首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Ginkgo biloba extract (EGb 761) is a standardized extract originating in traditional Chinese medicine. Ginkgo biloba dried leaves have been used for centuries to treat various neurological conditions. The constituents from the extract are likely to have synergistic effects that have been shown to be protective against oxidative stress injury. However, the cellular mechanisms of protection afforded by Ginkgo biloba are still unclear. The cascade leading to neuronal cell death in acute and chronic neurodegenerative conditions, such as cerebral ischemia and Alzheimer's disease, has been postulated to be mediated by free radical damage. We tested the hypothesis that the neuroprotective action of EGb 761 could be due partially to an induction of heme oxygenase I (HO1). We and others have previously reported that modulation of HO total activity may well have direct physiological implications in stroke and in Alzheimer's disease. Heme oxygenase acts as an antioxidant enzyme by degrading heme into iron, carbon monoxide, and biliverdin which is rapidly converted into bilirubin. Through the use of primary neuronal cultures, we demonstrated that EGb 761 induces HO1 in a dose-dependent manner (0, 10, 50, 100 and 500 microg/ml) and time-dependent manner with a maximal induction at 8 hr. We are proposing that several of the protective effects of EGb 761 in ischemia could be mediated through beneficial actions of heme degradation and its metabolites.  相似文献   

4.
Neuronal cell death caused by oxidative stress is common in a variety of neural diseases and can be investigated in detail in cultured HT22 neuronal cells, where the amino acid glutamate at high concentrations causes glutathione depletion by inhibition of the glutamate/cystine antiporter system, intracellular accumulation of reactive oxygen species (ROS) and eventually oxidative stress-induced neuronal cell death. Using this paradigm, we have previously reported that resveratrol (3,5,4′-trans-trihydroxystilbene) protects HT22 neuronal cells from glutamate-induced oxidative stress by inducing heme oxygenase (HO)-1 expression. Piceatannol (3,5,4′,3′-trans-trihydroxystilbene), which is a hydroxylated resveratrol analog and one of the resveratrol metabolites, is estimated to exert neuroprotective effect similar to that of resveratrol. The aim of this study, thus, is to determine whether piceatannol, similarly to resveratrol, would protect HT22 neuronal cells from glutamate-induced oxidative stress. Glutamate at high concentrations induced neuronal cell death and ROS formation. Piceatannol reduced glutamate-induced cell death and ROS formation. The observed cytoprotective effect was much higher when HT22 neuronal cells were pretreated with piceatannol for 6 or 12 h prior to glutamate treatment than when pretreated for 0.5 h. Piceatannol also increased HO-1 expression and HO activity via its activation of nuclear factor-E2-related factor 2 (Nrf2). Interestingly, neuroprotective effect of piceatannol was partly (but not completely) abolished by either down-regulation of HO-1 expression or blockage of HO-1 activity. Taken together, our results suggest that piceatannol, similar to resveratrol, is capable of protecting HT22 neuronal cells against glutamate-induced cell death, at least in part, by inducing Nrf2-dependent HO-1 expression.  相似文献   

5.
Amyloid precursor protein (APP) generates the beta-amyloid peptide, postulated to participate in the neurotoxicity of Alzheimer's disease. We report that APP and APLP bind to heme oxygenase (HO), an enzyme whose product, bilirubin, is antioxidant and neuroprotective. The binding of APP inhibits HO activity, and APP with mutations linked to the familial Alzheimer's disease (FAD) provides substantially greater inhibition of HO activity than wild-type APP. Cortical cultures from transgenic mice expressing Swedish mutant APP have greatly reduced bilirubin levels, establishing that mutant APP inhibits HO activity in vivo. Oxidative neurotoxicity is markedly greater in cerebral cortical cultures from APP Swedish mutant transgenic mice than wild-type cultures. These findings indicate that augmented neurotoxicity caused by APP-HO interactions may contribute to neuronal cell death in Alzheimer's disease.  相似文献   

6.
In mammalian cells, heme can be degraded by heme-oxygenases (HO). Heme-oxygenase 1 (HO-1) is known to be the heme inducible isoform, whereas heme-oxygenase 2 (HO-2) is the constitutive enzyme. Here we investigated the presence of HO during erythroid differentiation in human bone marrow erythroid precursors and K562 cells. HO-1 mRNA and protein expression levels were below limits of detection in K562 cells. Moreover, heme was unable to induce HO-1, at the protein and mRNA profiles. Surprisingly, HO-2 expression was inhibited upon incubation with heme. To evaluate the physiological relevance of these findings, we analyzed HO expression during normal erythropoiesis in human bone marrow. Erythroid precursors were characterized by lack of significant expression of HO-1 and by progressive reduction of HO-2 during differentiation. FLVCR expression, a recently described heme exporter found in erythroid precursors, was also analyzed. Interestingly, the disruption in the HO detoxification system was accompanied by a transient induction of FLVCR. It will be interesting to verify if the inhibition of HO expression, that we found, is preventing a futile cycle of concomitant heme synthesis and catabolism. We believe that a significant feature of erythropoiesis could be the replacement of heme breakdown by heme exportation, as a mechanism to prevent heme toxicity.  相似文献   

7.
Heme oxygenase (HO) catalyzes the rate-limiting step in heme degradation, producing iron, carbon monoxide, and bilirubin/biliverdin. HO consists of two isozymes: HO-1, which is an oxidative stress-response protein, and HO-2, which is constitutively expressed. HO-2 accounts for most HO activity within the nervous system. Its posttranslational modifications and/or interactions with other proteins make HO-2 a unique regulator of cellular homeostasis. Our previous results revealed that brain infarct volume was enlarged in HO-2 knockout mice. A similar neuroprotective role of HO-2 was shown using primary cortical neurons. To better understand the neuroprotective mechanism of HO-2, we used a catalytically inactive mutant, HO-2H45A, and investigated its cellular effects in response to hemin and hydrogen peroxide-induced cytotoxicity. We observed that HO-2WT overexpression in the HEK293 cell lines became less sensitive to hemin, whereas the inactive mutant HO-2H45A was more sensitive to hemin as compared to control. Interestingly, HO-2WT- and HO-2H45A-overexpressing cells were both protected against H2O2-induced oxidative stress and had less oxidatively modified proteins as compared to control cells. These data indicate that when HO-2 cannot metabolize the prooxidant heme, more cytotoxicity is found, whereas, interestingly, the catalytically inactive HO-2H45A was also able to protect cells against oxidative stress injury. These results suggest the multiplicity of action of the HO-2 protein itself.  相似文献   

8.
In the present study, the role of heme oxygenase (HO)-1 in sodium arsenite (arsenite)-induced neurotoxicity was investigated using primary cultured cortical neurons. Incubation with arsenite was found to cause cell death of primary cultured cortical neurons in concentration- and time-dependent manners. Furthermore, arsenite induced caspase 3 activation and decreased procaspase 12 levels, indicating that apoptosis is involved in the arsenite-induced neurotoxicity. The oxidative mechanism underlying arsenite-induced neurotoxicity was investigated. Western blot assay showed that arsenite significantly increased HO-1 levels, a redox-regulated protein. Co-incubation with glutathione (10 mM) attenuated arsenite-induced HO-1 elevation and caspase 3 activation, suggesting that oxidative stress is involved in the arsenite-induced neurotoxicity. The neurotoxic effects of inorganic arsenics were compared; arsenite was more potent than arsenate in inducing HO-1 expression and caspase 3 activation. Moreover, the cell viabilities of arsenite and arsenate were 60?±?2 and 99?±?2 % of control, respectively. HO-1 siRNA transfection was employed to prevent arsenite-induced HO-1 elevation. At the same time, arsenite-induced caspase 3 activation and neuronal death were attenuated in the HO-1 siRNA-transfected cells. Taken together, HO-1 appears to be neuroprotective in the arsenite-induced neurotoxicity in primary cultured cortical neurons. In addition to antioxidants, HO-1 elevation may be a neuroprotective strategy for arsenite-induced neurotoxicity.  相似文献   

9.
Recent investigations have suggested carbon monoxide (CO) as a putative messenger molecule. Although several studies have implicated the heme oxygenase (HO) pathway, responsible for the endogenous production of CO, in the neuromodulatory control of the internal anal sphincter (IAS), its exact role is not known. Nitric oxide, produced by neuronal nitric oxide synthase (nNOS) of myenteric neurons, is an important inhibitory neural messenger molecule mediating nonadrenergic noncholinergic (NANC) relaxation of the IAS. The present studies were undertaken to investigate in detail the presence and coexistence of heme oxygenase-2 (HO-2) with nNOS in the opossum anorectum. In perfusion-fixed, frozen-sectioned tissue, HO-2 immunoreactive (IR) and nNOS IR nerves were identified using immunocytochemistry. Ganglia containing HO-2 IR neuronal cell bodies were present in the myenteric and submucosal plexuses throughout the entire anorectum. Colocalization of HO-2 IR and nNOS IR was nearly 100% in the IAS and decreased proximally from the anal verge. In the rectum, colocalization of HO-2 IR and nNOS IR was approximately 70%. Additional confocal microscopy studies using c-Kit staining demonstrated the localization of HO-2 IR and nNOS IR in interstitial cells of Cajal (ICC) of the anorectum. From the high rate of colocalization of HO-2 IR and nNOS IR in the IAS as well as the localization of HO-2 IR and nNOS IR in ICC in conjunction with earlier studies of the HO pathway, we speculate an interaction between HO and NOS pathways in the NANC inhibitory neurotransmission of the IAS and rectum.  相似文献   

10.
Heme oxygenase (HO) catalyzes the regiospecific cleavage of the porphyrin ring of heme using reducing equivalents and O2 to produce biliverdin, iron, and CO. Because CO has a cytoprotective effect through the p38-MAPK pathway, HO is a potential therapeutic target in cancer. In fact, inhibition of the HO isoform HO-1 reduces Kaposi sarcoma tumor growth. Imidazole-dioxolane compounds have recently attracted attention because they have been reported to specifically inhibit HO-1, but not HO-2, unlike Cr-containing protoporphyrin IX, a classical inhibitor of HO, that inhibits not only both HO isoforms but also other hemoproteins. The inhibitory mechanism of imidazole-dioxolane compounds, however, has not yet been characterized. Here, we determine the crystal structure of the ternary complex of rat HO-1, heme, and an imidazole-dioxolane compound, 2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-1,3-dioxolane. This compound bound on the distal side of the heme iron, where the imidazole and 4-chlorophenyl groups were bound to the heme iron and the hydrophobic cavity in HO, respectively. Binding of the bulky inhibitor in the narrow distal pocket shifted the distal helix to open the distal site and moved both the heme and the proximal helix. Furthermore, the biochemical characterization revealed that the catalytic reactions of both HO-1 and HO-2 were completely stopped after the formation of verdoheme in the presence of the imidazole-dioxolane compound. This result should be mainly due to the lower reactivity of the inhibitor-bound verdoheme with O2 compared to the reactivity of the inhibitor-bound heme with O2.  相似文献   

11.
The heme oxygenase (HO) enzymes catalyze the rate-limiting step of heme breakdown. Prior studies have demonstrated that the vulnerability of neurons and astrocytes to hemoglobin is modified in cells lacking HO-2, the constitutive isoform. The present study assessed the effect of the inducible isoform, HO-1. Wild-type astrocytes treated for 3-5 days with 3-30 microM hemoglobin sustained no loss of viability, as quantified by LDH and MTT assays. The same treatment resulted in death of 25-50% of HO-1 knockout astrocytes, and a 4-fold increase in protein oxidation. Cell injury was attenuated by transfer of the HO-1 gene, but not by bilirubin, the antioxidant heme breakdown product. Conversely, neuronal protein oxidation and cell death after hemoglobin exposure were similar in wild-type and HO-1 knockout cultures. These results suggest that HO-1 induction protects astrocytes from the oxidative toxicity of Hb, but has no effect on neuronal injury.  相似文献   

12.
In the present study, we find that cyclopentenone prostaglandins (PGs) of the J(2) series, naturally occurring derivatives of PGD(2), are potential inducers of intracellular oxidative stress that mediates cell degeneration. Based on an extensive screening of diverse chemical agents on induction of intracellular production of reactive oxygen species (ROS), we found that the cyclopentenone PGs, such as PGA(2), PGJ(2), Delta(12)-PGJ(2), and 15-deoxy-Delta(12,14)-PGJ(2), showed the most potent pro-oxidant effect on SH-SY5Y human neuroblastoma cells. As the intracellular events that mediate the PG cytotoxicity, we observed (i) the cellular redox alteration represented by depletion of antioxidant defenses, such as glutathione and glutathione peroxidase; (ii) a transient decrease in the mitochondrial membrane potential (Deltapsi); (iii) the production of protein-bound lipid peroxidation products, such as acrolein and 4-hydroxy-2-nonenal; and (iv) the accumulation of ubiquitinated proteins. These events correlated well with the reduction in cell viability. In addition, the thiol compound, N-acetylcysteine, could significantly inhibit the PG-induced ROS production, thereby preventing cytotoxicity, suggesting that the redox alteration is closely related to the pro-oxidant effect of cyclopentenone PGs. More strikingly, the lipid peroxidation end products, acrolein and 4-hydroxy-2-nonenal, detected in the PG-treated cells potently induced the ROS production, which was accompanied by the accumulation of ubiquitinated proteins and cell death, suggesting that the membrane lipid peroxidation products may represent one of the causative factors that potentiate the cytotoxic effect of cyclopentenone PGs by accelerating intracellular oxidative stress. These data suggest that the intracellular oxidative stress, represented by ROS production/lipid peroxidation and redox alteration, may underlie the well documented biological effects, such as antiproliferative and antitumor activities, of cyclopentenone PGs.  相似文献   

13.
Abstract: Heme oxygenase (HO), which catalyzes the degradation of heme, has two isozymes (HO-1 and HO-2). In brain the noninducible HO-2 isoform is predominant, whereas the inducible HO-1 is a marker of oxidative stress. Because brain oxidative stress might be present in prion-related encephalopathies (PREs), as in other neurodegenerative diseases, we investigated whether HO-1 mRNA was induced in neuronal and astroglial cell cultures by a peptide corresponding to residue 106–126 of human prion protein (PrP). This peptide is amyloidogenic, and when added in vitro to cultured cells it reproduces the neuronal death and astroglial proliferation and hypertrophy occurring in PREs. HO-1 mRNA did not accumulate in rat cultured neurons from hippocampus or cortex exposed to PrP 106–126 (50 µ M for 5 days). PrP 106–126 induced HO-1 mRNA accumulation in rat astroglial cultures depending on the exposure time and concentration, being maximal (33-fold) after 7 days of exposure at 50 µ M . The nonamyloidogenic amidated or amidated-acetylated PrP 106–126 was ineffective, as was a scrambled peptide used as control. N -Acetylcysteine reduced (50%) the accumulation of HO-1 mRNA in astroglial cells after PrP 106–126 (25 µ M ) given for 5 days. Thus, oxidative stress is apparently a feature of the toxicity of PrP 106–126, and it might also occur in PREs; induction of HO-1 could contribute to the greater resistance of astrocytes compared with neurons to PrP 106–126 toxicity.  相似文献   

14.
Heme oxygenase and heme degradation   总被引:5,自引:0,他引:5  
The microsomal heme oxygenase system consists of heme oxygenase (HO) and NADPH-cytochrome P450 reductase, and plays a key role in the physiological catabolism of heme which yields biliverdin, carbon monoxide, and iron as the final products. Heme degradation proceeds essentially as a series of autocatalytic oxidation reactions involving heme bound to HO. Large amounts of HO proteins from human and rat can now be prepared in truncated soluble form, and the crystal structures of some HO proteins have been determined. These advances have greatly facilitated the understanding of the mechanisms of individual steps of the HO reaction. HO can be induced in animals by the administration of heme or several other substances; the induction is shown to involve Bach1, a translational repressor. The induced HO is assumed to have cytoprotective effects. An uninducible HO isozyme, HO-2, has been identified, so the authentic HO is now called HO-1. HOs are also widely distributed in invertebrates, higher plants, algae, and bacteria, and function in various ways according to the needs of individual species.  相似文献   

15.
16.
Glutamate-induced excito-neurotoxicity likely contributes to non-cell autonomous neuronal death in neurodegenerative diseases. Microglial clearance of dying neurons and associated debris is essential to maintain healthy neural networks in the central nervous system. In fact, the functions of microglia are regulated by various signaling molecules that are produced as neurons degenerate. Here, we show that the soluble CX3C chemokine fractalkine (sFKN), which is secreted from neurons that have been damaged by glutamate, promotes microglial phagocytosis of neuronal debris through release of milk fat globule-EGF factor 8, a mediator of apoptotic cell clearance. In addition, sFKN induces the expression of the antioxidant enzyme heme oxygenase-1 (HO-1) in microglia in the absence of neurotoxic molecule production, including NO, TNF, and glutamate. sFKN treatment of primary neuron-microglia co-cultures significantly attenuated glutamate-induced neuronal cell death. Using several specific MAPK inhibitors, we found that sFKN-induced heme oxygenase-1 expression was primarily mediated by activation of JNK and nuclear factor erythroid 2-related factor 2. These results suggest that sFKN secreted from glutamate-damaged neurons provides both phagocytotic and neuroprotective signals.  相似文献   

17.
Heme oxygenase (HO) is the rate-limiting enzyme for the degradation of heme, a prooxidant, coming from a multitude of heme-containing proteins/enzymes. With the action of cytochrome P450 reductase, HO cleaves the heme ring into biliverdin which is converted into bilirubin, both have been shown to have intrinsic radical scavenger activities. Iron is also released from the heme core and in its free form can act as a catalyst for oxidative stress damage or can be sequested by several iron-binding proteins. Under physiological conditions, the newly generated iron can be neutralized within the cell. The third product of the opening of the porphyrin ring is carbon monoxide, which role has been puzzling. It has been reported as a potential neuromodulator, it modulates guanylate cyclase activity and has vasodilation, anti-inflammatory and antiapoptotic effects. In the brain, HO2 accounts for the vast majority of HO activity. By decreasing HO2 activity, one would expect more neuronal damage after oxidative stress injury with possible direct implications to acute and chronic neurodegenerative disorders. Pharmacological ways to increase neuronal HO activity is likely to have therapeutic applications.  相似文献   

18.
X Guo  V Y Shin  C H Cho 《Life sciences》2001,69(25-26):3113-3119
Heme oxygenase (HO) is the rate-limiting enzyme in the catabolism of heme, followed by production of biliverdin, free iron and carbon monoxide (CO). There are three isoforms of HO: HO-1 is highly inducible, whereas HO-2 and HO-3 are constitutively expressed. In addition to heme, a variety of nonheme compounds, including heavy metals, cytokines, endotoxins and heat shock stress are strong inducers of HO-1 expression. Many studies indicated that induction of HO-1 is associated with a protective response due to the removal of free heme, which is shown to be toxic. However, recent studies demonstrated that the expression of HO-1 in response to different inflammatory mediators could contribute in part to the resolution of inflammation and have protective effects on brain, liver, kidney and lung against injuries. These beneficial effects seem to be due to the production of bile pigment biliverdin and bilirubin that is a potent antioxidant, as well as the release of iron and CO. However, there are few studies concerning the relationship between HO-1 and inflammation as well as injury in the gut. Interestingly, a preliminary study implicated that induction of HO-1 expression in a colonic damage model induced by trinitrobenzene sulfonic acid played a critical protective role, indicating that activation of HO-1 could act as a natural defensive mechanism to alleviate inflammation and tissue injury in the gastrointestinal tract.  相似文献   

19.
Several lines of evidence suggest that antioxidant processes and (or) endogenous antioxidants inhibit proatherogenic events in the blood vessel wall. Heme oxygenase (HO), which catabolizes heme to biliverdin, carbon monoxide, and catalytic iron, has been shown to have such antioxidative properties. The HO-1 isoform of heme oxygenase is ubiquitous and can be increased several fold by stimuli that induce cellular oxidative stress. Products of the HO reaction have important effects: carbon monoxide is a potent vasodilator, which is thought to play a role in modulation of vascular tone; biliverdin and its by-product bilirubin are potent antioxidants. Although HO induction results in an increase in catalytic free iron release, the enhancement of intracellular ferritin protein through HO-1 has been reported to decrease the cytotoxic effects of iron. Oxidized LDL has been shown to increase HO-1 expression in endothelial and smooth muscle cell cultures, and during atherogenesis. Further evidence of HO-1 expression associated with atherogenesis has been demonstrated in human, murine and rabbit atherosclerotic lesions. Moreover, genetic models of HO deficiency suggest that the actions of HO-1 are important in modulating the severity of atherosclerosis. Recent experiments in gene therapy using the HO gene suggest that interventions aimed at HO in the vessel wall could provide a novel therapeutic approach for the treatment or prevention of atherosclerotic disease.  相似文献   

20.
Heme oxygenase-2 knockout neurons are less vulnerable to hemoglobin toxicity   总被引:10,自引:0,他引:10  
When cortical neurons are exposed to hemoglobin, they undergo oxidative stress that ultimately results in iron-dependent cell death. Heme oxygenase (HO)-2 is constitutively expressed in neurons and catalyzes heme breakdown. Its role in the cellular response to hemoglobin is unclear. We tested the hypothesis that HO-2 attenuates hemoglobin neurotoxicity by comparing reactive oxygen species (ROS) formation and cell death in wild-type and HO-2 knockout cortical cultures. Consistent with prior observations, hemoglobin increased ROS generation, detected by fluorescence intensity after dihydrorhodamine 123 or dichlorofluorescin-diacetate loading, in wild-type neurons. This fluorescence was significantly attenuated in cultures prepared from HO-2 knockout mice, and cell death as determined by propidium iodide staining was decreased. In other experiments, hemoglobin exposure was continued for 19 h; cell death as quantified by LDH release was decreased in knockout cultures, and was further diminished by treatment with the HO inhibitor tin protoporphyrin IX. In contrast, HO-2 knockout neurons were more vulnerable than wild-type neurons to inorganic iron. HO-1, ferritin, and superoxide dismutase expression in HO-2 -/- cultures did not differ significantly from that observed in HO-2 +/+ cultures; cellular glutathione levels were slightly higher in knockout cultures. These results suggest that heme breakdown by heme oxygenase accelerates the oxidative neurotoxicity of hemoglobin, and may contribute to neuronal injury after CNS hemorrhage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号