质检测,对来自我国各棉区及国外各类型的429份陆地棉优异种质进行连续2年2点15个表型性状的鉴定及综合评价。结果表明:15个表型性状中始节高、单株铃数和果枝始节位的变异系数最大;各性状的平均遗传多样性指数较高为2.02;主成分分析确立了3类影响因子,表明陆地棉品种选育应集中在纤维品质优良(尤其纤维长度和比强度要高)、高衣分和株铃数多的品种;聚类分析将所有材料分为10个类群,其中第Ⅰ类群占供试材料总数的76.9%,各类群间性状差异明显,聚类结果与材料的地理来源之间没有直接的关系。 相似文献
5.
Whole-genome duplication (polyploidization) is among the most dramatic mutational processes in nature, so understanding how natural selection differs in polyploids relative to diploids is an important goal. Population genetics theory predicts that recessive deleterious mutations accumulate faster in allopolyploids than diploids due to the masking effect of redundant gene copies, but this prediction is hitherto unconfirmed. Here, we use the cotton genus (Gossypium), which contains seven allopolyploids derived from a single polyploidization event 1–2 Million years ago, to investigate deleterious mutation accumulation. We use two methods of identifying deleterious mutations at the nucleotide and amino acid level, along with whole-genome resequencing of 43 individuals spanning six allopolyploid species and their two diploid progenitors, to demonstrate that deleterious mutations accumulate faster in allopolyploids than in their diploid progenitors. We find that, unlike what would be expected under models of demographic changes alone, strongly deleterious mutations show the biggest difference between ploidy levels, and this effect diminishes for moderately and mildly deleterious mutations. We further show that the proportion of nonsynonymous mutations that are deleterious differs between the two coresident subgenomes in the allopolyploids, suggesting that homoeologous masking acts unequally between subgenomes. Our results provide a genome-wide perspective on classic notions of the significance of gene duplication that likely are broadly applicable to allopolyploids, with implications for our understanding of the evolutionary fate of deleterious mutations. Finally, we note that some measures of selection (e.g., dN/dS, πN/πS) may be biased when species of different ploidy levels are compared. 相似文献
6.
濒危植物三棱栎遗传多样性的RAPD分析 总被引:6,自引:2,他引:6
用随机扩增多态DNA (RAPD)标记对 5个三棱栎 (Trigonobalanusdoichangensis)居群共 99个个体进行遗传多样性和居群遗传结构分析。 16个引物共检测到 15 7个位点 ,其中多态位点 83个 ,占 5 2 87%。物种水平Shannon多样性指数I =0 2 4 31,Nei基因多样度h =0 15 95 ,种内总遗传变异量Ht=0 16 0 0 ,居群内遗传变异量Hs =0 0 74 9,居群间变异量大于居群内变异量 ,表明三棱栎的遗传变异主要存在于居群之间。与同科植物相比 ,三棱栎遗传多样性较低 ,遗传分化系数Gst =0 5 32 0 ,说明居群间的遗传变异占 5 3 2 0 % ,居群间已出现强烈的遗传分化。当地人的强烈活动造成的生境破碎化和居群隔离 ,以及三棱栎演化过程中的地史变化对其种群发展的影响等 ,可能是造成其居群间强烈的遗传分化和较低遗传多样性的原因。基于本研究结果 ,提出了三棱栎遗传多样性的保护策略。 相似文献
7.
Wang-Zhen GUO Dong FANG Wen-Duo YU Tian-Zhen ZHANG 《植物学报(英文版)》2005,47(12):1418-1430
To determine the level of microsatellite sequence differences and to use the information to construct a phylogenetic relationship for cultivated tetraploid cotton (Gossypium spp.) species and their putative diploid ancestors, 10 genome-derived microsatellite primer pairs were used to amplify eight species, including two tetraploid and six diploid species, in Gossypium. A total of 92 unique amplicons were resolved using polyacrylamide gel electrophoresis. Each amplicon was cloned, sequenced, and analyzed using standard phylogenetic software. Allelic diversities were caused mostly by changes in the number of simple sequence repeat (SSR) motif repeats and only a small proportion resulted from interruption of the SSR motif within the locus for the same genome. The frequency of base substitutions was 0.5%-1.0% in different genomes, with only few indels found. Based on the combined 10 SSR flanking sequence data, the homology of A-genome diploid species averaged 98.9%, even though most of the amplicons were of the same size, and the sequence homology between G. gossypioides (Ulbr.) Standl. and three other D-genome species (G. raimondii Ulbr., G. davidsonii Kell., and G. thurberi Tod.) was 98.5%, 98.6%, and 98.5%, respectively. Phylogenetic trees of the two allotetraploid species and their putative diploid progenitors showed that homoelogous sequences from the A- and D-subgenome were still present in the polyploid subgenomes and they evolved independently. Meanwhile, homoelogous sequence interaction that duplicated loci in the polyploid subgenomes became phylogenetic sisters was also found in the evolutionary history of tetraploid cotton species. The results of the present study suggest that evaluation of SSR variation at the sequence level can be effective in exploring the evolutionary relationships among Gossypuim species. 相似文献
8.
9.
棕色棉和绿色棉遗传多样性的比较研究 总被引:5,自引:0,他引:5
选用240条随机引物,从中筛选出6条对棕色棉新彩1、新彩2和绿色棉新彩3、新彩4及47个彩色棉品种间杂种作了RAPD多态性分析,并在棕色棉、绿色棉和棕绿彩棉3个水平进行聚类和相似性分析。结果表明,棕色棉之间、绿色棉之间及棕绿彩棉之间的遗传距离和相似性差异不显著,它反映了棕、绿彩棉之间的遗传基础比较狭窄,遗传多样性水平相当。可能是因为共同的基础种质资源、相同的育种目标及相近的育种方法造成此结果。
Abstract:Genetic diversity analysis of brown cotton Xincai 1 and Xincai 2 and green cotton Xincai 3 and Xincai 4 and other 47 color cottons was conducted by the random amplified polymorphism DNA (RAPD) techniques,using 6 random primers.Cluster and similarity analysis of these cottons showed that the differences in genetic relationship and similarity among the brown cottons,green cottons and brown-green cottons are not remarkable.The results also reflect that the genetic bases of the brown and green cottons are narrow,and they are at the same genetic diversity level.These results are probably due to the same basic germplasms,the same breeding aims and the similar breeding approaches. 相似文献
10.
Kenji Osabe Jenny D. Clement Frank Bedon Filomena A. Pettolino Lisa Ziolkowski Danny J. Llewellyn E. Jean Finnegan Iain W. Wilson 《PloS one》2014,9(1)
In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP) assays including a methylation insensitive enzyme (BsiSI), and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC). DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation) in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP. 相似文献
11.
12.
13.
引进海岛棉种质的SSR遗传多样性分析 总被引:2,自引:0,他引:2
利用95对SSR分子标记对56份海岛棉种质进行遗传多样性分析,其中33份来自于俄罗斯,5份来自埃及,2份来自美国,1份来自阿尔巴尼亚,8份来自我国新疆,7份来自我国云南、江苏等地。结果表明,95对SSR引物在56个海岛棉品种中共测出了384个等位基因,其中多态性等位基因296个,占77.1%。每对引物等位基因变幅是2~9个,平均为4.1个。基因多样性指数(H)在0.035~2.931之间,平均为0.879。Shannon信息指数(I)在0.090~4.417之间,平均为1.363。各指数的趋势一致。95对SSR引物的多态性信息含量PIC变幅为0.035~0.926,平均为0.698。56份海岛棉品种两两间的相似系数在0.585~0.952之间,主要集中在0.6~0.8之间,占整个数据的97%,平均遗传相似系数为0.7。从整体上来看,56份海岛棉的遗传相似系数较高,从聚类图上可以看出,以遗传距离为0.69为标准,56份海岛棉品种可分为4类。第1类主要是前苏联海岛棉为主的27份品种,其中来自埃及的吉扎77和来自美国的派字棉以及中239都归到了这一类。第2类较复杂,但主要是以来自新疆的6份海岛棉和来自埃及的吉扎系列的4份为主。第3类包括8个品种,主要是来自于前苏联的6个品种、来自于新疆的巴3116和河北的冀B91-45。第4类只有来自于前苏联的L-8007,独自成一类。研究结果表明SSR作为一种共显性标记,尤为适用于海岛棉及其亲本的系谱分析及鉴定。因而,SSR标记技术可以为海岛棉育种实践工作中的亲本选配,提供可靠的分子水平上的依据。 相似文献
14.
15.
AFLP and RAPDmarkers were employed in sixteen diploid cotton (Gossypium sp) cultivars for genetic diversity estimation and cultivar identification. Polymorphism information content (PIC) and percent polymorphism were found to be more for AFLP markers as compared to RAPD markers. Average Jaccard’s genetic similarity index was found to be almost similar using either AFLP or RAPD markers. All the cultivars could be distinguished from one another using AFLP markers and also by the combined RAPD profiles. Cultivar identification indicators like resolving power, marker index and probability of chance identity of two cultivars suggested the usefulness of AFLP markers over the RAPD markers. AFLP and RAPD analyses revealed limited genetic diversity in the studied cultivars. Cluster analysis of both RAPD and AFLP data produced two clusters, one containing cultivars of G. herbaceum and another containing cultivars of G. arboreum species. Highly positive correlation between cophenetic matrices using RAPD and AFLP markers was observed. AFLP markers were found to be more efficient for genetic diversity estimation, polymorphism detection and cultivar identification. 相似文献
16.
亚洲棉纤维品质和产量性状的主基因与多基因遗传分析 总被引:1,自引:4,他引:1
利用亚洲棉农家品种中长纤维、高强度的江陵中棉和短纤维、低强度的浙江萧山绿树构建的F2:3家系,利用主基因与多基因混合遗传模型分析方法,对主要纤维品质和产量性状进行4世代联合分析,得到有关纤维品质和产量性状的最适遗传模型。除伸长率之外,长度、马克隆值、比强度、整齐度、短纤维指数均没有检测到主基因;产量性状中铃重和单株铃数最适遗传模型为两对加性-显性-上位性主基因+加性-显性多基因混合遗传模型(E-1),衣分的最适遗传模型为两对主基因的加性模型(B-3),子指的最适遗传模型为无主基因的加性-显性-上位性多基因模型(C),单株皮棉产量的最适遗传模型为两对加性-显性-上位性主基因+加性-显性一上位性多基因混合遗传模型(E)。利用主基因与多基因混合遗传模型分析方法对亚洲棉纤维品质和产量性状进行遗传分析,有助于阐明棉花品质和产量性状的遗传规律。 相似文献
17.
苹果属山荆子遗传多样性的RAPD分析 总被引:3,自引:2,他引:3
采用RAPD分子标记对东北、华北地区山荆子8个天然居群的137株个体进行了遗传多样性研究,10个引物共得到72个扩增位点,其中多态性位点63个.多态位点百分率为87.50%,有效等位基因数(Ne)为1.602 1,Nei's基因多样性(H)为0.338 6,Shannon信息指数(J)为0.496 1,表明山荆子遗传多样性水平较高.基因流(Nm)为1.735 3,说明山荆子各居群间存在一定的基因交流.居群间基因分化系数(Gst)值为0.223 7,说明虽然山荆子居群的遗传变异主要存在于居群内,但各居群间也存在着较高的遗传分化. 相似文献
18.
云南芋种质资源遗传多样性的RAPD分析 总被引:4,自引:0,他引:4
本实验对云南省的28份芋种质资源材料进行RAPD分析,从DNA水平反映了云南芋种资源丰富的遗传多样性,同时也筛选出了一批对芋属作物进行研究的较为适宜的RAPD随机引物序列及优化的PCR程序。通过对RAPD扩增位点进行聚类分析,发现以部分植物学性状等背景资料能对聚类结果进行初步的分类,并给予一定合理的解释。 相似文献
19.
Plant disease resistance genes are a key component of defending plants from a range of pathogens. The majority of these resistance genes belong to the super-family that harbors a Nucleotide-binding site (NBS). A number of studies have focused on NBS-encoding genes in disease resistant breeding programs for diverse plants. However, little information has been reported with an emphasis on systematic analysis and comparison of NBS-encoding genes in cotton. To fill this gap of knowledge, in this study, we identified and investigated the NBS-encoding resistance genes in cotton using the whole genome sequence information of Gossypium raimondii. Totally, 355 NBS-encoding resistance genes were identified. Analyses of the conserved motifs and structural diversity showed that the most two distinct features for these genes are the high proportion of non-regular NBS genes and the high diversity of N-termini domains. Analyses of the physical locations and duplications of NBS-encoding genes showed that gene duplication of disease resistance genes could play an important role in cotton by leading to an increase in the functional diversity of the cotton NBS-encoding genes. Analyses of phylogenetic comparisons indicated that, in cotton, the NBS-encoding genes with TIR domain not only have their own evolution pattern different from those of genes without TIR domain, but also have their own species-specific pattern that differs from those of TIR genes in other plants. Analyses of the correlation between disease resistance QTL and NBS-encoding resistance genes showed that there could be more than half of the disease resistance QTL associated to the NBS-encoding genes in cotton, which agrees with previous studies establishing that more than half of plant resistance genes are NBS-encoding genes. 相似文献
20.
There is wide interest in understanding how genetic diversity is generated and maintained in parthenogenetic lineages, as it will help clarify the debate of the evolution and maintenance of sexual reproduction. There are three mechanisms that can be responsible for the generation of genetic diversity of parthenogenetic lineages: contagious parthenogenesis, repeated hybridization and microorganism infections (e.g. Wolbachia). Brine shrimps of the genus Artemia (Crustacea, Branchiopoda, Anostraca) are a good model system to investigate evolutionary transitions between reproductive systems as they include sexual species and lineages of obligate parthenogenetic populations of different ploidy level, which often co-occur. Diploid parthenogenetic lineages produce occasional fully functional rare males, interspecific hybridization is known to occur, but the mechanisms of origin of asexual lineages are not completely understood. Here we sequenced and analysed fragments of one mitochondrial and two nuclear genes from an extensive set of populations of diploid parthenogenetic Artemia and sexual species from Central and East Asia to investigate the evolutionary origin of diploid parthenogenetic Artemia, and geographic origin of the parental taxa. Our results indicate that there are at least two, possibly three independent and recent maternal origins of parthenogenetic lineages, related to A. urmiana and Artemia sp. from Kazakhstan, but that the nuclear genes are very closely related in all the sexual species and parthenogegetic lineages except for A. sinica, who presumable took no part on the origin of diploid parthenogenetic strains. Our data cannot rule out either hybridization between any of the very closely related Asiatic sexual species or rare events of contagious parthenogenesis via rare males as the contributing mechanisms to the generation of genetic diversity in diploid parthenogenetic Artemia lineages. 相似文献