首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four human ovarian and breast tumor lines expressing the HER2/neu oncogene were resistant to the cytotoxic and DNA-degradative activity of TNF. The resistance was not associated with altered TNF receptor function because Scatchard analysis of 125I-rTNF binding to HER2/neu-expressing target cells revealed receptors with normal binding parameters. Furthermore, the TNF receptors on the resistant lines were capable of signal transduction as evidence by the induction of ADP-ribose polymerase activity and MHC expression. TNF resistance was not reversed by coincubation with drugs that interrupted the glutathione redox cycle. In addition, although coincubation of HER2/neu-expressing targets with cycloheximide resulted in significant TNF-induced lysis, when compared to HER2/neu-nonexpressing targets similarly treated with cycloheximide, a significant relative resistance was still present. To investigate the role of ADP-ribosylation in the resistance of these targets, we used nontoxic concentrations of two inhibitors of ADP-ribose polymerase, 3-aminobenzamide, and nicotinamide. Both inhibitors completely reversed the resistance of HER2/neu-expressing targets to TNF-mediated cytotoxicity and DNA injury in a concentration-dependent fashion. These inhibitors of ADP-ribose polymerase did not act by down-regulating expression of HER2/neu oncogenes. In contrast, aminobenzamide and nicotinamide significantly diminished TNF-induced cytotoxicity of L929 targets. These data suggest that the activity of ADP-ribose polymerase may play a pivotal role in determining the fate of the target cell during exposure to TNF.  相似文献   

2.
TNF is a pleiotropic cytokine that mediates diverse cellular responses, including cytotoxicity, cytostasis, proliferation, differentiation, and the expression of specific genes. Many of these processes require the activity of DNA topoisomerases I and II. We have investigated the interactions of TNF with inhibitors of both topoisomerases in 16-h assays using the murine L929 and human ME-180 cell lines, which undergo a cytotoxic TNF response. Camptothecin, a specific inhibitor of topoisomerase I, enhanced TNF cytotoxicity 150-fold against both cell lines. The topoisomerase II inhibitors VM-26 and VP-16, which stabilize covalent DNA-topoisomerase intermediates, greatly enhance TNF cytotoxicity against both cell lines. The most effective, VM-26, can lower the TNF LD50 to femtomolar levels. In contrast, the topoisomerase II inhibitors novobiocin and coumermycin, which bind to the enzyme ATPase site, protect L929 cells from TNF cytotoxicity but enhance TNF cytotoxicity in ME-180 cells. The large changes in TNF sensitivity induced by drug concentrations that by themselves show no effect, and the opposing synergistic effects of inhibitors with different inhibitory mechanisms (in L929 cells), suggest the active involvement of topoisomerases in TNF-mediated cytotoxicity. The correlation of cytotoxic synergy with the stabilization of DNA strand breaks indicates that DNA damage may play a significant role in TNF-mediated cytotoxicity.  相似文献   

3.
We investigated the effect of various protease inhibitors on the anti-proliferative and cytotoxic action of tumour necrosis factor (TNF) on mouse L929 fibrosarcoma cells. 1. The following serine-type protease inhibitors led to inhibition of TNF action: phenylmethylsulfonyl fluoride, N alpha-p-tosyl-L-lysine chloromethane, N alpha-p-tosyl-L-phenylalanyl chloromethane, N alpha-p-tosyl-L-arginine methyl ester, L-leucine methyl ester, DL-phenylalanine methyl ester, N-acetyl-DL-phenylalanine-beta-naphthyl ester, p-nitrophenyl p'-guanidino-benzoate and antipain. We could not detect an effect of inhibitors specific for thiol protease on TNF. 2. Inhibition of TNF-mediated cytotoxicity was evident in both the presence and absence of actinomycin D or cycloheximide. 3. TNF itself was not found to be a protease, as it had no proteolytic activity in a sensitive colorimetric assay. [1,3-3H]Diisopropyl fluorophosphate, an effective irreversible inhibitor of serine proteases, did not bind to TNF. Pretreatment of TNF with N alpha-p-tosyl-L-lysine chloromethane did not influence its biological activity. 4. The addition of protease inhibitor to the cells at various times after TNF administration led to a gradual loss of protection, suggesting that the protease acts at a rather late stage. 5. Protease inhibitors did not influence TNF binding, internalization or metabolization. 6. No increase in supernatant protease activity or in cell-associated protease activity could be detected after treatment of L929 cells with TNF. Our results document the involvement of protease activity, acting quite late during the cytolytic and growth inhibiting processes induced by TNF.  相似文献   

4.
Y H Kim  S S Kim 《Cytokine》1999,11(4):274-281
To investigate the protection mechanism of Bcl-2 against tumour necrosis factor (TNF)-mediated cell death, the bcl2 gene was transfected into the L929 cells and stably expressed. Two clones having different sensitivity among bcl2-transfected L929 clones had been isolated, and termed clone R1 and R2. It was observed that activation of manganese superoxide dismutase (MnSOD) and suppression of Jun kinase of clone R1 and R2 were correlated with protection from TNF cytotoxicity. Upon treatment with TNF, clone R1 and R2 were more resistant than control L929 cells against TNF cytotoxicity and the protective effect of clone R1 was stronger than clone R2. However, in case of TNF plus actinomycin D treatment, clone R1 was still resistant against TNF cytotoxicity, whereas clone R2 became more sensitive than control L929 cells. The JNK activities of clone R1 and R2 were suppressed upon TNF treatment and in case of TNF plus actinomycin D treatment, clone R2 showed a marked increase in JNK activities and had higher activity than control L929 cells. The specific activities of MnSOD of clone R1 and R2 upon TNF treatment were 70 U/ml and 33 U/ml, respectively, while the MnSOD activity was not detectable in control L929 cells. When TNF and actinomycin D were treated simultaneously, MnSOD activity was not detectable in control L929 cells and bcl2 -transfected L929 cells (clone R1, R2). Consistent with these results, both clone R1 and R2 showed higher levels of MnSOD mRNA expression than control L929 cells after TNF treatment. These data suggest that suppression of Jun kinase and increase of MnSOD may be involved in inhibitory action of Bcl-2 against TNF, and the balance between MnSOD and JNK signalling pathway may be an important factor for the protection of bcl2-transfected L929 cells from TNF cytotoxicity.  相似文献   

5.
Structural mitochondrial damage accompanies the cytotoxic effects of several drugs including tumor necrosis factor (TNF). Using various inhibitors of mitochondrial electron transport we have investigated the mechanism of TNF-mediated cytotoxicity in L929 and WEHI 164 clone 13 mouse fibrosarcoma cells. Inhibitors with different sites of action modulated TNF cytotoxicity, however, with contrasting effects on final cell viability. Inhibition of mitochondrial electron transport at complex III (cytochrome c reductase) by antimycin A resulted in a marked potentiation of TNF-mediated injury. In contrast, when the electron flow to ubiquinone was blocked, either at complex I (NADH-ubiquinone oxidoreductase) with amytal or at complex II (succinate-ubiquinone reductase) with thenoyltrifluoroacetone, cells were markedly protected against TNF cytotoxicity. Neither uncouplers nor inhibitors of oxidative phosphorylation nor complex IV (cytochrome c oxidase) inhibitors significantly interfered with TNF-mediated effects, ruling out the involvement of energy-coupled phenomena. In addition, the toxic effects of TNF were counteracted by the addition of antioxidants and iron chelators. Furthermore, we analyzed the direct effect of TNF on mitochondrial morphology and functions. Treatment of L929 cells with TNF led to an early degeneration of the mitochondrial ultrastructure without any pronounced damage of other cellular organelles. Analysis of the mitochondrial electron flow revealed that TNF treatment led to a rapid inhibition of the mitochondria to oxidize succinate and NADH-linked substrates. The inhibition of electron transport was dose-dependent and became readily detectable 60 min after the start of TNF treatment, thus preceding the onset of cell death by at least 3-6 h. In contrast, only minor effects were observed on complex IV activity. The different effects observed with the mitochondrial respiratory chain inhibitors provide suggestive evidence that mitochondrial production of oxygen radicals mainly generated at the ubisemiquinone site is a causal mechanism of TNF cytotoxicity. This conclusion is further supported by the protective effect of antioxidants as well as the selective pattern of damage of mitochondrial chain components and characteristic alterations of the mitochondrial ultrastructure.  相似文献   

6.
Redox regulation of TNF signaling   总被引:2,自引:0,他引:2  
TNF is produced during inflammation and induces, among other activities, cell death in sensitive tumour cells. We previously reported an increased generation of ROS in TNF-treated L929 fibrosarcoma cells prior to cell death. These ROS are of mitochondrial origin and participate in the cell death process. Presently, we focus on the identification of parameters that control ROS production and subsequent cytotoxicity. From the cytotoxic properties and susceptibility to scavenging of TNF-induced ROS as compared to pro-oxidant-induced ROS we conclude that TNF-mediated ROS generation and their lethal action are confined to the inner mitochondrial membrane. Oxidative substrates, electron-transport inhibitors, glutathione and thiol-reactive agents but also caspase inhibitors modulate TNF-induced ROS production and imply the existence of a negative regulator of ROS production. Inactivation of this regulator by a TNF-induced reduction of NAD(P)H levels and/or formation of intraprotein disulfides would be responsible for ROS generation.  相似文献   

7.
L929, a murine fibrosarcoma cell line highly sensitive to the anti-proliferative and cytotoxic action of tumour necrosis factor (TNF), was used as a target cell in our studies. We [Suffys et al. (1987) Biochem. Biophys. Res. Commun. 149, 735-743], as well as others, have previously provided evidence that a phospholipase (PL), most probably a PL-A2-type enzyme, is likely to be involved in TNF-mediated cell killing. We now further document this conclusion and provide suggestive evidence that the enzyme activity specifically involved in TNF cytotoxicity differs from activities associated with the eventual cell death process itself or with non-toxic serum treatment. We also show that the 5,8,11,14-icosatetraenoic acid (arachidonic acid, delta 4 Ach) released by PL, and possibly metabolized, is unlikely to be a key mediator of the TNF-mediated cytotoxicity. These conclusions are based on the following experimental findings. 1. TNF treatment of cells, prelabelled for 24 h with [3H] delta 4Ach or [14C] delta 3Ach (delta 3Ach identical to 5,8,11-icosatrienoic acid) resulted in an early, time-dependent and concentration-dependent release of radioactivity in the supernatant preceding actual cell death. The extent of this response was moderate, albeit reproducible and significant. Analysis of the total lipid fraction from cells plus supernatant revealed that only release of arachidonic acid from phospholipids, but not its metabolization was induced by TNF. However, the release of less unsaturated fatty acids, such as linoleic acid (Lin) or palmitic acid (Pam), was not affected during the first hours after TNF addition. 2. An L929 subclone, selected for resistance to TNF toxicity, was found to be defective in TNF-induced delta 4Ach libration. 3. Interleukin-1 (IL1) was not cytotoxic for L929 and did not induce release of delta 4Ach. 4. Release of delta 4Ach was not restricted to TNF; the addition of serum to the cells also induced release of fatty acids into the medium. In this case, however, there was no specificity, as all fatty acids tested, including Lin and Pam, were released. 5. Inhibition of PL-A2 activity by appropriate drugs markedly diminished TNF-induced delta 4Ach release and resulted also in a strong decrease in TNF-induced cytotoxicity. 6. Other drugs, including serine protease inhibitors, which strongly inhibit TNF-induced cytotoxicity, also decreased the TNF-induced delta 4Ach release, whereas LiCl potentiated both TNF-mediated effects. 7. Protection of cells against TNF toxicity by means of various inhibitors was not counteracted by addition of exogenous fatty acids, including delta 4Ach.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
To determine how hyaluronidase increases certain cancer cell sensitivity to tumor necrosis factor (TNF) cytotoxicity, we report here the isolation and characterization of a hyaluronidase-induced murine WW domain-containing oxidoreductase (WOX1). WOX1 is composed of two N-terminal WW domains, a nuclear localization sequence, and a C-terminal alcohol dehydrogenase (ADH) domain. WOX1 is mainly located in the mitochondria, and the mitochondrial targeting sequence was mapped within the ADH domain. Induction of mitochondrial permeability transition by TNF, staurosporine, and atractyloside resulted in WOX1 release from mitochondria and subsequent nuclear translocation. TNF-mediated WOX1 nuclear translocation occurred shortly after that of nuclear factor-kappaB nuclear translocation, whereas both were independent events. WOX1 enhanced TNF cytotoxicity in L929 cells via its WW and ADH domains as determined using stable cell transfectants. In parallel with this observation, WOX1 also enhanced TRADD (TNF receptor-associated death domain protein)-mediated cell death in transient expression experiments. Antisense expression of WOX1 raised TNF resistance in L929 cells. Enhancement of TNF cytotoxicity by WOX1 is due, in part, to its significant down-regulation of the apoptosis inhibitors Bcl-2 and Bcl-x(L) (>85%), but up-regulation of pro-apoptotic p53 ( approximately 200%) by the ADH domain. When overexpressed, the ADH domain mediated apoptosis, probably due to modulation of expression of these proteins. The WW domains failed to modulate the expression of these proteins, but sensitized COS-7 cells to TNF killing and mediated apoptosis in various cancer cells independently of caspases. Transient cotransfection of cells with both p53 and WOX1 induced apoptosis in a synergistic manner. WOX1 colocalizes with p53 in the cytosol and binds to the proline-rich region of p53 via its WW domains. Blocking of WOX1 expression by antisense mRNA abolished p53 apoptosis. Thus, WOX1 is a mitochondrial apoptogenic protein and an essential partner of p53 in cell death.  相似文献   

9.
Tumour necrosis factor alpha (TNF) cytotoxicity is mediated, at least in part, by oxidative stress. One of the post-receptor events shortly after the addition of TNF is the generation of the superoxide anion (O2-*). In the present study, we attempted to examine the role of O2-* in the regulation of mitochondrial membrane potential (Delta(Psi)m) and the release of cytochrome c (cyto c) in L929 cells after stimulation with TNF. Challenge of cells with TNF (50 ng/ml) resulted in an early (30 min after the addition of TNF) increase in the production of O2-*. The use of mitochondrial electron transport chain inhibitors such as antimycin A and rotenone could, respectively, potentiate or suppress the TNF-mediated release of O2-* and cytotoxicity. TNF also induced a late (>3 h after the addition of TNF) depolarization in the Delta(Psi)m. Reduction in the release of O2-* by rotenone (50 microM) or thenoyltrifluoroacetone (250 microM) suppressed both the TNF-mediated Delta(Psi)m depolarization and cyto c release. However, increase in the production of O2-* by antimycin A (25 microM) only slightly enhanced the TNF effect in altering the Delta(Psi)m and the release of cyto c. Treating cells with antimycin A alone could not induce a reduction in Delta(Psi)m nor a release of cyto c. Taken together, our results indicate that TNF induced damage in mitochondria in L929 cells. Our data also show that an increase in the production of O2-* was important in the TNF cytotoxicity, but was not sufficient to mimic the action of TNF.  相似文献   

10.
Biological activities of human tumor necrosis factor (TNF) and its derivatives were compared. In cytotoxicity assay with L929 cells, one derivative, designated as TNF(Asn), showed significantly lower activity than any other TNF examined. In binding assay, this derivative was also shown to have lower affinity for TNF receptors on L929 cells, suggesting that the cytotoxic activity of TNFs on L929 cells correlates with their affinity for receptors. We also found that the cytotoxic activity of TNF on A673 cells and its inhibitory effect on lipoprotein lipase were parallel with the cytotoxic activity on L929 cells, but the growth-enhancing activity on FS-4 cells and the cytotoxic activity on endothelial cells were not. It was also shown that TNF(Asn) had lower affinity than any other TNF for receptors on these target cells tested. These results suggested that there might be at least two types of cellular responses to TNF; one might correlate with the receptor-binding affinity of TNFs and the other not.  相似文献   

11.
Despite abundant evidence for changes in mitochondrial membrane permeability in tumor necrosis factor (TNF)-mediated cell death, the role of plasma membrane ion channels in this process remains unclear. These studies examine the influence of TNF on ion channel opening and death in a model rat liver cell line (HTC). TNF (25 ng/ml) elicited a 2- and 5-fold increase in K(+) and Cl(-) currents, respectively, in HTC cells. These increases occurred within 5-10 min after TNF exposure and were inhibited either by K(+) or Cl(-) substitution or by K(+) channel blockers (Ba(2+), quinine, 0.1 mm each) or Cl(-) channel blockers (10 microm 5-nitro-2-(3-phenylpropylamino)benzoic acid and 0.1 mm N-phenylanthranilic acid), respectively. TNF-mediated increases in K(+) and Cl(-) currents were each inhibited by intracellular Ca(2+) chelation (5 mm EGTA), ATP depletion (4 units/ml apyrase), and the protein kinase C (PKC) inhibitors chelerythrine (10 micrometer) or PKC 19-36 peptide (1 micrometer). In contrast, currents were not attenuated by the calmodulin kinase II 281-309 peptide (10 micrometer), an inhibitor of calmodulin kinase II. In the presence of actinomycin D (1 micrometer), each of the above ion channel blockers significantly delayed the progression to TNF-mediated cell death. Collectively, these data suggest that activation of K(+) and Cl(-) channels is an early response to TNF signaling and that channel opening is Ca(2+)- and PKC-dependent. Our findings further suggest that K(+) and Cl(-) channels participate in pathways leading to TNF-mediated cell death and thus represent potential therapeutic targets to attenuate liver injury from TNF.  相似文献   

12.
Several tumor target cell lines, prototypically K562 cells, are resistant to lysis by recombinant tumor necrosis factor (TNF alpha) but are killed by monocytes expressing membrane-associated TNF, suggesting that membrane TNF could account for monocyte-mediated cytotoxicity. Formaldehyde-fixed monocytes or extracted monocyte membrane fragments are cytotoxic to K562 target cells. Treatment of monocytes with interferon-gamma (IFN-gamma) increases cytotoxicity by live and fixed cells or by extracted monocyte membranes. Both TNF and TNF receptors are detectable on monocyte membranes by FACS analysis, and the levels of each are modulated by treatment with IFN-gamma. Cytotoxicity can be inhibited by either anti-TNF or anti-TNF receptor antibodies. Incubation of effector cells with exogenous soluble TNF prior to fixation or membrane preparation increases their cytotoxicity. In contrast, incubation of the target cells with exogenous TNF neither increases nor decreases killing by effector cell membrane fragments or intact effector cells. The data suggest that the TNF receptors on the effector cell, but not on the target cell, play a crucial role in TNF-mediated cytotoxicity.  相似文献   

13.
Herein we demonstrate that IFN-alpha, IFN-gamma, and IL-2 can induce human peripheral blood monocyte-mediated lysis of tumor cells that are resistant to both the direct effects of TNF and to monocytes activated by TNF. Monocytes activated by TNF kill only TNF-sensitive tumor targets, whereas those activated by IFN and IL-2 can lyse both TNF-sensitive and TNF-resistant tumor targets. Monocyte cytotoxicity against TNF-sensitive lines induced by the IFN, IL-2, or TNF can be completely abrogated by the addition of anti-TNF antibodies. In contrast, anti-TNF antibodies have no effect on IFN- or IL-2-induced monocyte cytotoxicity against TNF resistant targets, confirming non-TNF-mediated lysis induced by lymphokine-activated monocytes. Neither induction of TNF receptors by IFN-gamma nor inhibition of RNA synthesis by actinomycin D increased the susceptibility of TNF-resistant tumor targets to TNF-mediated monocyte cytotoxicity. Thus, non-TNF-mediated modes of monocyte cytotoxicity are induced by IFN and IL-2, but not by TNF, indicating that different cytotoxic mechanisms are responsible for the lysis of TNF-sensitive and TNF-resistant tumor cells. In addition, these findings also suggest that TNF-sensitive lines are susceptible only to TNF-mediated killing and apparently insensitive to non-TNF-mediated monocyte cytotoxicity.  相似文献   

14.
To elucidate the cytotoxic mechanism of tumor necrosis factor (TNF), we isolated TNF-resistant sublines of L929 cells. As compared with L929 cells, TNF-resistant cells retained similar number and affinity of TNF-binding sites, and showed a similar growth rate. TNF stimulated arachidonate release from L929 cells, while no stimulation was observed at all in TNF-resistant cells tested. The cytotoxic action of TNF on L929 cells was inhibited by indomethacin, suggesting that prostaglandin may be involved in the action. Therefore, TNF-stimulated prostaglandin production was examined in L929 and TNF-resistant sublines. The amount of PGE2 produced by L929 cells was increased more than 5-fold after the addition of TNF, whereas the amount of PGE2 did not change in the resistant sublines following addition of the factor. TNF-stimulated arachidonate release and PGE2 production were reversed by islet-activating protein (IAP)-treatment of L929 cells. These results suggest that arachidonate release and subsequent prostaglandin production are important for the cytotoxic action of TNF and that these processes are mediated by GTP-binding protein (G protein) that is coupled to the TNF-receptor.  相似文献   

15.
The purpose of the present investigation was to purify a urine-derived tumor necrosis factor alpha inhibitor (TNF alpha INH) and to characterize its mechanism of action. For the purification procedure, urine was concentrated and TNF alpha INH purified by ion-exchange chromatographies, gel filtration, TNF alpha affinity column, and reverse-phase chromatography. The TNF alpha INH migrates with an apparent Mr of approximately 33,000 when estimated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis run under both reducing and nonreducing conditions. Elution of TNF alpha INH activity from the gel yields also a approximately 33,000-Da inhibitory fraction. Besides inhibiting TNF alpha-induced cytotoxicity in L929 cells in the presence of actinomycin D, the TNF alpha INH impeded in a dose-dependent manner prostaglandin E2 production and expression of cell-associated interleukin-1 by human dermal fibroblasts. Therefore, TNF alpha INH is active on both actinomycin D-treated and untreated cells. In contrast to TNF alpha, TNF beta-induced cytotoxicity was only slightly affected by the inhibitor. This specificity was confirmed by the fact that it affected neither interleukin-1 alpha nor interleukin-1 beta biologic activities. The mechanism of action of TNF alpha INH involves blocking of 125I-TNF alpha binding to the promonocytic cell line U937. Moreover, preincubation of 125I-TNF alpha with TNF alpha INH increased binding inhibition, suggesting an interaction between TNF alpha and the inhibitor.  相似文献   

16.
The mechanism of human peripheral blood monocyte-mediated cytotoxicity for tumor cells was investigated, using the A673 human rhabdomyosarcoma and HT-29 human colon adenocarcinoma lines as target cells. A673 cells were shown to be susceptible to the cytotoxic action of purified recombinant human tumor necrosis factor (TNF). A673 cells were also highly sensitive to the cytotoxic action of peripheral blood monocytes. Clones of A673 cells sensitive and resistant to TNF were isolated and characterized for their sensitivity to monocyte killing. A good correlation was found between the sensitivity of these clones to the cytotoxicity of TNF and their susceptibility to killing by monocytes. A TNF-specific neutralizing monoclonal antibody (MAb) reduced monocyte killing of parental A673 cells and of a TNF-sensitive clone of A673 cells. Inhibition of monocyte killing by this MAb was particularly pronounced at a low effector to target cell ratio. HT-29 cells were relatively resistant to the cytotoxic action of recombinant TNF and to monocyte killing. Treatment of HT-29 cells with recombinant human IFN-gamma increased their susceptibility to both TNF cytotoxicity and monocyte killing. In addition, MAb to TNF inhibited monocyte killing in HT-29 cells sensitized by incubation with IFN-gamma. Our data show that TNF is an important mediator of the cytotoxicity of human monocytes for tumor cells and that IFN-gamma can increase monocyte cytotoxicity by sensitizing target cells to the lytic action of TNF.  相似文献   

17.
TNF, a cytokine with cytotoxic activity on a variety of tumor cells, is mainly produced by macrophages; however, some tumor cell types of non-macrophage origin, apparently resistant to TNF-mediated cell lysis, can also produce TNF. It is not clear whether these cells were TNF-resistant a priori or whether protective mechanisms against toxicity of autocrine TNF may be induced in TNF-producing cells. Murine L929sA fibrosarcoma cells, which are highly sensitive to TNF cytotoxicity, were transfected with the neomycin resistance (neor) gene, alone or in combination with the human (h) or the murine (m) TNF gene. All exogenous genes were under control of the constitutive SV40 early promoter. After cotransfection, the number of neor colonies was 10 to 100% as compared with the number of colonies upon transfection with the neor gene alone. An appreciable fraction of these colonies (50-100%) constitutively produced biologically active TNF. mTNF-producing L929 cells were fully TNF resistant, whereas hTNF-producing cells showed partial TNF resistance. Specific TNF binding could not be detected on mTNF-producing L929sA transfectants, whereas hTNF-producing cells showed reduced TNF binding. Apparently, TNF gene expression, even in a priori TNF-sensitive cells, can induce mechanisms to prevent toxicity by both autocrine and exogenous TNF. No TNF resistance was induced by expression of a gene sequence encoding the 9-kDa membrane-bound presequence part of the 26-kDa mTNF proform. Expression of a mutant 26-kDa TNF gene coding for a quasi-inactive mature mTNF induced only weak TNF resistance as compared with the complete resistance obtained after transfection with the wild-type gene. These findings show that the membrane-bound TNF presequence as such is not sufficient for induction of TNF resistance and imply that the active site of mature TNF is involved in modulation of TNF responsiveness upon autocrine TNF production.  相似文献   

18.
The WEHI-164 target cells pretreated with actinomycin D can be employed in a 7-hour 51Cr release assay that exhibits exquisite susceptibility for cytotoxic monocytes without contribution by natural killer cells. The system can be used either to detect cell-mediated monocyte cytotoxicity directly or to measure cytotoxic-factor activity in cell-free supernatants. Analysis of cytotoxic factor demonstrates molecular characteristics similar to tumor necrosis factor (TNF), and polyclonal as well as monoclonal antibodies specific for TNF can readily neutralize the monocyte-generated cytotoxic factor. In the cell-mediated approach, neutralization can be achieved as well, although somewhat higher amounts of antibody are required. Hence, the WEHT-164/actinomycin D system appears to detect monocyte cytotoxicity that is mediated by TNF.  相似文献   

19.
The role of transforming growth factor beta1 (TGF-beta1)-induced extracellular matrix proteins in the modulation of cellular response to the cytotoxic effect of tumor necrosis factor (TNF) or Fas ligand was investigated. Murine L929 fibroblasts were prestimulated with or without TGF-beta1 for 1-24 h and the resulting extracellular protein matrices were prepared. Unstimulated control L929 cells were then cultured on these matrices. Compared to control matrix-stimulated L929 cells, the TGF-beta1 matrix-stimulated cells resisted TNF killing in the presence of actinomycin D (ActD), but became more susceptible to killing by anti-Fas antibodies/ActD. The induced TNF resistance is independent of the NF-kappaB antiapoptotic effect. For example, exposure of TGF-beta1 matrix-stimulated L929 cells to TNF failed to result in IkappaBalpha degradation and NF-kappaB nuclear translocation or activation. Also, control matrix stimulated the activation of p42/44 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) in L929 cells, whereas TGF-beta1 matrix suppressed the activation. Nonetheless, in response to TNF, JNK activation was restored in the TGF-beta1 matrix-stimulated cells. By metabolic labeling, ammonium sulfate precipitation and N-terminal amino acid microsequencing, TGF-beta1 was shown to induce a novel matrix protein of 46 kDa (p46) from L929 cells. Adsorption of p46 by peptide antibodies against its N-terminus removed the TGF-beta1 matrix protein-mediated protection against TNF/ActD cytotoxicity and its enhancement of anti-Fas/ActD killing, indicating that p46 is responsible for these effects. Immunostaining of L929 cells revealed that the antibodies were bound to a membrane protein of 100 kDa (p100). Thus, the matrix p46 is likely derived from the released membrane p100.  相似文献   

20.
Tumor necrosis factor (TNF) is a monokine that induces pleiotropic events in both transformed and normal cells. These effects are initiated by the binding of TNF to high affinity cell surface receptors. The post-receptor events and signaling mechanisms induced by TNF, however, have remained unknown. The present studies demonstrate the presence of a single class of high affinity receptors on membranes prepared from HL-60 promyelocytic leukemic cells. The interaction of TNF with these membrane receptors was associated with a 3.8-fold increase in specific binding of the GTP analogue, GTP gamma S. Scatchard analysis of GTP gamma S binding data demonstrated that TNF stimulates GTP binding by increasing the affinity of available sites. The TNF-induced stimulation of GTP binding was also associated with an increase in GTPase activity. Moreover, the increase in GTPase activity induced by TNF was sensitive to pertussis toxin. The results also demonstrate that TNF similarly increased GTP binding and pertussis toxin-sensitive GTPase activity in membranes from mouse L929 fibroblasts, thus indicating that these effects are not limited to hematopoietic cells. Analysis of HL-60 membranes after treatment with pertussis toxin in the presence of [32P]NAD revealed three substrates with relative molecular masses of approximately Mr 41,000, 40,000, and 30,000. In contrast, L929 cell membranes had only two detectable pertussis toxin substrates of approximately Mr 41,000 and 40,000. Although the Mr 41,000 pertussis toxin substrate represents the guanine nucleotide-binding inhibitory protein Gi, the identities of the Mr 40,000 and Mr 30,000 substrates remain unclear. In any event, inhibition of the TNF-induced increase in GTPase activity and ADP-ribosylation of Gi by pertussis toxin suggested that TNF might act by increasing GTPase activity of the Gi protein. However, the results further indicate that TNF has no detectable effect on basal or prostaglandin E2-stimulated cAMP levels in HL-60 cells. Taken together, these findings indicate that a pertussis toxin-sensitive GTP-binding protein other than Gi, and possibly the Mr 40,000 substrate, is involved in the action of TNF. Finally, the demonstration that pertussis toxin inhibited TNF-induced cytotoxicity in L929 cells supports the presence of a GTP-binding protein which couples TNF-induced signaling to a biologic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号