首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用基因重组技术获取炭疽杆菌保护性抗原(PA)。将炭疽杆菌保护性抗原编码基因pag与pET载体连接构建重组质粒,转化大肠杆菌DE3株,诱导表达炭疽杆菌保护性抗原,并经亲和层析及凝胶过滤纯化此抗原。实验成功构建了表达炭疽杆菌保护性抗原的重组菌株,纯化后PA纯度达90%,且经检测纯化产物具有天然PA的生物学活性。同时表明从大肠杆菌中纯化PA较以往从炭疽杆菌中获取PA简便易行。  相似文献   

2.
The fatal bacterial infection caused by inhalation of the Bacillus anthracis spores results from the synthesis of protein toxins-protective antigen (PA), lethal factor (LF), and edema factor (EF)--by the bacterium. PA is the target-cell binding protein and is common to the two effector molecules, LF and EF, which exert their toxic effects once they are translocated to the cytosol by PA. PA is the major component of vaccines against anthrax since it confers protective immunity. The large-scale production of recombinant protein-based anthrax vaccines requires overexpression of the PA protein. We have constitutively expressed the protective antigen protein in E. coli DH5alpha strain. We have found no increase in degradation of PA when the protein is constitutively expressed and no plasmid instability was observed inside the expressing cells. We have also scaled up the expression by bioprocess optimization using batch culture technique in a fermentor. The protein was purified using metal-chelate affinity chromatography. Approximately 125 mg of recombinant protective antigen (rPA) protein was obtained per liter of batch culture. It was found to be biologically and functionally fully active in comparison to PA protein from Bacillus anthracis. This is the first report of constitutive overexpression of protective antigen gene in E. coli.  相似文献   

3.
The protective antigen (PA) of Bacillus anthracis plays a crucial role in the pathogenesis of the anthrax disease. The fourth domain of PA (PA-D4) is responsible for initial binding of the anthrax toxin to the cellular receptor, and thus, is an attractive target for structure-based drug therapies. A synthetic gene for PA-D4 has been prepared by recursive PCR. PA-D4 has been expressed as a fusion protein in Escherichia coli. PA-D4 has been purified to near homogeneity and its identity has been verified by mass spectrometry. The recombinant PA-D4 exhibits CD and NMR spectra that suggest that it is folded and amenable for biophysical studies. Moreover, recombinant PA-D4 binds to HeLa cells, which suggests that recombinant PA-D4 is functional to bind to its cellular receptor.  相似文献   

4.
5.
Protective antigen (PA) is an 83kDa protein which, although essential for toxicity of Bacillus anthracis, is harmless and an effective vaccine component. In vivo it undergoes receptor binding, proteolysis, heptamerisation and membrane insertion. Here we probe the response of PA to denaturants, temperature and pH. We present analyses (including barycentric mean) of the unfolding and refolding behavior of PA and reveal the origin of two critical steps in the denaturant unfolding pathway in which the first step is a calcium and pH dependent rearrangement of domain 1. Thermal unfolding fits a single transition near 50 degrees C. We show for the first time circular dichroism (CD) spectra of the heptameric, furin-cleaved PA63 and the low-pH forms of both PA83 and PA63. Although only PA63 should reach the acidic endosome, both PA83 and PA63 undergo similar acidic transitions and an unusual change from a beta II to a beta I CD spectrum.  相似文献   

6.
7.
The pag gene, which codes for protective antigen (PA), a common component of the lethal and edema toxins of Bacillus anthracis, was cloned and expressed in Escherichia coli. Nested deletions of pag were generated into the C-terminus coding region. Recombinant proteins were analyzed by Western blot with either an anti-PA polyclonal antisera or two monoclonal antibodies that neutralized lethal toxin and edema toxin activities by inhibiting the binding of PA to cell receptors. Localization of the receptor binding domain within the C-terminal region of PA was suggested by the inability of the monoclonal antibodies 3B6 and 14B7 to recognize the recombinant proteins expressed by C-terminal deletions of the pag gene.  相似文献   

8.
Current human anthrax vaccines available in the United States and Europe consist of alum-precipitated supernatant material from cultures of a toxigenic, nonencapsulated strain of Bacillus anthracis. The major component of human anthrax vaccine that confers protection is protective antigen (PA). A second-generation human vaccine using the recombinant PA (rPA) is being developed. In this study, to prevent the toxicity and the degradation of the native rPA by proteases, we constructed two PA variants, delPA (163-168) and delPA (313-314), that lack trypsin (S(163)-R(164)-K(165)-K(166)-R(167)-S(168)) or chymotrypsin cleavage sequence (F(313)-F(314)), respectively. These proteins were expressed in Bacillus brevis 47-5Q. The delPAs were fractionated from the culture supernatant of B. brevis by ammonium sulfate at 70% saturation, followed by anion exchange chromatography on a Hitrap Q, Hiload 16/60 superdex 200 gel filtration column and phenyl sepharose hydrophobic interaction column. In accordance with previous reports, both delPA proteins combined with lethal factor protein did not show any cytotoxicity on J774A.1 cells. The delPA (163-168) and delPA (313-314) formulated either in Rehydragel HPA or MPL-TDM-CWS (Ribi-Trimix), elicited a comparable amount of anti-PA and neutralizing antibodies to those of native rPA in guinea pigs, and confers full protection of guinea pigs from 50xLD50 of fully virulent B. anthracis spore challenges. Ribi-Trimix was significantly more effective in inducing anti-PA and neutralizing antibodies than Rehydragel HPA. These results indicate the possibility of delPA (163-168) and delPA (313-314) proteins being developed into nontoxic, effective and stable recombinant vaccine candidates.  相似文献   

9.
10.
Crystallization of the protective antigen protein of Bacillus anthracis   总被引:1,自引:0,他引:1  
The protective antigen protein, one of the three separate proteins constituting the exotoxin system of Bacillus anthracis, has been crystallized in a form suitable for structural studies. The crystal form which is most amenable to x-ray analysis is orthorhombic, space group P2(1)2(1)2(1), a = 101.1 A, b = 95.4 A, c = 87.3 A, with one protective antigen monomer/asymmetric unit. The crystals diffract to approximately 3.0-A resolution.  相似文献   

11.
The tripartite protein toxin of Bacillus anthracis consists of protective antigen (PA), edema factor (EF), and lethal factor (LF). As a first step in developing a more efficacious anthrax vaccine, recombinant plasmids containing the PA gene have been isolated. A library was constructed in the E. coli vector pBR322 from Bam HI-generated fragments of the anthrax plasmid, pBA1. Two clones producing PA were identified by screening lysates with ELISA (enzyme-linked immunosorbent assay). Western blots revealed a full-size PA protein in the recombinant E. coli, and a cell elongation assay demonstrated biological activity. Both positive clones had a 6 kb insert of DNA, which mapped in the Bam HI site of the vector. The two inserts are the same except that they lie in opposite orientations with respect to the vector. Thus PA is encoded by the plasmid pBA1.  相似文献   

12.
Characterization of the functional domains of Bacillus anthracis protective antigen (PA, 83-kDa), the common cellular binding molecule for both anthrax edema toxin and anthrax lethal toxin, is important for understanding the mechanism of entry and action of the anthrax toxins. In this study, we generated both biologically active (facilitates killing of J774A.1 cells in combination with lethal factor, LF) and inactive preparations of PA by protease treatment. Limited proteolytic digestion of PA in vitro with trypsin generated a 20-kDa fragment and a biologically active 63-kDa fragment. In contrast, limited digestion of PA with chymotrypsin yielded a preparation containing 37- and 47-kDa fragments defective for biological activity. Treatment with both chymotrypsin and trypsin generated three major fragments, 20, "17," and 47 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This PA preparation was also biologically inactive. To investigate the nature of the defect resulting from chymotrypsin treatment, we assayed PA preparations for the ability to bind to the cellular receptor and to bind and internalize 125I-LF. All radiolabeled PA preparations bound with specificity to J774A.1 cells and exhibited affinities similar to native 83-kDa PA. Once bound to the cell surface receptor, both trypsin-treated PA and chymotrypsin/trypsin-treated PA specifically bound 125I-LF with high affinity. Finally, these PA preparations delivered 125I-LF to a Pronase-resistant cellular compartment in a time- and temperature-dependent fashion. Thus, the biological defect exhibited by chymotrypsin-treated PA is not at the level of cell binding or internalization but at a step later, such as toxin routing or processing by J774A.1 cells. These protease-treated preparations of PA should prove useful in both elucidating the intracellular processing of anthrax lethal toxin and determining the structure-function relationship of PA and LF.  相似文献   

13.
The protective antigen component of anthrax lethal toxin, produced in vitro, has a molecular mass of 83 kDa. Cell-culture studies by others have demonstrated that upon binding of the 83 kDa protective antigen to cell-surface receptors, the protein is cleaved by an unidentified cell-associated protease activity. The resultant 63 kDa protein then binds lethal factor to form lethal toxin, which has been proposed to be internalized by endocytosis. We found that, in the blood of infected animals, the protective antigen exists primarily as a 63 kDa protein and appears to be complexed with the lethal factor component of the toxin. Conversion of protective antigen from 83 to 63 kDa was catalysed by a calcium-dependent, heat-labile serum protease. Except for being complexed to protective antigen, there was no apparent alteration of lethal factor during the course of anthrax infection. The protective antigen-cleaving protease appeared to be ubiquitous among a wide range of animal species, including primates, horses, goats, sheep, dogs, cats and rodents.  相似文献   

14.
Anthrax is common disease between human and animals caused by Bacillus anthracis. The cell binding domain of protective antigen (PAD4) and the binding domain of lethal factor (LFD1) have high immunogenicity potential and always were considered as a vaccine candidate against anthrax. The aims of this study are cloning and expressing of PAD4 and LFD1 in Escherichia coli, purification of the recombinant proteins and determination of their immunogenicity through evaluating of the relative produced polyclonal antibodies in mice. PAD4 and LFD1 genes were cloned in pET28a(+) vector and expressed in E. coli Bl21(DE3)PlysS. Expression and purification of the two recombinant proteins were confirmed by SDS-PAGE and Western blotting techniques. The PAD4 and LFD1 were purified using Ni+-NTA affinity chromatography (95–98 %), yielding 37.5 and 45 mg/l of culture, respectively. The antigens were injected three times into mice and production of relative antibodies was evaluated by ELISA test. The results showed that both PAD4 and LFD1 are immunogenic, but LFD1 has higher potential to stimulate Murine immune system. With regard to the high level of LFD1 and PAD4 expression and also significant increment in produced polyclonal antibodies, these recombinant proteins can be considered as a recombinant vaccine candidate against anthrax.  相似文献   

15.
炭疽杆菌保护性抗原基因的克隆与序列测定   总被引:1,自引:0,他引:1  
袁斌  何君  王慧  荫俊 《生物技术通讯》2000,11(3):189-191
采用聚合酶链反应从炭疽芽孢杆菌减毒株YB1中扩增其保护性抗原(PA)的编码区基因,将其克隆至pGEM-T载体中,并分步测定其序列。序列测定表明,该基因长2205bp,编码735个氨基酸残基,与献报道的标准菌株Sterne株的PA序列只有4个碱基的差异。  相似文献   

16.
Genetic diversity in the protective antigen gene of Bacillus anthracis   总被引:13,自引:0,他引:13       下载免费PDF全文
Bacillus anthracis is a gram-positive spore-forming bacterium that causes the disease anthrax. The anthrax toxin contains three components, including the protective antigen (PA), which binds to eucaryotic cell surface receptors and mediates the transport of toxins into the cell. In this study, the entire 2,294-nucleotide protective antigen gene (pag) was sequenced from 26 of the most diverse B. anthracis strains to identify potential variation in the toxin and to further our understanding of B. anthracis evolution. Five point mutations, three synonymous and two missense, were identified. These differences correspond to six different haploid types, which translate into three different amino acid sequences. The two amino acid changes were shown to be located in an area near a highly antigenic region critical to lethal factor binding. Nested primers were used to amplify and sequence this same region of pag from necropsy samples taken from victims of the 1979 Sverdlovsk incident. This investigation uncovered five different alleles among the strains present in the tissues, including two not seen in the 26-sample survey. One of these two alleles included a novel missense mutation, again located just adjacent to the highly antigenic region. Phylogenetic (cladistic) analysis of the pag corresponded with previous strain grouping based on chromosomal variation, suggesting that plasmid evolution in B. anthracis has occurred with little or no horizontal transfer between the different strains.  相似文献   

17.
We used the Bacillus brevis-pNU212 system to develop a mass production system for the protective antigen (PA) of Bacillus anthracis. A moderately efficient expression-secretion system for PA was constructed by fusing the PA gene from B. anthracis with the B. brevis cell-wall protein signal-peptide encoding region of pNU212, and by introducing the recombinant plasmid, pNU212-mPA, into B. brevis 47-5Q. The clone producing PA secreted about 300 microg of recombinant PA (rPA) per ml of 5PY-erythromycin medium after 4 days incubation at 30 degrees C. The rPA was fractionated from the culture supernatant of B. brevis 47-5Q carrying pNU212-mPA using ammonium sulfate at 70% saturation followed by anion exchange chromatography on a Hitrap Q, a Hiload 16/60 Superdex 200 gel filtration column and a phenyl sepharose hydrophobic interaction column, yielding 70 mg rPA per liter of culture. The N-terminal sequence of the purified rPA was identical to that of native PA from B. anthracis. The purified rPA exhibited cytotoxicity towards J774A.1 cells when combined with lethal factor. The rPA formulated in either Rehydragel HPA or MPL-TDM-CWS adjuvant (Ribi-Trimix) elicited the expression of a large amount of anti-PA and neutralizing antibodies in guinea pigs and completely protected them against a 100 LD50 challenge with fully virulent B. anthracis spores.  相似文献   

18.
We have mapped CD4+ T-cell epitopes located in three domains of the recombinant protective antigen of Bacillus anthracis. Mouse T-cell hybridomas specific for these epitopes were generated to study the mechanisms of proteolytic processing of recombinant protective antigen for antigen presentation by bone marrow-derived macrophages. Overall, epitopes differed considerably in their processing requirements. In particular, the kinetics of presentation, ranging from 15 (fast) to 120 min (slow), suggested sequential liberation of epitopes during proteolytic processing of the intact PA molecule. Pretreatment of macrophages with ammonium chloride or inhibitors of the major enzyme families showed that T-cell responses to an epitope presented with fast kinetics were unaffected by raising endosomal pH or inhibiting cysteine or aspartic proteinases, suggesting presentation independent of lysosomal processing. In contrast, responses to epitopes presented with slower kinetics were dependent on low pH and the activity of cysteine or aspartic proteinases indicating a requirement for lysosomal processing. In addition, responses to all epitopes, whether their presentation was dependent on low pH or not, were prevented by treatment of macrophages with broad spectrum serine proteinase inhibitors. Thus, our data are consistent with a model of sequential antigen processing within the endosomal system, beginning with a pre-processing step mediated by serine or metalloproteinases prior to further processing by lysosomal enzymes. Rapidly presented epitopes seemed to require only limited proteolysis at earlier stages of endocytosis, whereas the majority of epitopes required more extensive processing by neutral proteinases followed by lysosomal enzymes.  相似文献   

19.
Anthrax is the widespread acute infection disease, affecting animals and humans, refers to the bioterrorist threat agents of category A, because of the high resistance of Bacillus anthracis spores to adverse environmental factors and the ease of receiving them. We obtain a representative panel of 20 monoclonal antibodies against the key component of pathogenic exotoxins, anthrax protective antigen. Quantitative sandwich-ELISA for protective antigen with antibody obtained was developed. Six pairs of monoclonal antibodies showed the detection limit up to 1 ng/ml concentration of the protective antigen in blood serum.  相似文献   

20.
Monoclonal antibodies (MoAbs) were generated following immunization of BALB/c mice with protective antigen (PA) of B. anthracis. Five clones reactive to this protein were stabilized and preserved. These MoAbs could detect nanogram levels of PA when tested in ELISA. In Western blotting, they reacted with all PA preparations tested and no cross-reactivity was observed with lethal factor, edema factor of B. anthracis and with other organisms. These MoAbs could detect PA from 22 confirmed clinical isolates of B. anthracis on Western blotting and hold promise for direct detection of PA in clinical samples for diagnosing anthrax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号