首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many nuclear-coded mitochondrial proteins are synthesized as larger precursor polypeptides that are proteolytically processed during import into the mitochondrion. This processing appears to be catalyzed by a soluble, metal-dependent protease localized in the mitochondrial matrix. In this report we employ an in vitro system to investigate the role of processing in protein import. Intact Neurospora crassa mitochondria were incubated with radiolabeled precursors in the presence of the chelator o-phenanthroline. Under these conditions, the processing of the precursors of the beta-subunit of F1-ATPase (F1 beta) and subunit 9 of the F0F1-ATPase was strongly inhibited. Protease-mapping studies indicated that import of the precursor proteins into the mitochondria continued in the absence of processing. Upon readdition of divalent metal to the treated mitochondria, the imported precursors were quantitatively converted to their mature forms. This processing of imported precursors occurred in the absence of a mitochondrial membrane potential and was extremely rapid even at 0 degrees C. This suggests that all or part of the polypeptide chain of the imported precursors had been translocated into the matrix location of the processing enzyme. Localization experiments suggested that the precursor to F1 beta is peripherally associated with the mitochondrial membrane while the precursor to subunit 9 appeared to be tightly bound to the membrane. We conclude that proteolytic processing is not necessary for the translocation of precursor proteins across mitochondrial membranes, but rather occurs subsequent to this event. On the basis of these and other results, a hypothetical pathway for the import of F1 beta and subunit 9 is proposed.  相似文献   

2.
The specificity of the mitochondrial and chloroplast processing enzymes for the nuclear-encoded precursor proteins was investigated. Mitochondrial precursor proteins of the Nicotiana plumbaginifolia and the Neurospora crassa subunits of F1-ATPase and the Neurospora Rieske FeS precursor protein were processed to the correct mature size by matrix extracts isolated from spinach leaves, yeast, rat liver and beef heart. The mitochondrial extracts failed to process chloroplast precursor proteins of the stromal small subunit of ribulose 1,5-bisphosphate carboxylase and the thylakoid 33 kDa protein of the oxygen-evolving complex. Both mitochondrial F1 precursors were specifically processed by a soluble stromal extract from chloroplasts. However, no processing of the Rieske FeS precursor protein was observed under the same conditions with the chloroplast extract. The cleavage of the mitochondrial F1 precursors by the chloroplast extract was shown to be sensitive to the metal chelators EDTA and ortho-phenanthroline. The cleavage site of the mitochondrial F1 precursor by the chloroplast soluble extract appears to be located at the N-terminus.Abbreviations ATPase adenosine triphosphatase - Rieske FeS non-heme iron sulphur protein of the ubiquinol cytochrome c oxidoreductase complex - Rubisco ribulose 1,5-bisphosphate carboxygenase/oxygenase - RMSF phenylmethylsulphonylfluoride - EDTA ethylenediaminetetraacetic acid  相似文献   

3.
Several inner membrane proteins from rat liver mitochondria have been translated for the first time in rabbit reticulocyte lysates. These include the Rieske iron-sulfur protein, cytochrome c1 and core protein I of the cytochrome bc1 complex, the alpha and beta subunits of F1 ATPase, and subunit IV of cytochrome oxidase. All were translated from free polysomes as larger-molecular-mass precursors, and were processed to their mature forms by isolated liver mitochondria or by the isolated mitochondrial matrix fraction. In vitro processing, catalyzed by the isolated matrix fraction, is inhibited by rhodamine 6G. The latter is a fluorescent probe, which accumulates specifically in mitochondria of whole cells and which is used extensively to visualize mitochondrial morphology. The concentration of rhodamine 6G required for inhibition in vitro is similar to that of o-phenanthroline. Rhodamine 6G inhibits matrix-catalyzed processing of all precursors tested, indicating that the mechanism of inhibition is common for a variety of functionally unrelated precursors. The novel action of rhodamine 6G reported here can form the basis for its inhibition of precursor processing in intact hepatoma cells [Kolarov, J. & Nelson, B.D. (1984) Eur. J. Biochem. 144, 387-392].  相似文献   

4.
The precursor proteins to the subunits of ubiquinol:cytochrome c reductase (cytochrome bc1 complex) of Neurospora crassa were synthesized in a reticulocyte lysate. These precursors were immunoprecipitated with antibodies prepared against the individual subunits and compared to the mature subunits immunoprecipitated or isolated from mitochondria. Most subunits were synthesized as precursors with larger apparent molecular weights (subunits I, 51,500 versus 50,000; subunit II, 47,500 versus 45,000; subunit IV (cytochrome c1), 38,000 versus 31,000; subunit V (Fe-S protein), 28,000 versus 25,000; subunit VII, 12,000 versus 11,500; subunit VIII, 11,600 versus 11,200). Subunit VI (14,000) was synthesized with the same apparent molecular weight. The post-translational transfer of subunits I, IV, V, and VII was studied in an in vitro system employing reticulocyte lysate and isolated mitochondria. The transfer and proteolytic processing of these precursors was found to be dependent on the mitochondrial membrane potential. In the transfer of cytochrome c1, the proteolytic processing appears to take place in two separate steps via an intermediate both in vivo and in vitro. In vivo, the intermediate form accumulated when cells were kept at 8 degrees C and was chased into mature cytochrome c1 at 25 degrees C. Both processing steps were energy-dependent.  相似文献   

5.
We have established a homologous system for studying mitochondrial protein import in Chlamydomonas reinhardtii, using C. reinhardtii precursor proteins and mitochondria isolated from C. reinhardtii. The precursors of the F1 ATP synthase subunit and the Rieske FeS protein were imported into mitochondria with high efficiency, while the F1 subunit precursor was imported with much lower efficiency. The import of heterologous precursor proteins from higher plants was also less efficient. The precursor of the C. reinhardtii PsaF chloroplast protein was converted into a protease-protected form upon incubation with mitochondria. In vitro processing studies revealed that in contrast to the situation in higher plants, the processing of the precursors was catalysed by a soluble, matrix-located peptidase.  相似文献   

6.
Adrenodoxin (Ad) is synthesized as a larger precursor (preAd) by cytoplasmic polysomes and then transported into mitochondria concomitant with its proteolytic processing to the mature form. The protease in bovine adrenal cortex mitochondria, which converts preAd to the mature form, is a metalloprotease in the matrix (Sagara, Y., Ito, A. & Omura, T. (1984) J. Biochem. 96, 1743-1752). In this study, the protease was purified about 100-fold from the matrix fraction of bovine adrenal cortex mitochondria. The partially purified protease converted not only preAd, but also the precursors of malate dehydrogenase (MDH) and 27 kDa protein (P-27) to the corresponding mature forms. However, it was inactive toward the precursors of P-450(SCC) and of P-450(11 beta). Since isolated rat liver mitochondria can import and process preAd as efficiently as bovine adrenal cortex mitochondria, we partially purified a preAd-processing protease from rat liver mitochondria and compared its properties with those of the bovine adrenal cortex enzyme. The properties of the rat liver protease were indistinguishable from those of the bovine adrenal cortex enzyme in molecular weight determined from Sephadex G-150 gel filtration, metal requirement and ability to process preMDH and preP-27. The rat liver enzyme was also inactive toward the precursors of P-450(SCC) and P-450(11 beta). These results indicate the presence in both adrenal cortex and liver mitochondria of the same type of processing protease, which processes preAd and also the precursors of some other mitochondrial proteins.  相似文献   

7.
Summary Ornithine transcarbamylase (ornithine carbamoyltransferase, EC 2.1.3.3), the second enzyme of urea synthesis, is localized in the matrix of liver mitochondria of ureotelic animals. The enzyme is encoded by a nuclear gene, synthesized outside the mitochondria, and must then be transported into the organelle. The rat liver enzyme is initially synthesized on membrane-free polysomes in the form of a larger precursor with an amino-terminal extension of 3 400–4 000 daltons. In rat liver slices and isolated rat hepatocytes, the pulse-labeled precursor is first released into the cytosol and is then transported with a half life of 1 2 min into the mitochondria where it is proteolytically processed to the mature form of the enzyme. The precursor synthesized in vitro exists in a highly aggregated form and has a conformation different from that of the mature enzyme. The precursor has an isoelectric point (pI = 7.9) higher than that of the mature enzyme (pI = 7.2).The precursor synthesized in vitro can be taken up and processed to the mature enzyme by isolated rat liver mitochondria. The mitochondrial transport and processing system requires membrane potential and a high integrity of the mitochondria. The transport and processing activities are conserved between mammals and birds or amphibians and is presumably common to more than one precursor. Potassium ion, magnesium ion, and probably a cytosolic protein(s), in addition to the transcarbamylase precursor and the mitochondria, are required for the maximal transport and processing of the precursor.A mitochondrial matrix protease which converts the precursor to a product intermediate in size between the precursor and the mature subunit has been highly purified. The protease has an estimated molecular weight of 108 000 and an optimal pH of 7.5–8.0, and appears to be a metal protease. The protease does not cleave several of the protein and peptide substrates tested. The role of this protease in the precursor processing remains to be elucidated.Rats subjected to different levels of protein intake and to fasting show significant changes in the level of enzyme protein and activity of ornithine transcarbamylase. The dietary-dependent changes in the enzyme level are due mainly to an altered level of functional mRNA for the enzyme. In contrast, during fasting, the increase in the enzyme level is associated with a decreased level of translatable mRNA forthe enzyme.Pathological aspects of ornithine transcarbamylase including the enzyme deficiency and reduced activities of the enzyme in Reye's syndrome are also described. A possibility that impaired transport of the enzyme precursor into the mitochondria leads to a reduced enzyme activity, is proposed.Abbreviation pOTC precursor of ornithine transcarbamylase  相似文献   

8.
By using the purified rat liver protein for reference in electrophoresis and peptide mapping experiments, I have identified the beta subunit of mitochondrial F1-ATPase and its cytoplasmic precursor in two-dimensional gel patterns of proteins from S49 mouse lymphoma cells. The beta subunit precursor is a substrate for cAMP-dependent phosphorylation during its synthesis. Normally, both nonphosphorylated and phosphorylated forms of beta subunit precursor are processed rapidly to the smaller, more acidic forms of mature beta subunit. When processing is inhibited with valinomycin, both nonphosphorylated and phosphorylated forms of beta subunit precursor are stabilized. Nonphosphorylated beta subunit is one of the most stable of cellular proteins, but the phosphorylated form is eliminated within minutes of processing. This suggests that phosphorylated beta subunit is recognized as aberrant and excluded from assembly into the ATPase complex. These results argue that cAMP-dependent phosphorylation of the beta subunit precursor is a physiological mistake that is remedied after mitochondrial import and processing.  相似文献   

9.
Most of the nuclear encoded mitochondrial precursor proteins contain an N-terminal extension called the presequence that carries targeting information and that is cleaved off after import into mitochondria. The presequences are amphiphilic, positively charged, membrane-interacting peptides with a propensity to form alpha-helices. Here we have investigated the proteolysis of the presequences that have been cleaved off inside mitochondria. A presequence derived from the overexpressed F(1)beta subunit of the ATP synthase and specific synthetic fluorescent peptides (Pep Tag Protease assay) have been shown to undergo rapid degradation catalyzed by a matrix located protease. We have developed a three-step chromatographic procedure including affinity and anion exchange chromatography for isolation of the protease from potato tuber mitochondria. Two-dimensional gel electrophoresis of the isolated proteolytically active fraction followed by electrospray ionization-mass spectrometry/mass spectrometry and data base searches allowed identification of the presequence peptide-degrading protease in Arabidopsis thaliana data base as a novel mitochondrial metalloendoprotease with a molecular mass of 105 kDa. The identified metalloprotease contains an inverted zinc-binding motif and belongs to the pitrilysin family.  相似文献   

10.
We have used site-directed mutagenesis of the Saccharomyces cerevisiae Rieske iron-sulfur protein gene (RIP 1) to convert cysteines 159, 164, 178, and 180 to serines, and to convert histidines 161 and 181 to arginines. These 4 cysteines and 2 histidines are conserved in all Rieske proteins sequenced to date, and 4 of these 6 residues are thought to ligate the iron-sulfur cluster to the apoprotein. We have also converted histidine 184 to arginine. This histidine is conserved only in respiring organisms. The site-directed mutations of the six fully conserved putative iron-sulfur cluster ligands result in an inactive iron-sulfur protein, lacking iron-sulfur cluster, and failure of the yeast to grow on nonfermentable carbon sources. In contrast, when histidine 184 is replaced by arginine, the iron-sulfur cluster is assembled properly and the yeast grow on nonfermentable carbon sources. The site-directed mutations of the 6 fully conserved residues do not prevent post-translational import of iron-sulfur protein precursor into mitochondria, nor do the mutations prevent processing of iron-sulfur protein precursor to mature size protein by mitochondrial proteases. Optical spectra of mitochondria from the six mutants indicate that cytochrome b is normal, in contrast to the deranged spectrum of cytochrome b which results when the iron-sulfur protein gene is deleted. In addition, mature size iron-sulfur apoprotein is associated with cytochrome bc1 complex purified from a site-directed mutant in which iron-sulfur cluster is not inserted. These results indicate that mature size iron-sulfur apoprotein, lacking iron-sulfur cluster, is inserted into the cytochrome bc1 complex, where it interacts with and preserves the optical properties of cytochrome b. Insertion of the iron-sulfur cluster is not an obligatory prerequisite to processing of the protein to its final size. Either the processing protease cannot distinguish between iron-sulfur protein with or without the iron-sulfur cluster, or insertion of the iron-sulfur cluster occurs after the protein is processed to its mature size, possibly after it is assembled in the cytochrome bc1 complex.  相似文献   

11.
We have analyzed how translocation intermediates of imported mitochondrial precursor proteins, which span contact sites, interact with the mitochondrial membranes. F1-ATPase subunit beta (F1 beta) was trapped at contact sites by importing it into Neurospora mitochondria in the presence of low levels of nucleoside triphosphates. This F1 beta translocation intermediate could be extracted from the membranes by treatment with protein denaturants such as alkaline pH or urea. By performing import at low temperatures, the ADP/ATP carrier was accumulated in contact sites of Neurospora mitochondria and cytochrome b2 in contact sites of yeast mitochondria. These translocation intermediates were also extractable from the membranes at alkaline pH. Thus, translocation of precursor proteins across mitochondrial membranes seems to occur through an environment which is accessible to aqueous perturbants. We propose that proteinaceous structures are essential components of a translocation apparatus present in contact sites.  相似文献   

12.
The Rieske iron-sulfur protein of the cytochrome bc1 complex is synthesized in the cytosol as a precursor with an additional 30 amino acids at the amino terminus. After import into the mitochondrial matrix, the precursor is processed to the mature form by two distinct proteolytic cleavages. Addition of 2.5 mM EDTA and 0.5 mM o-phenanthroline to the incubation mixture during import of the iron-sulfur protein precursor in vitro resulted in the selective inhibition of the second processing step with the concomitant accumulation of the intermediate form. The intermediate form was chased to the mature form in the presence of antimycin and oligomycin (to block the formation of a membrane potential) provided that 0.5 nM ATP and a metal ion such as Ca2+, Mn2+, or Mg2+ were added. Ca2+ ion was the most effective and at a concentration of 2.5 mM resulted in the complete cleavage of the intermediate to the mature form. Addition of Zn2+, Co2+, Mo2+, and Fe2+ was not effective in restoring the second cleavage. The pH optimum for the processing of the intermediate form of the iron-sulfur protein to the mature form was between 6.8-8.0. Processing of the intermediate form of the iron-sulfur protein to the mature form was observed at temperatures ranging from 12 to 27 degrees C in a temperature-dependent manner. The time course during the chase indicated that the second processing step was completed within 2 min after addition of Ca2+ ions. Attempts to isolate the second processing enzyme by sonication of mitochondria or by solubilization with detergents such as digitonin, Triton X-100, dodecyl-maltoside, or octyl-glucoside were unsuccessful as only the first cleavage was observed. Hence, the second processing enzyme may be present in the inner membrane or matrix in a conformation disrupted by detergents or alternatively the enzyme may be very labile.  相似文献   

13.
Mitochondrial F1-ATPase is an oligomeric enzyme composed of five distinct subunit polypeptides. The alpha and beta subunits make up the bulk of protein mass of F1. In Saccharomyces cerevisiae both subunits are synthesized as precursors with amino-terminal targeting signals that are removed upon translocation of the proteins to the matrix compartment. Recently, two different complementation groups (G13, G57), consisting of yeast nuclear mutants with defective F1, have been described. Biochemical analyses indicate that the mutational block in both groups of mutants affects a critical step needed for the assembly of the alpha and beta subunits into the F1 oligomer after their transport into mitochondria. In this study the ATP12 gene representative of the nuclear respiratory-deficient mutant of S. cerevisiae (pet) complementation group G57 has been cloned and the encoded product partially characterized. The ATP12 reading frame is 975 base pairs long and codes for a protein of Mr = 36,587. The ATP12 protein is not homologous to the subunits of F1 whose sequences are known, nor does it exhibit significant primary structure similarity to any known protein. In vitro import assays indicate that ATP12 protein is synthesized as a precursor approximately 3 kDa larger than the mature protein. The mitochondrial localization of the protein has been confirmed by Western blot analysis of mitochondrial proteins with an antibody against a hybrid protein expressed from a trpE-ATP12 fusion. Fractionation of mitochondria indicates further that the ATP12 protein is either a minor component of the matrix compartment or is weakly bound to the matrix side of the inner membrane. The molecular weight of the native protein, estimated from its sedimentation properties in sucrose gradients, is at least two times larger than the monomer. This suggests that the ATP12 protein is probably part of a larger complex.  相似文献   

14.
Isolated bovine adrenal cortex mitochondria imported in vitro synthesized pre-P-450(SCC) and processed it to the mature form. Partial radio-sequencing of the processed P-450(SCC) gave a result identical with that for authentic P-450(SCC). Rat liver mitochondria also imported pre-P-450(SCC) and processed it to the mature form, whereas bovine heart mitochondria were unable to import and process pre-P-450(SCC) although both mitochondrial preparations imported and processed pre-adrenodoxin. The pre-P-450(SCC) processing activity of bovine adrenal cortex mitochondria was associated with the matrix side surface of the inner membrane. The processing protease could be solubilized by sodium cholate and partially purified by ammonium sulfate fractionation. The partially purified processing protease cleaved pre-P-450(SCC) at the correct position. It was also active in processing pre-P-450(11 beta) but inactive toward pre-adrenodoxin. Bovine heart mitochondria lacked the processing activity to pre-P-450(SCC). The localization of pre-P-450(SCC) and mature P-450(SCC) in bovine adrenal cortex mitochondria was examined. Mature P-450(SCC) processed by the mitochondria was found associated with the matrix-side surface of the inner membrane, which is the correct location of P-450(SCC) in the cell. In the presence of o-phenanthroline, pre-P-450(SCC) was imported into the organelles without being processed and remained soluble in the matrix. The incorporation of newly processed mature P-450(SCC) into the inner membrane was also observed when pre-P-450(SCC) was incubated with inner membrane vesicles. Mature P-450(SCC) generated in vitro from pre-P-450(SCC) by the partially purified processing protease was incorporated not only into the inner membrane vesicles but also into bovine adrenal cortex microsomes. These findings suggested that the processing of pre-P-450(SCC) occurred prior to the incorporation of mature-P-450(SCC) into the inner membrane.  相似文献   

15.
16.
In vitro translation of bovine adrenal cortex RNA in rabbit reticulocyte lysate cell-free system produced the precursor form of adrenodoxin having a molecular weight of approximately 22,000 daltons, which was about 10,000 daltons larger than mature adrenodoxin. The precursor of adrenodoxin was efficiently imported into adrenal cortex mitochondria in vitro. The precursor was also imported into rat liver mitochondria, suggesting the lack of tissue specificity and species specificity of the import process. The enzyme which processed the precursor of adrenodoxin to the mature form was in the matrix fraction from bovine adrenal cortex mitochondria, and the processing protease was partially purified from the matrix fraction. The apparent molecular weight of the processing protease was about 60,000 daltons as determined by Sephadex G-150 gel filtration, and its activity was optimal at pH 8.5. The processing protease was not inhibited by various bacterial protease inhibitors examined. Metal chelators (EGTA, GTP, 8-hydroxyquinoline, and Zincon) inhibited the processing, and EDTA and o-phenanthroline were more strongly inhibitory than other chelators. The processing protease was completely inactivated by incubation with 10 microM EDTA, and its activity was restored by addition of excess amounts of Mn2+, Fe2+, or Co2+. These results indicate that the maturation of the precursor of adrenodoxin is catalyzed by a soluble metalloprotease in the matrix.  相似文献   

17.
To investigate the relationship between post-translational processing of the Rieske iron-sulfur protein of Saccharomyces cerevisiae and its assembly into the mitochondrial cytochrome bc1 complex we used iron-sulfur proteins in which the presequences had been changed by site-directed mutagenesis of the cloned iron-sulfur protein gene, so that the recognition sites for the matrix processing peptidase or the mitochondrial intermediate peptidase (MIP) had been destroyed. When yeast strain JPJ1, in which the gene for the iron-sulfur protein is deleted, was transformed with these constructs on a single copy expression vector, mitochondrial membranes and bc1 complexes isolated from these strains accumulated intermediate length iron-sulfur proteins in vivo. The cytochrome bc1 complex activities of these membranes and bc1 complexes indicate that intermediate iron-sulfur protein (i-ISP) has full activity when compared with that of mature sized iron-sulfur protein (m-ISP). Therefore the iron-sulfur cluster must have been inserted before processing of i-ISP to m-ISP by MIP. When iron-sulfur protein is imported into mitochondria in vitro, i-ISP interacts with components of the bc1 complex before it is processed to m-ISP. These results establish that the iron-sulfur cluster is inserted into the apoprotein before MIP cleaves off the second part of the presequence and that this second processing step takes place after i-ISP has been assembled into the bc1 complex.  相似文献   

18.
Many precursors of mitochondrial proteins are processed in two successive steps by independent matrix peptidases (MPP and MIP), whereas others are cleaved in a single step by MPP alone. To explain this dichotomy, we have constructed deletions of all or part of the octapeptide characteristic of a twice cleaved precursor (human ornithine transcarbamylase [pOTC]), have exchanged leader peptide sequences between once-cleaved (human methylmalonyl-CoA mutase [pMUT]; yeast F1ATPase beta-subunit [pF1 beta]) and twice-cleaved (pOTC; rat malate dehydrogenase (pMDH); Neurospora ubiquinol-cytochrome c reductase iron-sulfur subunit [pFe/S]) precursors, and have incubated these proteins with purified MPP and MIP. When the octapeptide of pOTC was deleted, or when the entire leader peptide of a once-cleaved precursor (pMUT or pF1 beta) was joined to the mature amino terminus of a twice-cleaved precursor (pOTC or pFe/S), no cleavage was produced by either protease. Cleavage of these constructs by MPP was restored by re-inserting as few as two amino-terminal residues of the octapeptide or of the mature amino terminus of a once-cleaved precursor. We conclude that the mature amino terminus of a twice-cleaved precursor is structurally incompatible with cleavage by MPP; such proteins have evolved octapeptides cleaved by MIP to overcome this incompatibility.  相似文献   

19.
Nuclear-encoded mitochondrial precursor proteins are proteolytically processed inside the mitochondrion after import. The general mitochondrial processing activity in plant mitochondria has been shown to be integrated into the cytochrome bc1 complex of the respiratory chain. Here we investigate the occurrence of an additional, matrix-located processing activity by incubation of the precursors of the soybean mitochondrial proteins, alternative oxidase, the FAd subunit of the ATP synthetase and the tobacco F1 subunit of the ATP synthase, with the membrane and soluble components of mitochondria isolated from soybean cotyledons and spinach leaves. A matrix-located peptidase specifically processed the precursors to the predicted mature form in a reaction which was sensitive to orthophenanthroline, a characteristic inhibitor of mitochondrial processing peptidase (MPP). The specificity of the matrix peptidase was illustrated by the inhibition of processing of the alternative oxidase precursor in both soybean and spinach matrix extracts upon altering a single amino acid residue in the targeting presequence (-2 Arg to Gly). Additionally, there was no evidence for general proteolysis of precursor proteins incubated with the matrix. The purity of the matrix fractions was ascertained by spectrophotometric and immunological analyses. The results demonstrate that there is a specific processing activity in the matrix of soybean and spinach in addition to the previously well characterized membrane-bound MPP integrated into the cytochrome bc1 complex of the respiratory chain.  相似文献   

20.
Subunit 8 of yeast mitochondrial F1F0-ATPase is a proteolipid made on mitochondrial ribosomes and inserted directly into the inner membrane for assembly with the other F0 membrane-sector components. We have investigated the possibility of expressing this extremely hydrophobic, mitochondrially encoded protein outside the organelle and directing its import back into mitochondria using a suitable N-terminal targeting presequence. This report describes the successful import in vitro of ATPase subunit 8 proteolipid into yeast mitochondria when fused to the targeting sequence derived from the precursor of Neurospora crassa ATPase subunit 9. The predicted cleavage site of matrix protease was correctly recognized in the fusion protein. A targeting sequence from the precursor of yeast cytochrome oxidase subunit VI was unable to direct the subunit 8 proteolipid into mitochondria. The proteolipid subunit 8 exhibited a strong tendency to embed itself in mitochondrial membranes, which interfered with its ability to be properly imported when part of a synthetic precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号