首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A unique tension response can be obtained by stimulating an isometrically held skeletal muscle or a single muscle fiber by a train of high-frequency pulses (2,000 pps) at higher-than-normal intensity, or by a long DC pulse. It is called the tetanoid response, and it is composed of three well-defined stages. Initially, tension develops rapidly, and mechanical output (Po) reaches about 0.35. Subsequently, this tension is maintained at a nearly steady level for the remainder of stimulation. After stimulation, a final increase of tension takes place. Intracellular electrical recordings show that the initial development of tension is elicited by two or three action potentials generated at the beginning of the stimulation, and that no additional action potentials are generated for the remainder of stimulation. During stimulation, part of the fiber membrane (regarded in cross-section) is depolarized, which generates tension, and part of the membrane is hyperpolarized. With termination of stimulation, a single action potential is elicited via anode-break excitation (ABE) on the hyperpolarized portion of the membrane, which gives rise to the final increase of tension.  相似文献   

2.
3.
The effects of muscle fatigue on the temporal neuromuscular control of the vastus medialis (VM) muscle were investigated in 19 young male subjects. The electromyogram (EMG) activities of VM and the force generation capacities of the quadriceps muscle were monitored before and after a fatigue protocol. In response to light signals, which were triggered randomly, the subjects made three maximal isometric knee extensions. This was then followed by the fatigue protocol which consisted of 30 isometric maximal voluntary contractions at a sequence of 5-s on and 5-s off. Immediately after the exercise to fatigue, the subjects performed another three maximal isometric contractions in response to the light signals. The effects of fatigue on the temporal neuromuscular control were then investigated by dividing the total reaction time (TRT) into premotor time (PMT) and electromechanical delay (EMD). The TRT was defined as the time interval between the light signal and the onset of the knee extension force. The PMT was defined as the time from the light signal to the onset of EMG activities of VM, and EMD as the time interval between onset of EMG activities to that of force generation. Following the contractions to fatigue there was a significant decrease in peak force (Fpeak, P = 0.016), an increase in the root mean square (rms)-EMG: Fpeak quotient (P = 0.001) but an insignificant change in the median frequency (P = 0.062) and rms-EMG (P = 0.119). Significant lengthening of mean EMD was found after the fatigue protocol [0.0396 (SD 0.009) vs. 0.0518 (SD 0.016) s P<0.001]. The lengthening of EMD in VM would affect the stabilizing effect of the patella during knee extension. The faster mean PMT [0.2445 (SD 0.093) vs. 0.2075 (SD 0.074) s, P = 0.042] following the fatigue protocol might have compensated for the lengthened EMD and contributed to the insignificant change in the mean TRT [0.284 (SD 0.09) vs. 0.259 (SD 0.073) s, P = 0.164]. This was probably related to the low level of fatigue (15% decrease in force) and the stereotyped nature of the action such that the effects of the fatigue on neuromuscular control were likely to have been attributable to peripheral processes.  相似文献   

4.
5.
The objective of the present study was to assess the effectiveness of a combined protocol of muscle stretching and strengthening after immobilization of the hindlimb. Thirty female Wistar rats were divided into 6 groups: group immobilized for 14 days to cause full plantar flexion by cast (GI, n = 6); group immobilized/stretched (GIS, n = 6): submitted to the same immobilization and to 10 days of passive stretching; group immobilized/electrically stimulated (GIES, n = 6): similarly immobilized and submitted to 10 days of low frequency electrical stimulation (ES); group immobilized/stretched/electrically stimulated (GISES, n = 6): similarly immobilized, submitted to 10 days of stretching and ES application; group immobilized/free (GIF, n = 3): similarly immobilized and then left with free limbs for 10 days; control group (CG, n = 3). The middle portion of the soleus muscle was frozen and sections were stained with HE or mATPase. Morphological analysis revealed high cellular reactivity in the GISES, GIES and GIS groups. The lesser diameter and proportion of type I fibers (TIF) and type II fibers (TIIF) (at pH 9.4) and connective area (at HE stain) were measured with an image analyzer and the data obtained were analyzed statistically by the unpaired Student t-test (p < or = 0.05). The results indicated that: a) immobilization generated atrophy of both fiber types (p < 0.05); b) joint application of ES and stretching was not efficient in reestablishing the size of the two fiber types compared to CG (p < 0.05); c) the ES protocol reestablished only the size of TIIF, which showed values similar to those detected in CG (p < 0.05); d) the stretch increased the proliferation of the perimysium connective tissue (p < 0.05). Thus, we conclude that, in the model applied here to female rats, a stretching protocol may limit the volume protein gain of soleus muscle fibers and increase the connective interstitial tissue.  相似文献   

6.
Contraction and insulin increase glucose uptake in skeletal muscle. While the insulin pathway, better characterized, requires activation of phosphoinositide 3‐kinase (PI3K) and atypical protein kinase (aPKC), muscle contraction seems to share insulin‐activated components to increase glucose uptake. This study aimed to investigate the interrelation between the pathway involved in glucose uptake evoked by insulin and muscle contraction. Isolated muscle of rats was treated with solvent (control), insulin, wortmannin (PI3K inhibitor) and the combination of insulin plus wortmannin. After treatment, muscles were electrically stimulated (contracted) or remained at rest. Glucose transporter 4 (GLUT4) localization, glucose uptake and phospho‐aPKC (aPKC activated form) were assessed. Muscle contraction and insulin increased glucose uptake in all conditions when compared with controls not stimulating an effect that was accompanied by an increase in GLUT4 and of phospho‐aPKC at the muscle membrane. Contracted muscles treated with insulin did not show additive effects on glucose uptake or aPKC activity compared with the response when these stimuli were applied alone. Inhibition of PI3K blocked insulin effect on glucose uptake and aPKC but not in the contractile response. Thus, muscle contraction seems to stimulate aPKC and glucose uptake independently of PI3K. Therefore, aPKC may be a convergence point and a rate limit step in the pathway by which, insulin and contraction, increase glucose uptake in skeletal muscle. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Vacuoles develop after fatiguing stimulation in frog skeletal muscle fibres. Experiments on isolated Xenopus muscle fibres show that this vacuolation is a dynamic process that reaches its maximum about 20 min after the end of fatiguing stimulation and then recedes. Fatigue-induced vacuoles originate from the t-tubular system. Recent data indicate that vacuoles are formed because of lactate accumulation in the t-tubules resulting in increased osmotic pressure and subsequent water influx. There is no obligatory connection between the presence of vacuoles and force depression, which is another common feature during the recovery from fatigue. Nevertheless, extensive vacuolation may exaggerate this force depression.  相似文献   

8.
The focus of this review is to highlight the importance of glial cell line-derived neurotrophic factor (GDNF) for the motor nervous system. GDNF is the most potent survival factor for motor neurons, where it enhances maintenance and survival of both developing and mature motor neurons in vivo and in vitro. GDNF aids in neuromuscular junction formation, maintenance, and plasticity, where skeletal muscle-derived GDNF may be responsible for this phenomenon. Increased levels of physical activity can increase GDNF protein levels in skeletal muscle, where alterations in acetylcholine and acetylcholine receptor activation may be involved in regulation of these changes observed. With inactivity and disuse, GDNF expression shows different patterns of regulation in the central and peripheral nervous systems. Due to its potent effects for motor neurons, GDNF is being extensively studied in neuromuscular diseases.  相似文献   

9.
In skeletal muscle, a local increase of acetylcholine (ACh) in a few end plates has been hypothesized to cause the formation of contraction knots that can be found in myofascial trigger points. To test this hypothesis in rats, small amounts of an acetylcholinesterase inhibitor [diisopropylfluorophosphate (DFP)] were injected into the proximal half of the gastrocnemius muscle, and the muscle nerve was electrically stimulated for 30-60 min for induction of muscle twitches. The distal half of the muscle, which performed the same contractions, served as a control to assess the effects of the twitches without DFP. Sections of the muscle were evaluated for morphological changes in relation to the location of blocked end plates. Compared with the distal half of the muscle, the DFP-injected proximal half exhibited significantly higher numbers of abnormally contracted fibers (local contractures), torn fibers, and longitudinal stripes. DFP-injected animals in which the muscle nerve was not stimulated and that were allowed to survive for 24 h exhibited the same lesions but in smaller numbers. The data indicate that an increased concentration of ACh in a few end plates causes damage to muscle fibers. The results support the assumption that a dysfunctional end plate exhibiting increased release of ACh may be the starting point for regional abnormal contractions, which are thought to be essential for the formation of myofascial trigger points.  相似文献   

10.
Following the ideas introduced by Huxley (Huxley 1957, Prog. Biophys. Biophys. Chem. 7, 255–318), it is generally supposed that muscle contraction is produced by temporary links, called crossbridges, between myosin and actin filaments, which form and break in a cyclic process driven by ATP splitting. Here we consider the interaction of the energy in the crossbridge, in its various states, and the force exerted. We discuss experiments in which the mechanical state of the crossbridge is changed by imposed movement and the energetic consequence observed as heat output and the converse experiments in which the energy content is changed by altering temperature and the mechanical consequences are observed. The thermodynamic relationship between the experiments is explained and, at the first sight, the relationship between the results of these two types of experiment appears paradoxical. However, we describe here how both of them can be explained by a model in which mechanical and energetic changes in the crossbridges occur in separate steps in a branching cycle.  相似文献   

11.
Tension and X-ray diffraction patterns are not always correlated in the smooth anterior retractor muscle (ABRM) of Mytilus edulis. The muscle produces equatorial intensity profiles of X-ray diffraction patterns corresponding to either a relaxed or a contracted structure. During phasic contractions, comprising a contracted as well a a relaxed phase, the diffracted intensity on the equator at 0.003 A?1 changes within the first 10s after onset of stimulation. The tension reaches a maximum after about the same time. The time dependence of this intensity change during phasic contraction has been measured. It shows that the tension decays within 10s, but the relaxed structure needs 30–40 s to reestablish. There is no difference between the observed intensities from the tonic and phasic contracted states. Inactivated muscles with minimum tension, normally termed relaxed, can have either a “contracted” or a relaxed structure.  相似文献   

12.
Summary The changes in Na current during development were studied in the dorsal root ganglion (DRG) cells using the whole-cell patch-clamp technique. Cells obtained from rats 1–3 and 5–8 days after birth were cultured and their Na currents were compared. On top of the two types of Na currents reported in these cells (fast-FA current and slow-S current) a new fast current was found (FN). The main characteristics of the three currents are: (i) The voltages of activation are –37, –36, and –23 mV for the FN, FA and S currents, respectively. (ii) The activation and inactivation kinetics of FN and FA currents are about five times faster than those of the S current. (iii) The voltages at which inactivation reaches 50% are –139, –75 and –23 mV for the FN, FA and S currents, respectively.The kinetics and voltage-dependent parameters of the three currents and their density do not change during the first eight days after birth. However, their relative frequency in the cells changes. In the 1–3 day-old rats the precent of cells with S, FA, and mixed S+FN currents is 22, 18, and 60% of the cells, respectively. In the 5–8 day-old, the percent of cells with S, FA, and FN+S is 10, 66 and 22%. The relative increase in the frequency of cells with FA current during development can contribute to the ease of action potential generation compared with cells with FN currents, which are almost completely inactivated under physiological conditions. The predominance of FA cells also results in a significant decrease in the relative frequency of cells with the high-threshold, slow current.Antibodies directed against a part of the S4 region of internal repeat I of the sodium channel (C 1 + , amino acids 210–223, eel channel numbering) were found to shift the voltage dependence of FA current inactivation (but not of FN or S currents) to more negative potentials. The effect was found only when the antibodies were applied externally. The results suggest that FN, FA and S types of Na currents are generated by channels, which are different in the topography of the C 1 + region in the membrane.  相似文献   

13.
We compared the chronic effect of intermittent hypoxia and endurance training on the glucose tolerance and GLUT4 protein expression in rat skeletal muscle. Thirty-two Sprague-Dawley rats were matched for weight and assigned to one of the following four groups: control, endurance training, hypoxia, or hypoxia followed by endurance training. Hypoxic treatment consisted of breathing 14% O2 for 12 h/day under normobaric conditions, and the training protocol consisted of making animals swim 2 times for 3 h/day. At the end of the 3rd week, an oral glucose tolerance test (OGTT) was performed 16 h after treatments. At the end of the 4th week, GLUT4 protein, mRNA, and glycogen storage in skeletal muscle were determined. Endurance training significantly improved OGTT results. Glycogen content and GLUT4 protein expression in the plantaris and red gastrocnemius, but not in the soleus or white gastrocnemius muscles, were also elevated. Chronic intermittent hypoxia also improved OGTT results, but did not alter GLUT4 protein expression. Additionally, hypoxia followed by exercise training produced significant increases in GLUT4 protein and mRNA in a greater number of muscles compared to endurance training alone. Both exercise training and hypoxia significantly reduced body mass, and an additive effect of both treatments was found. In conclusion, chronic intermittent hypoxia improved glucose tolerance in the absence of increased GLUT4 protein expression. This treatment facilitated the exercise training effect on muscle GLUT4 expression and glycogen storage. These new findings open the possibility of utilizing intermittent hypoxia, with or without exercise training, for the prevention and clinical treatment of type 2 diabetes or insulin resistance.  相似文献   

14.
In this article, we demonstrate assays to study thermal nociception in Drosophila larvae. One assay involves spatially-restricted (local) stimulation of thermal nociceptors while the second involves a wholesale (global) activation of most or all such neurons. Together, these techniques allow visualization and quantification of the behavioral functions of Drosophila nociceptive sensory neurons. The Drosophila larva is an established model system to study thermal nociception, a sensory response to potentially harmful temperatures that is evolutionarily conserved across species. The advantages of Drosophila for such studies are the relative simplicity of its nervous system and the sophistication of the genetic techniques that can be used to dissect the molecular basis of the underlying biology In Drosophila, as in all metazoans, the response to noxious thermal stimuli generally involves a "nocifensive" aversive withdrawal to the presented stimulus. Such stimuli are detected through free nerve endings or nociceptors and the amplitude of the organismal response depends on the number of nociceptors receiving the noxious stimulus. In Drosophila, it is the class IV dendritic arborization sensory neurons that detect noxious thermal and mechanical stimuli in addition to their recently discovered role as photoreceptors. These neurons, which have been very well studied at the developmental level, arborize over the barrier epidermal sheet and make contacts with nearly all epidermal cells. The single axon of each class IV neuron projects into the ventral nerve cord of the central nervous system where they may connect to second-order neurons that project to the brain. Under baseline conditions, nociceptive sensory neurons will not fire until a relatively high threshold is reached. The assays described here allow the investigator to quantify baseline behavioral responses or, presumably, the sensitization that ensues following tissue damage. Each assay provokes distinct but related locomotory behavioral responses to noxious thermal stimuli and permits the researcher to visualize and quantify various aspects of thermal nociception in Drosophila larvae. The assays can be applied to larvae of desired genotypes or to larvae raised under different environmental conditions that might impact nociception. Since thermal nociception is conserved across species, the findings gleaned from genetic dissection in Drosophila will likely inform our understanding of thermal nociception in other species, including vertebrates.  相似文献   

15.
The muscle creatine kinase (MCK) gene is expressed at high levels only in differentiated skeletal and cardiac muscle. The activity of the cloned enhancer–promoter has previously been shown to be dependent on the Trex element which is specifically bound by a yet unidentified nuclear factor, TrexBF. We have further characterized the function of the Trex site by comparing wild-type and Trex-mutated MCK transgenes in five mouse skeletal muscles: quadriceps, extensor digitorum longus (EDL), soleus, diaphragm, and distal tongue, as well as in heart ventricular muscle. Several types of statistical analysis including analysis of variance (ANOVA) and rank sum tests were used to compare expression between muscle types and between constructs. Upon mutation of the Trex site, median transgene expression levels decreased 3- to 120-fold in the muscles examined, with statistically significant differences in all muscles except the EDL. Expression in the largely slow soleus muscle was more affected than in the EDL, and expression in the distal tongue and diaphragm muscles was affected more than in soleus. Median expression of the transgene in ventricle decreased about 18-fold upon Trex mutation. Transfections into neonatal rat myocardiocytes confirmed the importance of the Trex site for MCK enhancer activity in heart muscle, but the effect is larger in transgenic mice than in cultured cells.  相似文献   

16.
L. Skubiszak 《Biophysics》2006,51(5):692-700
Contemporary experimental methods do not allow unequivocal determination of molecular structural events during muscle contraction. To analyze existing contradictions, an original computer program has been developed. This program reconstructs the hexagonal lattice of a sarcomere for different states of muscle and finds the most realistic structure by comparing the calculated Fourier spectrum with the actual diffraction pattern. Previously, the new approach allowed reconstructing the actual structure of a myosin filament from mammalian striated muscle (http://zope.ibib.waw.pl/pspk). In this work, the thin filament is reconstructed for three states: relaxed, activated, and contracting. The good fit between the calculated Fourier spectra and the actual diffraction patterns taken from the literature suggests that the thin filament owing to its flexibility may play an active role in muscle contraction, as myosin cross-bridges do.  相似文献   

17.
18.
In the present study the implantation of nonexposed muscle tissue to the site of injury in irradiated musculus gastrocnemius and following laser therapy were applied in order to stimulate this muscle's posttraumatic regeneration in old rats. It was shown that a far larger amount of functionally active muscle tissue was formed at the site of injury compared with rats received laser therapy alone or the ones which were only implanted nonexposed minced muscle tissue. The muscle tissue consisted of muscle fibers which originated from the grafted pieces of nonexposed skeletal muscle and the ones produced by myofibers of muscle stumps recovered after irradiation. The connective tissue developed more evenly. The formation of adipose tissue was not observed at the site of injury. Moreover, the skin wound healing and the hair growth were stimulated as well.  相似文献   

19.
The inhibitory motoneurons of crustaceans form synapses both with the sarcolemma of muscle fibres and with the very distal branchings of the excitatory motoneurons. The transmitter of these synapses is GABA (γ-aminobutyric acid) which is known to open Cl channels. Studies on the dactyl opener muscle of crayfish suggest that application of GABA not only leads to an increase in the Cl permeability but also to a considerable HCO 3 conductance that causes an intracellular acidification. To investigate possible physiological implications, we measured the intracellular pH of various muscle fibre types of crayfish and crab using pH-sensitive microelectrodes. Independent of the presence or absence of inhibitory innervation, bath application of 10−5 mol l−1 GABA led to acidification in all fibre types (pH change: 0.14 ± 0.08, n=11). In no preparation was a change in intracellular pH observed upon stimulation of specific or common inhibitory motoneurons with 10–40 pulses s−1 for 2–5 min. The results suggest that HCO 3 conductance cannot be activated through synaptic GABA receptors. However, all crustacean muscle fibre types seem to possess extrasynaptic GABA-sensitive channels that exhibit a considerable HCO 3 conductance. The physiological importance of these channels remains to be elucidated. Accepted: 13 July 2000  相似文献   

20.
Excitation-contraction coupling in both skeletal and cardiac muscle depends on structural and functional interactions between the voltage-sensing dihydropyridine receptor L-type Ca2+ channels in the surface/transverse tubular membrane and ryanodine receptor Ca2+ release channels in the sarcoplasmic reticulum membrane. The channels are targeted to either side of a narrow junctional gap that separates the external and internal membrane systems and are arranged so that bi-directional structural and functional coupling can occur between the proteins. There is strong evidence for a physical interaction between the two types of channel protein in skeletal muscle. This evidence is derived from studies of excitation–contraction coupling in intact myocytes and from experiments in isolated systems where fragments of the dihydropyridine receptor can bind to the ryanodine receptors in sarcoplasmic reticulum vesicles or in lipid bilayers and alter channel activity. Although micro-regions that participate in the functional interactions have been identified in each protein, the role of these regions and the molecular nature of the protein–protein interaction remain unknown. The trigger for Ca2+ release through ryanodine receptors in cardiac muscle is a Ca2+ influx through the L-type Ca2+ channel. The Ca2+ entering through the surface membrane Ca2+ channels flows directly onto underlying ryanodine receptors and activates the channels. This was thought to be a relatively simple system compared with that in skeletal muscle. However, complexities are emerging and evidence has now been obtained for a bi-directional physical coupling between the proteins in cardiac as well as skeletal muscle. The molecular nature of this coupling remains to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号