首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-density (dense) and low-density (sparse) plots were set up in naturally sown monospecific stands of Banksia ericifolia in coastal heath, 3 years after fire. This was done both in high-growth and low-growth areas. Plant mortality was recorded quarterly, and two harvests were made at 6 and 9 years to sample growth. Density-independent mortality at an exponential rate was observed in the low-growth treatments at both densities, and in the high-growth sparse treatment. Growth level affected mortality, with the half-life of populations in the high-growth sparse plots being double that of populations in the low-growth plots. Density-dependent mortality (self-thinning) was seen only in the high-growth dense plots. Seasonal effects on mortality were slight; maximum mortality was observed in the spring-summer period in plots subject to density-independent mortality, and in the winter-spring quarter in plots that had self-thinned. Yields in the high-growth plots and the low-growth dense plots were high for heath vegetation. The self-thinning populations did not exceed White's (1985) upper boundary for thinning lines of log intercept (K) = 5 on standardized axes. The data suggested a log intercept value in the range 4.8–4.9 in the high-growth stands assuming a thinning-line slope of – 1.5. Banksia ericifolia (a large shrub/small tree) has a high mean plant weight per given thinning density compared with trees, where an upper limit of log K= .4 has been suggested by White (1985). The volume of canopy space per plant in B. ericifolia is not unusual compared with other species. The amount of biomass packed into a given volume of canopy space was high in this Banksia, achieved by having leaves with a low ratio of area to weight (specific leaf area, SLA). For given values of density, leaf area index and proportion of shoot as leaf, plants with a low SLA will be several times heavier than plants with a high SLA. This achieves a high biomass to volume ratio without an erectophile canopy and may explain the high intercept seen for thinning lines of conifers.  相似文献   

2.
Turner NC 《Plant physiology》1975,55(5):932-936
Concurrent measurements of evaporation, leaf conductance, irradiance, leaf water potential, and osmotic potential of maize (Zea mays L. cv. Pa602A) in soil at either high or low soil water potential were compared at several hours on two consecutive days in July. Hourly evaporation, measured on two weighing lysimeters, was similar until 1000 hours Eastern Standard Time, but thereafter evaporation from the maize in the dry soil was always less than that in the wet soil; before noon it was 62% and by midafternoon, only 35% of that in the wet soil. The leaf water potential, measured with a pressure chamber, was between −1.2 and −2.5 bars and between −6.8 and −8 bars at sunrise (about 0530 hours Eastern Standard Time) in the plants in the wet and dry soil, respectively, but decreased quickly to between −8 and −13 bars in the plants in the wet soil and to less than −15 bars in the plants in the dry soil by 1100 to 1230 hours Eastern Standard Time. At this time, the leaf conductance of all leaves was less than 0.1 cm sec−1 in the maize in the dry soil, whereas the conductance was 0.3 to 0.4 cm sec−1 in the leaves near the top of the canopy in the wet soil. The osmotic potential, measured with a vapor pressure osmometer, also decreased during the morning but to a smaller degree than leaf water potential, so that by 1100 to 1230 hours Eastern Standard Time the leaf turgor potential was 1 to 2 bars in all plants. Thereafter, leaf turgor potential increased, particularly in the plants in soil at a high water potential, whereas leaf water potential continued to decrease even in the maize leaves with partly closed stomata. Evidently maize can have values of leaf conductance differing 3- to 4- fold at the same leaf turgor potential, which suggests that stomata do not respond primarily to bulk leaf turgor potential. Evidence for some osmotic adjustment in the plants at low soil water potential is presented. Although the degree of stomatal closure in the maize in dry soil did not prevent further development of stress, it did decrease evaporation in proportion to the decrease in canopy conductance.  相似文献   

3.
The effects of different light regimes on the survival, growth and morphology ofQuercus serrata seedlings were studied in canopies ofMiscanthus sinensis. The seedlings of various ages (0–3 yr) were grown in three light regimes: under a denseM. sinensis canopy (TG plot) receiving 2.5%–8.7% of full sunlight, under a relatively sparse canopy (SG plot) receiving 3.8%–16.1% of light and in an adjacent open site (NG plot). There was a little difference in the survival ofQ. serrata seedlings among the three plots. Height and diameter of stem and total leaf area of the seedlings were significantly lower in the shadier plots. However, the first (bottom) flush of the stem was significantly longer in the TG plot than in the NG and SG plots. Total dry weights of individual 1- and 2-yr-oldQ. serrata seedlings in the TG plot were reduced to about one-twelfth of those in the NG plot. Although the relative proportion in dry weight of each organ did not differ significantly among the plots, leaf area ratio, specific leaf area and stem height per unit dry weight were significantly higher in shadier plots. The leaf area per unit stem height was increased considerably in the sunnier plots.  相似文献   

4.
Spatial and temporal changes in canopy structure were studied in 1988 and 1989 in a Mediterranean Quercus ilex forest in north-eastern Spain. Due to differences in precipitation patterns the 1989 growing season was drier than the 1988 growing season. Sampling was conducted in parallel at two sites which represent endpoints along a slope gradient within a watershed (ridge top at 975 m, and valley bottom at 700 m). At both sites, similar inter-annual changes in canopy structure were observed in response to differences in water availability. Samples harvested in the upper 50 cm of the canopy during 1989 exhibited a decrease in both average leaf size and the ratio of young to old leaf and stem biomass relative to samples obtained in 1988. At the whole canopy level, a decrease in leaf production efficiency and an increase in the stem to leaf biomass ratio was observed in 1989. Temporal changes in canopy leaf area index (LAI) were not statistically significant. Average LAI values of Q. ilex at the two sites were not significantly different despite differences in tree stature and density (4.6 m2 m–2 at the ridge top, and 5.3 m2 m–2 at the valley bottom). Vertical distribution of leaves and stems within the canopy was very similar at the two locations, with more than 60% of the total LAI in the uppermost metre of the canopy. The possible significance of such an LAI distribution on the canopy carbon budget is discussed.  相似文献   

5.
Summary Few field studies have attempted to relate effects of actual livestock grazing on soil and plant water status. The present study was initiated to determine the effects of periodic defoliations by cattle during spring on soil moisture and plant water status in a crested wheatgrass (Agropyron cristatum (L.) Gaertn. and A. desertorum (Fisch. ex Link) Schult.) pasture in central Utah. Soil moisture in the top 130 cm of the soil profile was depleted more rapidly in ungrazed plots than in grazed plots during spring and early summer. Soil moisture depletion was more rapid in grazed plots in one paddock after 1 July due to differential regrowth, but there was no difference in soil water depletion between plots in another paddock during the same period. This difference in soil water depletion between paddocks was related to a difference in date of grazing. Although more water had been extracted from the 60 cm to 130 cm depths in ungrazed plots by late September, cumulative soil moisture depletion over the entire 193 cm profile was similar in grazed and ungrazed plots. Prior to 1 July, grazing had no effect on predawn leaf water potentials as estimated by a pressure chamber technique; however, after 1 July, predawn leaf water potentials were lower for ungrazed plants. Midday leaf water potentials were lower for grazed plants before 1 July, but did not differ between grazed and ungrazed plants after 1 July. A 4- to 8-day difference in date of defoliation did not affect either predawn or midday leaf water potentials. The observed differences in water use patterns during spring and early-summer may be important in influencing growth and competitive interactions in crested wheatgrass communities that are subject to grazing by domestic livestock.  相似文献   

6.
《Acta Oecologica》1999,20(5):559-570
Vertical distribution patterns of light, leaf nitrogen, and leaf gas exchange through canopies of the clonal perennial Solidago altissima were studied in response to mowing and fertilizer application in a field experiment. Consistent with the distribution of light, average leaf nitrogen content followed a `smooth' exponential decline along the fertilized stands both in control and mown plots. The nitrogen profile along the unfertilized stands in mown plots, however, was `disrupted' by high-nitrogen leaves at the top of shorter ramets that only reached intermediate strata of the canopies. Hence, in these stands leaf nitrogen was significantly increased in short ramets compared with tall ramets for a given light environment, suggesting suboptimal stand structure but not necessarily suboptimal single-ramet architecture. However, at least under the climatic conditions observed during measurements, such disrupture had no substantial effect on stand productivity: model calculations showed that vertical distribution patterns of leaf nitrogen along ramets only marginally influenced the photosynthetic performance of ramets and stands. This is explained by the observed photosynthesis-nitrogen relationship: the rate of photosynthesis per unit amount of leaf nitrogen did not increase with leaf nitrogen content even under saturating light levels indicating that leaf photosynthesis was not nitrogen limited during the measurement periods. Nevertheless, our study indicates that consideration of how architecture(s) of adjacent individual plants interact could be essential for a better understanding of the trade-offs between individual and canopy characteristics for maximizing carbon gain. Such trade-offs may end up in a suboptimal canopy structure, which could not be predicted and understood by classical canopy optimization models.  相似文献   

7.
Canopy structure and light interception were measured in an 18-m tall, closed canopy deciduous forest of sugar maple (Acer saccharum) in southwestern Wisconsin, USA, and related to leaf structural characteristics, N content, and leaf photosynthetic capacity. Light attenuation in the forest occurred primarily in the upper and middle portions of the canopy. Forest stand leaf area index (LAI) and its distribution with respect to canopy height were estimated from canopy transmittance values independently verified with a combined leaf litterfall and point-intersect method. Leaf mass, N and A max per unit area (LMA, N/area and A max/area, respectively) all decreased continuously by over two-fold from the upper to lower canopy, and these traits were strongly correlated with cumulative leaf area above the leaf position in the canopy. In contrast, neither N concentration nor A max per unit mass varied significantly in relation to the vertical canopy gradient. Since leaf N concentration showed no consistent pattern with respect to canopy position, the observed vertical pattern in N/area is a direct consequence of vertical variation of LMA. N/area and LMA were strongly correlated with A max/area among different canopy positions (r2=0.81 and r2=0.66, respectively), indicating that vertical variation in area-based photosynthetic capacity can also be attributed to variation in LMA. A model of whole-canopy photosynthesis was used to show that observed or hypothetical canopy mass distributions toward higher LMA (and hence higher N/area) in the upper portions of the canopy tended to increase integrated daily canopy photosynthesis over other LMA distribution patterns. Empirical relationships between leaf and canopy-level characteristics may help resolve problems associated with scaling gas exchange measurements made at the leaf level to the individual tree crown and forest canopy-level.  相似文献   

8.
Boyer JS 《Plant physiology》1970,46(2):233-235
Rates of photosynthesis, dark respiration, and leaf enlargement were studied in soil-grown corn (Zea mays), soybean (Glycine max), and sunflower (Helianthus annuus) plants at various leaf water potentials. As leaf water potentials decreased, leaf enlargement was inhibited earlier and more severely than photosynthesis or respiration. Except for low rates of enlargement, inhibition of leaf enlargement was similar in all three species, and was large when leaf water potentials dropped to about −4 bars.  相似文献   

9.
Sampling in a soybean field established that presence of velvetleaf (A. theophrasti) weeds interfered with soybean production. Number of soybean pods and number of pods/stem were significantly lower in transect segments adjacent to velvetleaf plants. In bioassays for phytotoxicity of velvetleaf, several dilutions of aqueous extracts from fresh field-collected leaves depressed germination of radish seeds and inhibited growth of soybean seedlings. Seed germination bioassays from eluates of chromatograms developed in one dimension showed that two of three bands containing phenolic compounds were inhibitory to radish seed germination. Soybeans inhibited by aqueous velvetleaf extracts had increased diffusive resistance, suggesting partial stomatal closure. Inhibited plants also gave evidence of water stress, with leaf water potentials often as low as –20 bars and reduced water content, when compared with controls. Quantification of chlorophyll on a leaf area basis showed that chlorophyll of inhibited plants was below controls. These data demonstrate the allelopathic potential of velvetleaf and suggest that interference with water balance and chlorophyll content may be two mechanisms of inhibitory action of toxins present in the leaves of velvetleaf.  相似文献   

10.
Measuring and modelling plant area index in beech stands   总被引:4,自引:0,他引:4  
For some beech (Fagus sylvatica L.) stands with different stand densities the plant area index (PAI) was measured by means of a Licor LAI-2000 plant canopy analyser. The stands are located on the slopes of a valley in south-west Germany and had been treated by different types of silvicultural management (heavy shelterwood felling, light shelterwood felling, control plot). The analyser was used (a) to investigate the light conditions on plots of the same thinning regime, (b) to quantify the differences between the different treatments and (c) to obtain absolute values of PAI for interdisciplinary research. PAI was measured at three different phenological stages (leafless, leaf-unfolding and fully leafed season in 2000) and was found to be about 5.2 for the fully developed canopy on the control plots, 3.2 on the light fellings and about 2.0 for the heavy fellings. In the leafless period PAI was between 1.1 (control) and 0.4 (heavy felling). Measurements made in summer 2000 and summer 2002 were compared, and showed an increase of PAI, especially on the thinned plots. Measurements of photosynthetically active radiation (PAR) above and below the canopy in combination with measured PAI were used to apply Beers Law of radiation extinction to calculate the extinction coefficient k for different sky conditions and for the different growing seasons on the control plots. The extinction coefficient k for the beech stands was found to be between 0.99 and 1.39 in the leafless period, 0.62 to 0.91 during leaf unfolding and between 0.68 and 0.83 in the fully leafed period. Using PAR measurements and the k values obtained, the annual cycle of PAI was modelled inverting Beers Law.  相似文献   

11.
Leaf cytokinins (CKs) were profiled within four locations throughout the inner and outer layers of a mature sugar maple (Acer saccharum) canopy. Leaf CK was associated with leaf gas exchange activity and some corresponding microclimate variables. Both inner and outer layers in the upper canopy had higher concentrations of leaf CKs than the lower canopy layers and the difference was comprised primarily by riboside forms of CK. Transpiration (E) showed a similar pattern to leaf CK content, with significantly higher rates in the upper canopy. There was, however, no clear pattern discernable in stomatal conductance (gs), other than it tended to be higher in the outer canopy layers. The upper/outer canopy showed a significantly different environment than all other canopy positions with higher photosynthetically active radiation (PAR), ultra-violet light (UV-B) and leaf temperature. Simple linear regression analysis showed that the nucleotide CK group (including iPNT, cis- and trans-[9RMP]Z, [9RMP]DZ) was positively related to PAR. Exogenous applications of benzylaminopurine (BAP), showed that low concentrations of BAP reduced E and g s, and indicated that CK may help regulate stomatal aperture. The similar patterns in E and CK content suggest that CKs and leaf gas exchange are functionally connected.  相似文献   

12.
本研究基于5年的耕作定位试验,设置深耕(DT)、深耕有机肥(DTF)、浅耕(ST)、浅耕有机肥(STF)、免耕(NT)和免耕有机肥(NTF)处理,以期通过改良耕层土壤结构,优化小麦冠层结构特性.结果表明: 同一耕作处理下,增施有机肥可降低土壤容重、提高土壤孔隙度,提高20~40 cm土层2~5和0.25~2 mm粒级土壤团聚体含量,降低>5 mm粒级团聚体含量、>0.25 mm粒级团聚体的平均质量直径(MWD)和几何平均直径(GMD).与其他处理相比,NTF处理改善了0~20 cm土层土壤容重、增加土壤孔隙度;DTF处理降低了40~60 cm土壤容重和>0.25 mm粒级机械团聚体的稳定性,增加了土壤透气性.花后各时期,有机肥处理的叶片角度指数降低,叶面积指数(LAI)和旗叶净光合速率(Pn)提高.STF处理的角度指数最低,DTF处理的Pn最高,显著大于其他处理.通径分析表明,自变量容重、孔隙度、>0.25 mm粒级团聚体的数量(R0.25)和MWD对因变量角度指数、LAI和Pn的直接通径系数均达到极显著水平.0~20 cm土层,MWD值增大有利于Pn和LAI的提高;20~40 cm土层,土壤容重在一定范围内的增加可优化叶夹角,提高冠层透光率;40~60 cm土层,高的土壤容重和低的孔隙度限制了LAI和Pn的增加.综上,豫中补灌区增施有机肥下的深耕或浅耕处理有利于改良土壤结构、增加土壤通透性,优化冠层结构,提高冠层受光率、叶面积指数和光合速率.  相似文献   

13.
Cultivar differences in canopy apparent photosynthesis (CAP) have been observed in soybean (Glycine max (L.) Merr.) but little is known about the physiological mechanisms which are responsible for such differences. This study was initiated to determine if variation in ribulose 1,5-bisphosphate carboxylase (RuBPCase) and soluble protein exists among cultivars which differ in CAP during reproductive growth. In addition, the relationship between specific leaf weight (SLW) and leaf protein was examined. Two Maturity Group VI cultivars, Tracy (high CAP) and Davis (low CAP), were grown in the field during 1979, 1980, and 1981 and in a greenhouse experiment. Leaves located at two canopy positions (topmost, fully expanded leaf and eighth node from the top) in 1979 and three canopy positions (those mentioned, plus the fourth node from the top) in 1980 and 1981 were sampled. Leaves at the two upper canopy positions exhibited greater SLW, RuBPCase m–2, and soluble protein m–2 than found at the eighth node down. Photosynthetic capacity of leaves at inner canopy regions was therefore affected by both light penetration into the canopy and leaf protein status. Over the three year period, the SLW was 23 percent and the soluble protein m–2 leaf 21 percent greater in Tracy than in Davis. Although the trend in RuBPCase m–2 leaf was not significant, it was consistently greater in Tracy in the field and greenhouse. No cultivar differences were observed when the proteins were expressed on a unit of leaf dry weight. The quantity of RuBPCase per unit leaf area was positively correlated with SLW with significant partial correlation coefficients of 0.62, 0.67, 0.35, and 0.82 for 1979, 1980, 1981, and the greenhouse study, respectively. Since these cultivars have similar leaf area indices during September, the greater SLW of Tracy is translated into more photosynthetic proteins per unit ground area and higher CAP rate.Abbreviations AP Leaf Apparent Photosynthesis - CAP Canopy Apparent Photosynthesis - DAP Days After Planting - DTT Dithothreitol - HEPES N-2-hydroethylpiperazine N-2 ethanesulfonic acid - LAI Leaf Area Index - LSD Least Significant Difference - PPFD Photosynthetic Photon Flux Density - PVP-40 Polyvinylpolypyrroledone (molecular weight, 4000) - RuBPCase Ribulose 1,5-bisphosphate Carboxylase - SLW Specific Leaf Weight  相似文献   

14.
Dennstaedtia punctilobula (hay‐scented fern) can act as a native invasive species in forests in eastern North America where prolonged deer browsing occurs in stands with partially open overstory canopies. Ferns dominate the understory with a 60‐cm tall canopy, with little regeneration of native tree species. It has been hypothesized that, once established, ferns may continue to inhibit tree regeneration after deer browsing has been reduced. To test this hypothesis, we documented the pattern of recovery of the tree seedling understory in plantations of Pinus strobus (white pine) and Pinus resinosa (red pine) on the Quabbin Reservation watershed protection forest in central Massachusetts, where after 40 years of intensive deer browsing the deer herd was rapidly reduced through controlled hunting. Dense fern understories occur on nearly 4,000 ha of the predominantly oak–pine forest. Three years after deer herd reduction, stands with the highest density fern cover (77% of plots with>90% cover) had significantly fewer seedlings at least 30 cm in height, compared with stands with lower fern density, and those seedlings consisted almost entirely of Betula lenta (black birch) and white pine. Height growth analysis showed that black birch and white pine grew above the height of the fern canopy in 3 and 6 years, respectively. In contrast, two common species, Fraxinus americana (white ash) and Quercus rubra (red oak), grew beneath the dense fern cover for 5 years with height growth less than 5 cm/yr after the first year. A study of spring phenology indicated that the ability of black birch to grow through the fern canopy might have been due to its early leaf development in spring before the fern canopy was formed, in contrast to oak and ash with delayed leaf development. Thus, the ferns showed differential interference among species with seedling development after reduction of deer browse.  相似文献   

15.
The aim of this study is to explore the effects of canopy conditions on clump and culm numbers, and the morphological plasticity and biomass distribution patterns of the dwarf bamboo species Fargesia nitida. Specifically, we investigated the effects of canopy conditions on the growth and morphological characteristics of F. nitida, and the adaptive responses of F. nitida to different canopy conditions and its ecological senses. The results indicate that forest canopy had a significant effect on the genet density and culm number per clump, while it did not affect the ramet density. Clumps tended to be few and large in gaps and forest edge plots, and small under forest understory plots. The ramets showed an even distribution under the closed canopy, and cluster distribution under gaps and forest edge plots. The forest canopy had a significant effect on both the ramets’ biomass and biomass allocation. Favourable light conditions promoted ramet growth and biomass accumulation. Greater amounts of biomass in gaps and forest edge plots were shown by the higher number of culms per clump and the diameter of these culms. Under closed canopy, the bamboos increased their branching angle, leaf biomass allocation, specific leaf area and leaf area ratio to exploit more favourable light conditions in these locations. The spacer length, specific spacer length and spacer branching angles all showed significant differences between gaps and closed canopy conditions. The larger specific spacer length and spacer branching angle were beneficial for bamboo growth, scattering the ramets and exploiting more favourable light conditions. In summary, this study shows that to varying degrees, F. nitida exhibits both a wide ecological amplitude and high degree of morphological plasticity in response to differing forest canopy conditions. Moreover, the changes in plasticity enable the plants to optimize their light usage efficiency to promote growth and increase access to resources available in heterogeneous light environments. __________ Translated from Acta Ecologica Sinica, 2006, 26(12): 4019–4026 [译自: 生态学报]  相似文献   

16.
The standing crop of current leaves of Sasa tsuboiana was measured on the upper slopes of Mount Horai, Shiga prefecture, central Japan. Upper one-year-old branches in the canopy produced greater mass of current leaves than lower ones. Furthermore, culms in artificially thinned plots produced larger leaf mass per culm than those in control plots. These results reveal that leaf production is positively correlated with light intensity. Therefore, when the leaf standing crop in a given year is somewhat smaller than usual, it may increase in the following year because the branches will receive stronger light. This feedback regulation causes uniformity in the horizontal distribution of the leaf standing crop. The constancy of the leaf standing crop throughout dense stands of different heights indicates that a common equilibrium value of the leaf standing crop exists. This uniform distribution leads to an almost-uniform weak light intensity under the canopy of S. tsuboiana, and can consequently exclude other plant species.  相似文献   

17.
Two sets of irrigated and water-stressed swards of perennial ryegrass (Lolium perenne) growing in the field were compared. One set of swards was grown normally (field swards) and the other was established in boxes of low water-holding capacity (simulated swards). Rain covers were used to exclude rain from half of both sets of swards: the others were kept within 20 mm of field capacity. Daily minimum values of leaf water potential fell to —12 bars (—1.2 MPa) in the irrigated swards, —16 bars in the stressed field swards and —20 bars in the stressed simulated swards. Dry-matter production was reduced in the stressed field swards and leaf extension declined markedly in both the field and simulated swards. Canopy photosynthesis at saturating light intensity was reduced by about half in the stressed field swards and by more than 80% in the stressed simulated swards. In the former case a proportion of this reduction was due to the lower leaf area but the mean rate of leaf photosynthesis at saturating light intensity (Pmax/LAI) was reduced by about 40% and this was attributable to increased stomatal resistance calculated from canopy transpiration rates or measured with a porometer. The more marked decline in photosynthesis in the stressed simulated swards was not only the consequence of more complete stomatal closure but also a decrease in the quantum efficiency of photosynthesis. When water stress occurs naturally in the field it appears that changes in the leaves take place as stress is developing and these changes result in a less severe effect of water stress on leaf photosynthesis. When stress is imposed with unnatural rapidity, as in the simulated swards, there is no opportunity for these changes in the leaf to occur and stress leads to a rapid and severe decline in leaf photosynthesis. The importance of these findings for the grass sward under water stress is discussed.  相似文献   

18.
The weakly-competitive grass, Puccinellia distans (Jacq.) Parl., and the highly competitive grass, Elymus repens (L.), coexist on roadsides in Central Europe which are regularly mowed. The effect of mowing on this existence was evaluated in situ at the roadside and in experimental field plots under non-limiting water and nutrient conditions. In four experimental garden plots, tussocks of P. distans were transplanted into monocultures of E. repens early in the growing season. After establishment, two of the plots were mowed and two left unmowed. In the unmowed plots, P. distans was quickly overtopped and died, while in mowed plots, P. distans was able to persist throughout the growing season. Despite persistence in the mowed plots, the number of tillers of P. distans declined throughout the growing season as numbers of tillers of E. repens increased. It was concluded that mowing could enhance coexistence in situations of unlimited nutrients and water where the faster growing and aggressive E. repens would exclude P. distans without mowing. At the roadside, six plots were established at a site containing both species early in the growing season. Weekly mowing was performed on three of the plots while the others were left unmowed. In mid-July, when the grasses were beginning to senesce and had produced seed-heads, foliage area for P. distans was significantly higher in the mowed than the unmowed plots while the reverse was true for E. repens. While P. distans had higher foliage area in the mowed plots, it was able to persist to seedhead production in the unmowed plots. Simulations conducted with a multispecies canopy photosynthesis model indicated that reductions in carbon gain for P. distans due to shading by foliage of E. repens did not correspond well with foliage area for P. distans at the start of experiment or in the mowed and unmowed plots in mid-July. In both the mowed and unmowed plots, the portion of foliage consisting of P. distans increased with closeness to the roadway and corresponded inversely with soil depth. At soil depths of greater than 15 cm, P. distans did not occur. More effective exploitation of shallow soil may shift the competitive balance toward P. distans and be a significant factor in the coexistence of these two species in the shallow soils at the roadside. Differences in leaf temperatures at the roadside that might result from different leaf widths were also evaluated. The narrower-leaved P. distans was hypothesized to have lower midday leaf temperatures at sites close to the asphalt and perhaps be closer to the temperature optimum for photosynthesis during warm summer days. In situ leaf temperature measurements made with small thermocouples attached to intact leaves, however, were not significantly different for the two species, and coexistence was not likely to be affected by leaf temperatures.  相似文献   

19.
Although regeneration of recalcitrant‐seeded tree species can be affected by prolonged drought, especially in Mediterranean regions, little is known about the response of such species to varying site conditions. A field experiment was performed to determine the effect of irrigation and leaf litter cover on seed germination and early seedling survival of the vulnerable recalcitrant‐seeded tree Beilschmiedia miersii (Lauraceae). Two levels of irrigation (non‐irrigated and irrigated units) and three levels of leaf litter depth (0, 5 and 12 cm) were applied to 72 groups of 30 seeds along a wet ravine of the Coastal Range of Central Chile, equally distributed across sites with different levels of canopy cover. Seed germination was significantly increased by irrigation only under closed‐canopy cover, and by leaf litter cover (>5 cm) under all canopy conditions. The effect of leaf litter on germination increased with canopy openness, while the effect of irrigation did not show any tendency. Meanwhile, early seedling survival was significantly increased by irrigation under intermediate canopy cover, and by leaf litter (>5 cm) under closed‐canopy cover. As a result of its overall positive effect on germination, leaf litter should be maintained within B. miersii communities, particularly under intermediate to closed‐canopy conditions, where it can also increase early seedling survival, and both seed germination and early seedling survival might be increased through additional water inputs. The presence of leaf litter might help retaining such inputs, prolonging their effect on regeneration of B. miersii communities. We see this as a baseline assessment of regeneration and persistence that needs further testing on species with similar traits, given the expected increase in the frequency and length of dry periods into the future.  相似文献   

20.
Nitrogen (N) addition typically increases overall plant growth, but the nature of this response depends upon patterns of plant nitrogen allocation that vary throughout the growing season and depend upon canopy position. In this study seasonal variations in leaf traits were investigated across a canopy profile in Miscanthus (Miscanthus × giganteus) under two N treatments (0 and 224 kg ha?1) to determine whether the growth response of Miscanthus to N fertilization was related to the response of photosynthetic capacity and nitrogen allocation. Miscanthus yielded 24.1 Mg ha?1 in fertilized plots, a 40% increase compared to control plots. Photosynthetic properties, such as net photosynthesis (A), maximum rate of rubisco carboxylation (Vcmax), stomatal conductance (gs) and PSII efficiency (Fv'/Fm'), all decreased significantly from the top of the canopy to the bottom, but were not affected by N fertilization. N fertilization increased specific leaf area (SLA) and leaf area index (LAI). Leaf N concentration in different canopy layers was increased by N fertilization and the distribution of N concentration within canopy followed irradiance gradients. These results show that the positive effect of N fertilization on the yield of Miscanthus was unrelated to changes in photosynthetic rates but was achieved mainly by increased canopy leaf area. Vertical measurements through the canopy demonstrated that Miscanthus adapted to the light environment by adjusting leaf morphological and biochemical properties independent of nitrogen treatments. GPP estimated using big leaf and multilayer models varied considerably, suggesting a multilayer model in which Vcmax changes both through time and canopy layer could be adopted into agricultural models to more accurately predict biomass production in biomass crop ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号