首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hansen, A. P., Pate, J. S. and Atkins, C. A. 1987. Relationshipsbetween acetylene reduction activity, hydrogen evolution andnitrogen fixation in nodules of Acacia spp.: Experimental backgroundto assaying fixation by acetylene reduction under field conditions.—J.exp. Bot. 38: 1–12 Glasshouse grown, symbiotically-dependent seedlings of Acaciaalata R.Br., .A. extensa Lindl., and A. pulchella R.Br. wereexamined for acetylene reduction in closed assay systems usingundisturbed potted plants, excavated whole plants, nodulatedroots or detached nodules. Nitrogenase activity declined sharplyover the first hour after exposure of detached nodules to acetylene(10% v/v in air), less steeply or not at all over a 3 h periodin assays involving attached nodules. Using detached nodules,rates of acetylene reduction, nitrogen (15N2) fixation, andhydrogen evolution in air (15N2) and acetylene-containing atmosphereswere measured in comparable 30 min assays. Total electron flowthrough nitrogenase in air was determined from rates of nitrogen(15N2) fixation ( ? 3) plus hydrogen evolution, that in thepresence of acetylene from rates of acetylene reduction andhydrogen evolution in air: acetylene. Values for the ratio ofelectron flow in air: acetylene to that in air ranged from 0?43to 0?83 in A. pulcheila, from 0?44 to 0?66 in A. alala and from0?37 to 0?70 in A. extensa, indicating substantial inhibitionof electron flow through nitrogenase of detached nodules byacetylene. Relative efficiencies of nitrogenase functioningbased on hydrogen evolution and acetylene reduction were from0?15 to 0?79, those based on nitrogen (15N2) fixation and hydrogenevolution from 0?53 to 0?87. Molar ratios of acetylene reducedto nitrogen (15N2) fixed were 2?82 ? 0?24, 201 ? 0?15, and 1?91? 0?11 (?s.e.; n = 7) for A. pulcheila,A. extensa and A. alata respectively A standard 5–10 min acetylene reduction assay, conductedon freshly detached unwashed nodules in daytime (12.00–14.00h), was calibrated for field use by comparing total N accumulationof seedlings with estimated cumulative acetylene reduction overa 7-week period of glasshouse culture. Molar ratios for acetylenereduced: nitrogen fixed using this arbitrary method were 3?58for A. alata, 4?82 for A. extensa and 1?60 for A. pulchella.The significance of the data is discussed. Key words: Acacia spp, nitrogenase functioning  相似文献   

2.
Hansen, A. P. and Pate, J. S. 1987. Evaluation of the 15N naturalabundance method and xylem sap analysis for assessing N2 fixationof understorey legumes in jarrah (Eucalyptus marginata Donnex Sm.) forest in S.W. Australia.—J. exp. Bot 38: 1446–1458. Nodulated seedlings of Acacia pulchella, A. alata and A. extensawere grown in glasshouse sand culture under a range of levels(0–16 mol m3) of nitrate, supplied as 15NO3, or as unenrichedlaboratory grade nitrate (15N value 5·5%o). Nitrate at8·0 mol m 3 or above was highly inhibitory to growthof all species. Using 15N dilution analysis of the 15N enrichedcultures to measure symbiotic dependency, it was shown that15N values of the parallel unenriched cultures increased innear linear fashion from close to zero in fully symbiotic plantsto values close to that of the supplied NO3 in plants experiencingnitrate levels (4·0 mol m3 or above) inhibiting N2 fixationby over 90%. Xylem sap analyses (0·4 mol m3 NO3 treatments)showed asparagine as the major nitrogenous solute, relativelylittle spill-over of free nitrate, and no evidence of majorshifts in balance of amino compounds with increasing dependenceon nitrate. This essentially invalidated use of the techniqueas a field assay for N2 fixation by the species. 15N values for total N of soil sampled at 64 widely distributedsites in jarrah forest ranged from – 2·15 to +5·4(mean +2·1). Comparable values for soil mineral N (NH+4and NO3) were +0·3 to + 14·2 (mean +5·1).15N values of the total plant N of the legumes and of non-N2-fixingreference species were also highly variable between sites, withlittle evidence of reference plant N accurately reflecting the15N abundance of soil nitrogen, or of visibly well nodulatedlegume components showing consistently lower 15N values thantheir companion reference plants. At one site it was possibleto compare 15N values of first season seedling legumes withpreviously published estimates of their progressive N2 fixationusing C2H2 reduction assays. It was concluded that heterogeneity in 15N discrimination ofsoil within the ecosystem precluded effective use of the 15Nnatural abundance technique for assessing legume N2 fixation. Key words: Acacia spp., 15N natural abundance,, xylem sap analysis,, nitrogen fixation.  相似文献   

3.
The theory and practice of applying the thermodynamics of irreversibleprocesses to mass-flow theories is presented. Onsager coefficientswere measured on cut and uncut phloem and cut xylem strandsof Heracleum muntegazzimum. In 0.3 N sucrose + 1 mN KC1 theyare as follows. In phloem, LEE = 5 ? 10–4 mho cm–1,LpE = 9 ? 10–6 cm3 s–1 cm–2 volt–1 cm,and LPP = 0.16 cm3 s–1 cm–2 (J cm–3)–1cm. In uncut phloem strands LEE is about 1 ? 10–3 mhocm–1. In xylem in 2 x 10–3 N KCI, Lpp = 50 to 225,LPE = 2 ? 10–4, and LEE = 4 ? 10–3. The measurementsare tentative since the blockage of the sieve plates is an interferingfactor, but if they are valid they lead to the conclusion thatneither a pressure-flow nor an electro-kinetic mechanism envisaginga ‘long distance’ current pathway can be the majormotive ‘force’ for transport in mature phloem. Measurementsof biopotentials along conducting but laterally detached phloembundles of Heracleum suggest, nevertheless, that there may bea small electro-osmotic component of at least 0.1 mV cm–1endogenous in the phloem.  相似文献   

4.
The Uptake of Gaseous Ammonia by the Leaves of Italian Ryegrass   总被引:5,自引:0,他引:5  
Lockyer, D. R. and Whitehead, D. C. 1986. The uptake of gaseousammonia by the leaves of Italian ryegrass.—J. exp. Bot.37: 919–927. Plants of Italian ryegrass (Lolium multiflorum Lam.) grown insoil with two rates of added 15N-labelled nitrate were exposed,in chambers, for 40 d to NH3 in the air at concentrations of16, 118 and 520 µg m–3. At the highest concentrationof NH3, this source provided 47?3% of the total nitrogen inplants grown with the lower rate of nitrate addition (100mgN kg–1 dry soil) and 35?2% with the higher rate (200mgN kg–1 dry soil) At the intermediate concentration ofNH3, the contributions to total plant N were 19?6% and 10?8%,respectively, at low and high nitrate while, at the lowest concentrationof NH3, they were 5?1% and 32%. Most of the N derived from theNH3 remained in the leaves, but some was transported to theroots. The amount of N derived from the NH3 that was presentin the leaves was not reduced by washing the leaves in waterat pH 5?0 before harvesting, indicating that the N was assimilatedby the plant and not adsorbed superficially. Rates of uptakeof NH3 per unit leaf area ranged from 1?7 µg dm–2h–1 at a concentration of 16 µg m–3 to 29?0µg dm–2 h–1 at a concentration of 520 µgm–3 and with the lower rate of nitrate addition. Increasingthe supply of nitrate to the roots slightly reduced the rateof uptake of NH3 per unit leaf area. Uptake of N from the higherrate of nitrate was reduced at the highest concentration ofNH3 in the air. Key words: Ammonia, nitrogen, leaf sorption, Lolium multiflorum  相似文献   

5.
Smith, J. R., Smith, F. A. and Walker, N. A. 1987. Potassiumtransport across the membrane of Chara. I. The relationshipbetween radioactive tracer influx and electrical conductance.—J.exp. Bot. 38:731–751. The 42K influx () and the electrical conductance (Gm) were measured simultaneously for the ‘membrane’of internodal cells of Chara australis as a function of theexternal [KCl] (K?. In bathing solutions of pH = 5?0, progressively increased from 20?5to 430?60 nmol m–2 s–1 and Gm increased from 0?36?0?02to 3?8?0?8 S m–2 when K? was increased from 0?1 to 10mol m–3. The resting membrane potential difference (p.d.)was approximately -135 mV for low K? and approached the expectedNernst equilibrium p.d. for K+ ions when K? > 1?0 mol m–3.Measurements of 36Cl influx suggested that the 42K influx waspredominantly electrogenic. The equivalent Goldman permeabilityto K+ ions (Pk) was approximately 20–30 nm s–1 anddid not vary significantly with increasing K?. The equivalentconductance attributable to the electrogenic transport of K+ ions was calculated from assuming passive, independent diffusionof K+ ions and the ratio was found to be typically close to one. It was also found that themagnitudes of and Gm measuredsimultaneously for each individual cell were also well correlatedfor K? 1?0 mol m–3, and that the slope of the line ofbest fit was close to one. For each K? it was found that theconductance not attributable to K+ translocation and presumablyassociated primarily with the transport of protons or theirequivalents was typically 0?2–0?5 Sm–2. For K? >1?0 mol m–3 the results indicated that the transport ofK+ ions was essentially independent, i.e. there was no evidencefor flux interactions. The results also indicated that the equivalentconductance derived from the measured 42K influx could usefullyindicate the fraction of the electrical conductance attributableto the translocation of K+ ions. Key words: Potassium, conductance, influx  相似文献   

6.
Ritchie, R. J. 1987. The permeability of ammonia, methylamineand ethylamine in the charophyte Chara corallina (C. australis).—J.exp. Bot. 38: 67–76 The permeabilities of the amines, ammonia (NH3), methylamine(CH3NH2) and ethylamine (CH3CH2NH2) in the giant-celled charophyteChara corallina (C. australis) R.Br. have been measured andcompared. The permeabilities were corrected for uptake fluxesof the amine cations. Based on net uptake rates, the permeabilityof ammonia was 6?4?0?93 µm s–1 (n = 38). The permeabilitiesof methylamine and ethylamine were measured in net and exchangeflux experiments. The permeabilities of methylamine were notsignificantly different in net and exchange experiments, norto that of ammonia (Pmethylamine = 6?0?0?49 µm s–1(n = 44)). In net flux experiments the apparent permeabilityof ethylamine was slightly greater than that of ammonia andmethylamine (Pethylamine, net = 8?4?1?2 µm s–1 (n= 40)) but the permeability of ethylamine based on exchangeflux data was significantly higher (Pethylamine, exchange =14?1?2 µm s–1 (n = 20)). Methylamine can be validlyused as an ammonium analogue in permeability studies in Chara. The plasmalemma of Chara has acid and alkaline bands; littlediffusion of uncharged amines would occur across the acid bands.The actual permeability of amines across the alkaline bandsis probably about twice the values quoted above on a whole cellbasis i.e. the permeability of ammonia across the permeablepart of the plasmalemma is probably about 12 µm s–1. Key words: Chara, permeability, ammonia, methylamine  相似文献   

7.
Macduff, J. H., Hopper, M. J. and Wild, A. 1987. The effectof root temperature on growth and uptake of ammonium and nitrateby Brassica napus L. CV. Bien venu in flowing solution culture.II. Uptake from solutions containing NH4NO3.—J. exp. Bot.38: 53–66 The effects of root temperature on uptake and assimilation ofNH4+ and NO3 by oilseed rape (Brassica napus L. CV. Bienvenu) were examined. Plants were grown for 49 d in flowing nutrientsolution at pH 6?0 with root temperature decrementally reducedfrom 20?C to 5?C; and then exposed to different root temperatures(3, 5, 7, 9, 11, 13, 17 or 25?C) held constant for 14 d. Theair temperature was 20/15?C day/night and nitrogen was suppliedautomatically to maintain 10 mmol m–3 NH4NO3 in solution.Total uptake of nitrogen over 14 d increased threefold between3–13?C but was constant above 13?C. Net uptake of NH4+exceeded that of NO3 at all temperatures except 17?C,and represented 47–65% of the total uptake of nitrogen.Unit absorption rates of NH4+ and of 1?5–2?7 for NO3suggested that NO3 absorption was more sensitive thanNH4+ absorption to temperature. Rates of absorption were relativelystable at 3?C and 5?C compared with those at 17?C and 25?C whichincreased sharply after 10 d. Tissue concentration of N in theshoot, expressed on a fresh weight basis, was independent ofroot temperature throughout, but doubled between 3–25?Cwhen expressed on a dry weight basis. The apparent proportionof net uptake of NO3 that was assimilated was inverselyrelated to root temperature. The results are used to examinethe relation between unit absorption rate adn shoot:root ratioin the context of short and long term responses to change ofroot temperature Key words: Brassica napus, oilseed rape, root temperature, nitrogen uptake  相似文献   

8.
Hansen, A. P. and Pate, J. S. 1987. Comparative growth and symbioticperformance of seedlings of Acacia spp. in defined pot cultureor as natural understorey components of a eucalypt forest ecosystemin S.W. Australia.—J. exp. Bot. 38: 13–25 Growth, nitrogen accumulation, nodulation and nitrogenase activity(C2H2 reduction activity) were monitored in a dense stand ofseedlings of Acacia pulchella R.Br. and A. alata R.Br. duringtwo growing seasons after fire at a jarrah (Eucalyptus marginataDonn ex Sm.) forest site at Illawarra, 35 km south-east of Perth.Nitrogen fixation, estimated by a previously calibrated C2H2reduction assay, was essentially restricted to the winter andspring months (July to October) and was estimated to contribute37% and 9% respectively of the total N accumulated by A. pulchelladuring the first and second seasons of growth. Comparable valuesfor A. alata were 29% and 2%. Comparisons with fully symbioticplants raised in a glasshouse in supposedly non-limiting growthconditions in minus nitrogen sand culture indicated that waterstress rather than high temperatures was responsible for lossof nodules, cessation of symbiotic activity and attenuationof growth during summer in the field. By 19 months glasshouseplants had gained 130–230 times the dry weight and accumulated110–160 times the total N of similarly aged, field grownplants. Growth, nodulation and N2 fixation of symbiotically-dependentsand cultured plants of A. pulchella and A. alata respondedmarkedly to phosphate, and additions of water and nutrientsto 3-year plants of A. pulchella during a winter growing seasonin the field indicated that periods of reduced soil moistureand low availability of nutrients, particularly phosphorus,might limit symbiotic performance under natural conditions. Key words: Seasonal nitrogen fixation, Acacia spp  相似文献   

9.
Two approaches to quantifying relationships between nutrientsupply and plant growth were compared with respect to growth,partitioning, uptake and assimilation of NO3 by non-nodulatedpea (Pisum sativum L. cv. Marma). Plants grown in flowing solutionculture were supplied with NO3 at relative addition rates(RAR) of 0·03, 0·06, 0·12, and 0·18d–1, or constant external concentrations ([NO3)of 3, 10, 20, and 100 mmol m–3 over 19 d. Following acclimation,relative growth rates (RGR)approached the corresponding RARbetween 0·03–0.12 d-1, although growth was notlimited by N supply at RAR =0.18 d-1. Growth rates showed littlechange with [NO3–] between 10–100 mmol m–3(RGR=0·15 –0·16 d-1). The absence of growthlimitation over this range was suggested by high unit absorptionrates of NO3, accumulation of NO3 in tissues andprogressive increases in shoot: root ratio. Rates of net uptakeof NO3 from 1 mol m–3 solutions were assessed relativeto the growth-related requirement for NO3, showing thatthe relative uptake capacity increased with RGR between 0·03–0·06d–1 , but decreased thereafter to a theoretical minimumvalue at RGR  相似文献   

10.
Cytoplasmic pH (pHc) in Chara corallina was measured (from [14C]stribution)as a function of external pH (pH0)and temperature. With pH0near 7, pHc at 25?C is 7.80; pHcincreases by 0.005 pH units?C–1 temperature decrease, i.e. pHc at 5 ?C is 7.90. WithpH? near 5.5, the increase in pHc with decreasing temperatureis 0.015 units ?C–1 between 25 and 15?C, but 0.005 units?C–1 between 15 and 5?C. This implies a more precise regulationof pHc with variations in pHo at 5 or 15 ?C compared with 25?C. The observed dp Hc/dT is generally smaller than the –0.017units ?C–1 needed to maintain a constant H+/OH–1,or a constant fractional ionization of histidine in protein,with variation in temperature. It is closer to that needed tomaintain the fractional ionization of phosphorylated compoundsor of CO2–HCO3 The value of dpHc/dT has importantimplications for several regulatory aspects of cell metabolism.These include (all as a function of temperature) the rates ofenzyme reactions, the H+ at the plasmalemma(and hence the energy available for cotransport processes),and the mechanism for pHc regulation by the control of bidirectionalH+ fluxes at the plasmalemma.  相似文献   

11.
The growth of four heathland species, two grasses (D. flexuosa,M. caerulea) and two dwarf shrubs (C. vulgaris, E. tetralix),was tested in solution culture at pH 4.0 with 2 mol m–3N, varying the N03/NH4+ ratio up to 40% nitrate. In addition,measurements of NRA, plant chemical composition, and biomassallocation were carried out on a complete N03/NH4+ replacementseries up to 100% nitrate. With the exception of M. caerulea, the partial replacement ofNH4+ by NO3 tended to enhance the plant's growth ratewhen compared to NH4+ only. In contrast to the other species,D. flexuosa showed a very flexible response in biomass allocation:a gradual increase in the root weight ratio (RWR) with NO3increasing from 0 to 100%. In the presence of NH4+, grassesreduced nitrate in the shoot only; roots did not become involvedin the reduction of nitrate until zero ambient NH4+. The dwarfshrubs, being species that assimilate N exclusively in theirroots, displayed an enhanced root NRA in the presence of nitrate;in contrast to the steady increase with increasing NO3in Calluna roots, enzyme activity in Erica roots followed arather irregular pattern. Free nitrate accumulated in the tissuesof grasses only, and particularly in D. flexuosa. The relative uptake ratio for NO3 [(proportion of nitratein N uptake)/(proportion of nitrate in N supply)] was lowestin M. caerulea and highest in D. flexuosa. Whereas M. caeruleaand the dwarf shrubs always absorbed ammonium highly preferentially(relative uptake ratio for NO3 <0.20), D. flexuosashowed a strong preference for NO3 at low external nitrate(the relative uptake ratio for N03 reaching a value of2.0 at 10% NO3). The ecological significance of thisprominent high preference for NO3 at low NO3/NH4+ratio by D. flexuosa and its consequences for soil acidificationare briefly discussed. Key words: Ammonium, heathland lants, N03/NH4+ ratio, nitrate, nitrate reductase activity, soil acidification, specific absorption rate  相似文献   

12.
The use of chlorate as an analogue for NO3 during nitrateuptake into Chara corallina cells has been investigated. NO3inhibits 36C1O3 influx into Chara over the concentrationrange 0–1000 mmol m–3. Lineweaver-Burke plots ofthe data are characteristic of competitive inhibition by NO–3in the low concentration range (0–300 mmol m–3 ClO3)and apparent KINO3 is 140 mmol m–3 which is of a similarorder of magnitude as apparent KmCIO3- 180 mmol m–3. Athigher substrate concentrations the inhibition by NO3was not characteristic of competitive or uncompetitive inhibition. 36C1O3/NO3 influx was dependent on K+ and Ca2+in the external medium and inhibited by FCCP. NO3 pretreatmentor N starvation increased subsequent 36C1O3/NO3influx into Chara. A comparison between rates of net NO3uptake and 36C1O3/NO3 influx supported the previoushypothesis that NO3 efflux is an important componentin the determination of overall uptake rates. Key words: Nitrate, Chara, 36CIO3  相似文献   

13.
Lee, H. S. J. and Griffiths, H. 1987. Induction and repressionof CAM in Sedurn relephluni L. in response to photopcnod andwater stress.—J. exp. Bot. 38: 834–841. The introduction and repression of CAM in Sedurn telephiunmL, a temperate succulent, was investigated in watered, progressivelydrouglited and rewatered plants in growth chambers. Measurementswere made of water vapour and CO2 exchange, titratable acidity(TA) and xylem sap tension. Effects of photoperiod were alsostudied. CAM was induced by drought under long or short days,although when watered no CAM activity was expressed. C3-CAM intermediate plants were used for the investigation ofwater supply. Those which had received water and those drought-stressedboth displayed a similar nocturnal increase in TA, with a day-nightmaximum (H+) of 69 µmol g–1 fr. wt. The wateredplants took up CO2 at a maximum rate of 2?2 µmol m–2s–1 only in the light period, while the droughted plantsshowed a maximum nocturnal CO2 uptake rate of 0?69 µmolm–2 s–1. Subsequently, as CAM was repressed, thewatered S. telephiwn displayed little variation in TA, withconstant levels at 42 µmol g–1 fr. wt. (day 10).After 10 d of drought stress, the CAM characteristics of S.telephiurn were aLso affected, with reduced net CO2 uptake andH+. The transition between C3 and CAM in S. telephium can be describedas a progression in terms of the proportion of respiratory CO2which is recycled and refixed at night as malic acid, in comparisonwith net CO2 uptake. Recycling increased from 20% (day 1) to44% (day 10) as a result of the drought stress and was highin both the CAM-C3 stage (no net CO2 uptake at night) and alsoin the drought-stressed CAM stage (reduced net CO2 uptake atnight). The complete C3-CAM transition occurred in less than8 d, and the stages could be characterized by xylem sap tensionmeasurements: CAM = 0?50 MPa C3-CAM = 0?36 MPa C3 = 0?29 MPa. Key words: CAM, Sedum telephium L., recycling  相似文献   

14.
The effects of root age, temperature, and soil water statuson root hydraulic conductivity (LP) were investigated for twocactus species, Ferocactus acanthodes and Opuntia ficus-indica.The volumetric flux density of water was measured for excisedroot segments, either using negative hydrostatic pressures appliedto the proximal end or using reverse flow of water from theroot to the soil. For both species, LP at 20 ?C increased withroot age, average values reaching a maximum of 3.9 ? 10–7m s–1 MPa–1 for F. acanthodes and 5.2 ? 10–7m s–1 MPa–1 for O.ficus-indica at 11 to 17 weeksof age; LP subsequently declined with increasing root age forboth species. LP was maximal at a temperature of about 10 ?Cfor the youngest roots (1–3 weeks), this optimum shiftingto 40 ?C for 8-week-old roots of both species. For older roots(up to 1.5-years-old), LP increased with temperature from 0?C to 50 ?C, with a Q10 of 1.3 between 20 ?C and 30 ?C. At asoil water potential (soil) of –0.016 MPa, root LP wasindependent of the direction of water flow for both species.Depending on root age, LP declined 45- to 500-fold for F. acanthodesand 90- to 800-fold for O.ficus-indica as soil was reduced from–0.016 to –1.06 MPa, consistent with a rectifier-likebehaviour with respect to water movement between soil and roots.Incorporation of such responses into water uptake models shouldlead to a better understanding of root function. Key words: Ferocactus acanthodes, Opuntia ficus-indica, water potential, tension, reverse flow  相似文献   

15.
Net photosynthetic rates per unit ground area for plant standsof Solanum melongena L. var. esculentum (aubergine) and Amaranthuscaudatus L. var. edulis (grain amaranth) were measured over10 min intervals in an airtight, glass, controlled-environmentcabinet for a range of light flux densities provided by thediurnal variation in daylight. Light response curves for photosynthesisof stands, grown at ambient CO2 concentration, were definedat 400, 800 and 1200 vpm CO2. Light compensation points for these stands were around 20-30J m-2 s-1 and decreased slightly at higher CO2 concentrations.For aubergine, a C3 species, the short-term effects of CO2 enrichmentwere to increase the initial slope as well as the asymptoteof the light response curve, reducing light saturation at moderateto high light flux densities; but for amaranthus, a C4 species,saturation was less apparent and CO2 enrichment scarcely increasedphotosynthesis except at light flux densities above 150 J m-2s-1. The canopies intercepted 93-98% of incident light. The efficiencyof utilization of intercepted light in photosynthesis (µgCO2 J-1) increased from zero at the light compensation pointto a maximum at an optimum light flux density of about 100 Jm-2 s-1 (the optimum rose a little with CO2 enrichment) anddecreased slightly with further increase in light. Maximum utilizationefficiencies at 400 vpm CO2 were 8-9 µg CO2 J-1. Enrichmentto 1200 vpm did not affect the peak utilization efficiency ofthe C4 amaranthus, but increased that aubergine to 12·2µg CO2 J-1 (equivalent to some 14% when using the heatof combustion of plant dry matter to convert to the dimensionlessform). This is among the highest recorded efficiencies of lightutilization for stands, and relates to the exceptionally favourableenvironment, with optimal control of CO2 concentration, humidity,temperature, water supply and mineral nutrition.Copyright 1993,1999 Academic Press Amaranthus caudatus L. var. edulis, Solanum melongena L. var. esculentum, canopy photosynthesis, CO2 enrichment, light interception, light utilization, photosynthetic efficiency  相似文献   

16.
The Carbon Economy of Rubus chamaemorus L. II. Respiration   总被引:1,自引:0,他引:1  
MARKS  T. C. 《Annals of botany》1978,42(1):181-190
Respiratory activity and seasonal changes in carbohydrate contentof the storage organs of Rubus chamaemorus L. have been investigated.Leaf dark respiration rate increases in a non-linear mannerfrom 0·7 mg CO2 evolved dm–2 h–1 at 0 °Cto 4·6 rng CO2 evolved dm–2 hh–1 at 30 °C.Root and rhizome respiration rates increase from 1 µ1O2 uptake g–1 fresh weight h–1 at 0.7 ° C to10 µ10, uptake g–1 f. wt h–1 at 20 °C.Rhizome carbohydrate reserves decline from a September peakof 33 per cent alcohol insoluble d. wt to 16 per cent in May. The circumpolar distribution of R. chamaemorus is discussedin relation to the evidence presented here and in the precedingpaper of the series.  相似文献   

17.
Three marine phytoplankton species (Skeletonema costatum, Olisthodiscusluteus andGonyaulax tamarensis) were grown in batch culturesat 15°C and a 14:10 L:D cycle at irradiance levels rangingfrom 5 to 450 µEinst m–2 s–1. At each irradiance,during exponential growth, concurrent measurements were madeof cell division, carbon-specific growth rate, photosyntheticperformance (both O2 and POC production), dark respiration,and cellular composition in terms of C, N and chlorophyll a.The results indicate that the three species were similar withrespect to chemical composition, C:N (atomic) = 6.9 ±0.4, photo-synthetic quotient, 1.43 ± 0.09, and photosyntheticefficiency, 2.3 ±0.1 x 10–3 µmol O2 (µgChl a)–1 h–1 (µEinst m–2 s–1)–1.Differences in maximum growth rate varied as the –0.24power of cell carbon. Differences in growth efficiency, werebest explained by a power function of Chl a:C at µ = 0.Compensation intensities, ranged from 1.1 µEinst m–2s–1 for S. costatum to 35 forG. tamarensis and were foundto be a linear function of the maintenance respiration rate.The results indicate that interspecific differences in the µ–Irelationship can be adequately explained in terms of just threeparameters: cell carbon at maximum growth rate, the C:Chl aratio (at the limit as growth approaches zero) and the respirationrate at zero growth rate. A light-limited algal growth modelbased on these results gave an excellent fit to the experimentalµ–I curves and explained 97% of the observed interspecificvariability. 1Present address: Lamont-Doherty Geological Observatory Columbiaof University, Palisades, NY 10964, USA  相似文献   

18.
Diurnal temperature fluctuations induced change in soya bean-pod[Glycine max (L.) Merr.] carbon exchange rate (CER, where positiveCER represents CO2 evolution). CER appeared to depend linearlyon temperature. Linear regressions of CER on temperature interceptedthe temperature axis at 5°C (i.e. zero CER at 5°C).Slopes of these regressions (i.e. temperature sensitivity) changedover the season. The CER-temperature sensitivity coefficient,K, (calculated from observed values of CER. pod temperatureand temperature intercept) rose from less than 0·02 mgCO2 h–1 pod–1 °C–1 during early pod-flll,peaked at over 0·04 mg CO2 h–1 pod–1 °C–1at mid pod-fill, and then declined during late pod-fill andmaturation. Glycine max (L.) Merr., Soya bean, carbon exchange rate, temperature  相似文献   

19.
Nodulated 1-1.5-year-old plants of Acacia littorea grown inminus nitrogen culture were each partnered with a single seedlingof the root hemiparasite Olax phyllanthi. Partitioning of fixedN between plant organs of the host and parasite was studiedfor the period 4–8 months after introducing the parasite.N fluxes through nodules of Acacia and xylem-tapping haustoriaof Olax were compared using measured xylem flows of fixed Nand anatomical information for the two organs. N2 fixation duringthe study interval (635 µg N g FW nodules–1 d–1)corresponded to a xylem loading flux of 0.20 µg N mm–2d–1 across the secretory membranes of the pencycle parenchymaof the nodule vascular strands. A much higher flux of N (4891µg mm–2 d–1) exited through xylem at the junctionof nodule and root. The corresponding flux of N from host xylemacross absorptive membranes of the endophyte parenchyma of Olaxhaustorium was 1.15 µg N mm–1 d–1, six timesthe loading flux in nodules. The exit flux from haustorium toparasite rootlet was 20.0 pg N mm–1 d–1, 200-foldless than that passing through xylem elements of the nodule.Fluxes of individual amino compounds in xylem of nodule andhaustorium were assessed on a molar and N basis. N flux valuesare related to data for transpiration and partitioning of Cand N of the association recorded in a companion paper. Key words: Olax phyllanthi, host-parasite relationships, N flux, Acacia, N2 fixation  相似文献   

20.
THOMAS  H. 《Annals of botany》1983,51(3):363-371
Lolium temulentum seedlings were grown on a nutrient mediumcontaining NH4NO2 at 0, 0·1, 0·5, 1·0 and4·3 mmoll–1 as the sole N source. Relative andabsolute extension rates, maximal leaf size, duration of extensiongrowth, rate of leaf appearance and plastochron index were determinedfrom the parameters of Richards functions fitted to lengthsof laminae measured at intervals after sowing. The final lengthof leaf I was relatively insensitive to N whereas mean relativeextension rate was increased and duration of growth decreasedwith increasing NH4NO2 concentration. Leaves 2 and 3 enlargedprogressively with N at concentrations up to 1·0 mmoll–1but were unresponsive thereafter. There was no significant correlationbetween final length and mean relative extension rate for leaves1 to 3. Leaves 4 to 6 continued to show increasing length beyond1·0 mmoll–1 N and final length was significantlycorrelated with mean relative extension rate. Increasing N increasedthe rate of leaf appearance by decreasing the duration of leafextension and plastochron. These results are discussed in relationto the control of leaf and N turnover. Lolium temulentum, rye grass, leaf extension, nitrogen, Richards function, growth analysis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号