首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cerebellar granule neurons grown in high potassium undergo rapid apoptosis when switched to medium containing 5 mm potassium, a stimulus mimicking deafferentation. This cell death can be blocked by genetic deletion of Bax, a member of the pro-apoptotic Bcl-2 family, cycloheximide an inhibitor of macromolecular synthesis or expression of dominant-negative c-jun. These observations suggest that Bax activation is the result of c-jun target gene(s) up-regulation following trophic withdrawal. Candidate genes include the BH3-only Bcl-2 family members Dp5 and Bim. The molecular mechanisms underlying granule cell neuronal apoptosis in response to low potassium were investigated using CEP-1347 (KT7515), an inhibitor of the MLK family of JNKKK. CEP-1347 provided protection of potassium-serum-deprived granule cells, but such neuroprotection was not long term. The incomplete protection was not due to incomplete blockade of the JNK signaling pathway because c-jun phosphorylation as well as induction of c-jun RNA and protein were completely blocked by CEP-1347. Following potassium-serum deprivation the JNKK MKK4 becomes phosphorylated, an event blocked by CEP-1347. Cells that die in the presence of CEP-1347 activate caspases; and dual inhibition of caspases and MLKs has additive, not synergistic, effects on survival. A lack of synergism was also seen with the p38 inhibitor SB203580, indicating that the neuroprotective effect of the JNK pathway inhibitor cannot be explained by p38 activation. Activation of the JNK signaling pathway seems to be a key event in granule cell apoptosis, but these neurons cannot survive long term in the absence of sustained PI3 kinase signaling.  相似文献   

4.
Mechanical transection of the nigrostriatal dopamine pathway at the medial forebrain bundle (MFB) results in the delayed degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). We have previously demonstrated that c-Jun activation is an obligate component of neuronal death in this model. Here we identified the small GTPase, cdc42, and mixed lineage kinases (MLKs) as upstream factors regulating neuronal loss and activation of c-Jun following MFB axotomy. Adenovirus-mediated expression of a dominant-negative form of cdc42 in nigral neurons blocked MFB axotomy-induced activation (phosphorylation) of MAP kinase kinase 4 (MKK4) and c-Jun, resulting in attenuation of SNpc neuronal death. Pharmacological inhibition of MLKs, MKK4-activating kinases, significantly reduced the phosphorylation of c-Jun and abrogated dopaminergic neuronal degeneration following MFB axotomy. Taken together, these findings suggest that death of nigral dopaminergic neurons following axotomy can be attenuated by targeting cell signaling events upstream of c-Jun N-terminal mitogen-activated protein kinase/c-Jun.  相似文献   

5.
The p75 neurotrophin receptor (p75NTR) mediates signaling events leading to activation of the JNK pathway and cell death in a variety of cell types. We recently identified NRAGE, a protein that directly interacts with the p75NTR cytosolic region and facilitates p75NTR-mediated cell death. For the present study, we developed an inducible recombinant NRAGE adenovirus to dissect the mechanism of NRAGE-mediated apoptosis. Induced NRAGE expression resulted in robust activation of the JNK pathway that was not inhibited by the pharmacological mixed lineage kinase (MLK) inhibitor CEP1347. NRAGE induced cytosolic accumulation of cytochrome c, activation of Caspases-3, -9 and -7, and caspase-dependent cell death. Blocking JNK and c-Jun action by overexpression of the JNK-binding domain of JIP1 or dominant-negative c-Jun ablated NRAGE-mediated caspase activation and NRAGE-induced cell death. These findings identify NRAGE as a p75NTR interactor capable of inducing caspase activation and cell death through a JNK-dependent mitochondrial apoptotic pathway.  相似文献   

6.
Our previous microarray analysis identified a neuroprotective protein Oxi‐α, that was down‐regulated during oxidative stress (OS)‐induced cell death in dopamine neurons [Neurochem. Res. (2004) vol. 29, pp. 1223]. Here we find that the phylogenetically conserved Oxi‐α protects against OS by a novel mechanism: activation of the mammalian target of rapamycin (mTOR) kinase and subsequent repression of autophagic vacuole accumulation and cell death. To the best of our knowledge, Oxi‐α is the first molecule discovered in dopamine neurons, which activates mTOR kinase. Indeed, the down‐regulation of Oxi‐α by OS suppresses the activation of mTOR kinase. The pathogenic effect of down‐regulated Oxi‐α was confirmed by gene‐specific knockdown experiment, which resulted in not only the repression of mTOR kinase and the subsequent phosphorylation of p70 S6 kinase and 4E‐BP1, but also enhanced susceptibility to OS. In accordance with these observations, treatment with rapamycin, an mTOR inhibitor and autophagy inducer, potentiated OS‐induced cell death, while similar treatment with an autophagy inhibitor, 3‐methyladenine protected the dopamine cells. Our findings present evidence for the presence of a novel class of molecule involved in autophagic cell death triggered by OS in dopamine neurons.  相似文献   

7.
8.
The stress activated protein kinase pathway culminates in c-Jun phosphorylation mediated by the Jun Kinases (JNKs). The role of the JNK pathway in sympathetic neuronal death is unclear in that apoptosis is not inhibited by a dominant negative protein of one JNK kinase, SEK1, but is inhibited by CEP-1347, a compound known to inhibit this overall pathway but not JNKs per se. To evaluate directly the apoptotic role of the JNK isoform that is selectively expressed in neurons, JNK3, we isolated sympathetic neurons from JNK3-deficient mice and quantified nerve growth factor (NGF) deprivation-induced neuronal death, oxidative stress, c-Jun phosphorylation, and c-jun induction. Here, we report that oxidative stress in neurons from JNK3-deficient mice is normal after NGF deprivation. In contrast, NGF-deprivation-induced increases in the levels of phosphorylated c-Jun, c-jun, and apoptosis are each inhibited in JNK3-deficient mice. Overall, these results indicate that JNK3 plays a critical role in activation of c-Jun and apoptosis in a classic model of cell-autonomous programmed neuron death.  相似文献   

9.
10.
Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAPKKK) that activates c-jun N-terminal kinase (JNK) and can induce cell death in neurons. By contrast, the activation of phosphatidylinositol 3-kinase and AKT/protein kinase B (PKB) acts to suppress neuronal apoptosis. Here, we report a functional interaction between MLK3 and AKT1/PKBalpha. Endogenous MLK3 and AKT1 interact in HepG2 cells, and this interaction is regulated by insulin. The interaction domain maps to the C-terminal half of MLK3 (amino acids 511-847), and this region also contains a putative AKT phosphorylation consensus sequence. Endogenous JNK, MKK7, and MLK3 kinase activities in HepG2 cells are significantly attenuated by insulin treatment, whereas the phosphatidylinositol 3-kinase inhibitors LY294002 and wortmannin reversed the effect. Finally, MLK3-mediated JNK activation is inhibited by AKT1. AKT phosphorylates MLK3 on serine 674 both in vitro and in vivo. Furthermore, the expression of activated AKT1 inhibits MLK3-mediated cell death in a manner dependent on serine 674 phosphorylation. Thus, these data provide the first direct link between MLK3-mediated cell death and its regulation by a cell survival signaling protein, AKT1.  相似文献   

11.
A sequential pathway (the JNK pathway) that includes activation of Rac1/Cdc42, mixed lineage kinases, MAP kinase kinases 4 and 7, and JNKs plays a required role in many paradigms of apoptotic cell death. However, the means by which this pathway is assembled and directed toward apoptotic death has been unclear. Here, we report that propagation of the apoptotic JNK pathway requires the cooperative interaction of two molecular scaffolds, POSH and JIPs. POSH (plenty of SH3s) is a multidomain GTP-Rac1-interacting protein that binds and promotes activation of mixed lineage kinases. JIPs are reported to bind MAP kinase kinases 4/7 and JNKs. We find that POSH and JIPs directly associate with one another to form a multiprotein complex, PJAC (POSH-JIP apoptotic complex), that includes all of the known kinase components of the pathway. Our observations indicate that this complex is required for JNK activation and cell death in response to apoptotic stimuli.  相似文献   

12.
13.
Activation of c‐jun N‐terminal kinase (JNK) by the mitogen‐activated protein kinase cascade has been shown to play an important role in the death of dopamine neurons of the substantia nigra, one of the principal neuronal populations affected in Parkinson’s disease. However, it has remained unknown whether the JNK2 and JNK3 isoforms, either singly or in combination, are essential for apoptotic death, and, if so, the mechanisms involved. In addition, it has been unclear whether they play a role in axonal degeneration of these neurons in disease models. To address these issues we have examined the effect of single and double jnk2 and jnk3 null mutations on apoptosis in a highly destructive neurotoxin model, that induced by intrastriatal 6‐hydroxydopamine. We find that homozygous jnk2/3 double null mutations result in a complete abrogation of apoptosis and a prolonged survival of the entire population of dopamine neurons. In spite of this complete protection at the cell soma level, there was no protection of axons. These studies provide a striking demonstration of the distinctiveness of the mechanisms that mediate cell soma and axon degeneration, and they illustrate the need to identify and target pathways of axon degeneration in the development of neuroprotective therapeutics.  相似文献   

14.
Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase member that activates the c-Jun N-terminal kinase (JNK) pathway. Aberrant activation of MLK3 has been implicated in neurodegenerative diseases. Similarly, glycogen synthase kinase (GSK)-3beta has also been shown to activate JNK and contribute to neuronal apoptosis. Here, we show a functional interaction between MLK3 and GSK-3beta during nerve growth factor (NGF) withdrawal-induced cell death in PC-12 cells. The protein kinase activities of GSK-3beta, MLK3, and JNK were increased upon NGF withdrawal, which paralleled increased cell death in NGF-deprived PC-12 cells. NGF withdrawal-induced cell death and MLK3 activation were blocked by a GSK-3beta-selective inhibitor, kenpaullone. However, the MLK family inhibitor, CEP-11004, although preventing PC-12 cell death, failed to inhibit GSK-3beta activation, indicating that induction of GSK-3beta lies upstream of MLK3. In GSK-3beta-deficient murine embryonic fibroblasts, ultraviolet light was unable to activate MLK3 kinase activity, a defect that was restored upon ectopic expression of GSK-3beta. The activation of MLK3 by GSK-3beta occurred via phosphorylation of MLK3 on two amino acid residues, Ser(789) and Ser(793), that are located within the C-terminal regulatory domain of MLK3. Furthermore, the cell death induced by GSK-3beta was mediated by MLK3 in a manner dependent on its phosphorylation of the specific residues within the C-terminal domain by GSK-3beta. Taken together, our data provide a direct link between GSK-3beta and MLK3 activation in a neuronal cell death pathway and identify MLK3 as a direct downstream target of GSK-3beta. Inhibition of GSK-3 is thus a potential therapeutic strategy for neurodegenerative diseases caused by trophic factor deprivation.  相似文献   

15.
The mechanisms of peroxynitrite-induced apoptosis are not fully understood. We report here that peroxynitrite-induced apoptosis of PC12 cells requires the simultaneous activation of p38 and JNK MAP kinase, which in turn activates the intrinsic apoptotic pathway, as evidenced by Bax translocation to the mitochondria, cytochrome c release to the cytoplasm and activation of caspases, leading to cell death. Peroxynitrite induces inactivation of the Akt pathway. Furthermore, overexpression of constitutively active Akt inhibits both peroxynitrite-induced Bax translocation and cell death. Peroxynitrite-induced death was prevented by overexpression of Bcl-2 and by cyclosporin A, implicating the involvement of the intrinsic apoptotic pathway. Selective inhibition of mixed lineage kinase (MLK), p38 or JNK does not attenuate the decrease in Akt phosphorylation showing that inactivation of the Akt pathway occurs independently of the MLK/MAPK pathway. Together, these results reveal that peroxynitrite-induced activation of the intrinsic apoptotic pathway involves interactions with the MLK/MAPK and Akt signaling pathways.  相似文献   

16.
Cyclin-dependent kinase 5 is predominantly expressed in postmitotic neurons and plays a role in neurite elongation during development. It has also been postulated to play a role in apoptosis in a variety of cells, including neurons, but little is known about the generality and functional significance of cdk5 expression in neuronal apoptosis in living brain. We have therefore examined its expression and that of its known activators, p35, p39 and p67, in models of induced apoptosis in neurons of the substantia nigra. We find that cdk5 is expressed in apoptotic profiles following intrastriatal injection of 6-hydroxydopamine and axotomy. It is expressed exclusively in profiles which are in late morphologic stages of apoptosis. In these late stages, derivation of the profiles from neurons, and localization of expression to the nucleus, can be demonstrated by co-labeling with a neuron-specific nuclear marker, NeuN. In another model of induced apoptotic death in nigra, produced by developmental striatal lesion, kinase activity increases in parallel with cell death. While mRNAs for all three cdk5 activators are expressed in nigra during development, only p35 protein is expressed in apoptotic profiles. We conclude that cdk5/p35 expression is a general feature of apoptotic neuron death in substantia nigra neurons in vivo.  相似文献   

17.
To examine whether multiple pathways of cell death exist in sympathetic neurons, we studied the cell death pathway induced by staurosporine (STS) in sympathetic neurons and compared it with the well-characterized NGF deprivation-induced death pathway. Increasing concentrations of STS were found to induce sympathetic neuronal death with different biochemical and morphological characteristics. One hundred nM STS induced metabolic changes, loss of cytochrome c, and caspase-dependent morphological degeneration which closely resembled the apoptotic death induced by NGF deprivation. In contrast, sympathetic neurons treated with 1 microM STS showed no loss of cytochrome c but exhibited extensive, caspase-independent, chromatin changes that were not TUNEL positive. One microM STS-treated sympathetic neurons had greatly reduced metabolic activities and became committed to die rapidly, yet maintained soma structure and appeared viable by other criteria even up to 48 h after STS treatment, illustrating the need to assess cell death by multiple criteria. Lastly, in contrast to the cell death-inducing activities of 100 nM STS or 1 microM STS, very low concentrations of STS (1 nM STS) inhibited sympathetic neuronal death by acting either at or prior to c-jun phosphorylation in the NGF deprivation-induced PCD pathway.  相似文献   

18.
Yeast-based functional screening of a human glioblastoma cDNA library identified ras-related nuclear protein (Ran) as a novel suppressor of Bcl-2-associated X protein (Bax), a pro-apoptotic member of the Bcl-2 family of proteins. Yeast cells that expressed human Ran were resistant to Bax-induced cell death. In U373MG glioblastoma cells, stable overexpression of Ran significantly attenuated apoptotic cell death induced by the chemotherapeutic agent paclitaxel. FACS analysis demonstrated that Ran is involved in paclitaxel-induced cell cycle arrest. Stable overexpression of Ran also markedly inhibited the phosphorylation of Bcl-2 by paclitaxel, and inhibited the translocation of Bax, the release of cytochrome c and activation of caspase-3. Paclitaxel-induced phosphorylation of c-JUN N-terminal kinase (JNK), but not p38, extracellular signal-regulated kinase and Akt, was markedly suppressed in U373MG cells that stably expressed Ran. These results suggest that Ran suppresses paclitaxel-induced cell death through the downregulation of JNK-mediated signal pathways. Im Sun Woo and Han-Su Jang contributed equally to this work.  相似文献   

19.
The aim of this study was to investigate the activation of JNK1/2 signalling pathway and the respective cellular phenotype of H9c2 cardiac myoblasts during two distinct types of oxidative insult. We examined the dose- and time-dependent activation of JNK1/2 pathway by exogenous H2O2, both under transient and sustained stimulation. At 2 h of either sustained or transient treatment, maximal phosphorylation of c-Jun was observed, coincidently with the activation of nuclear JNK1/2; under sustained stress, these phosphorylation levels remained elevated above basal for up to 6 h, whereas under transient stress they declined to basal ones within 4 h of withdrawal. Furthermore, the JNK1/2 selective inhibitor SP600125 abolished the c-jun phosphorylation induced by oxidative stress. Our results using cell viability assays and light microscopy revealed that sustained H2O2 stimulation significantly and time-dependently decreased H9c2 viability, in contrast to transient stimulation; SP600125 (10 μM) abolished cell death induced by sustained as well as cell survival induced by transient oxidative stress. Hoechst staining showed an increase in DNA condensation during sustained, but not during transient stimulation. Moreover, from the antioxidants tested, catalase and superoxide dismutase prevented oxidative stress-induced cell death. Flow cytometry studies reconfirmed that sustained oxidative stress induced apoptosis, whereas transient resulted in the recovery of cardiac myoblasts within 24 h. We conclude that in H9c2 myoblasts, sustained activation of JNK1/2 signalling pathway during oxidative stimulation is followed by an apoptotic phenotype, while transient JNK1/2 activation correlates well with cell survival, suggesting a dual role of this signalling pathway in cell fate determination.  相似文献   

20.
The role of gene expression in neuronal apoptosis may be cell- and apoptotic stimulus-specific. Previously, we and others showed that amyloid beta (Abeta)-induced neuronal apoptosis is accompanied by c-jun induction. Moreover, c-Jun contributes to neuronal death in several apoptosis paradigms involving survival factor withdrawal. To evaluate the role of c-Jun in Abeta toxicity, we compared Abeta-induced apoptosis in neurons from murine fetal littermates that were deficient or wild-type with respect to c-Jun. We report that neurons deficient for c-jun are relatively resistant to Abeta toxicity, suggesting that c-Jun contributes to apoptosis in this model. When changes in gene expression were quantified in neurons treated in parallel, we found that Abeta treatment surprisingly led to an apparent activation of the c-jun promoter in both the c-jun-deficient and wild-type neurons, suggesting that c-Jun is not necessary for activation of the c-jun promoter. Indeed, several genes induced by Abeta in wild-type neurons were also induced in c-jun-deficient neurons, including c-fos, fosB, ngfi-B, and ikappaB. In summary, these results indicate that c-Jun contributes to Abeta-induced neuronal death but that c-Jun is not necessary for c-jun induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号