首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
13C-nuciear magnetic resonance (NMR) spectroscopy was used to investigate the products of glycerol and acetate metabolism released by Leishmania braziliensis panamensis promastigotes and also to examine the interaction of each of these substrates with glucose or alanine. The NMR data were supplemented by measurements of the rates of oxygen consumption and substrate utilization, and of 14CO2 production from 14C-labeIed substrate. Cells incubated with [2-13C]glycerol released acetate, succinate and D-lactate in addition to CO2. Cells incubated with acetate released only CO2. More succinate C-2/C-3 than C-l/C-4 was released from both [2-13C]glycerol and [2-13C]glucose, indicating that succinate was formed predominantly by CO2 fixation followed by reverse flux through part of the Krebs cycle. Some redistribution of the position of labeling was also seen in alanine and pyruvate, suggesting cycling through pyruvate/oxaloacetate/phosphoenolpyruvate. Cells incubated with combinations of 2 substrates consumed oxygen at the same rate as cells incubated with 1 or no substrate, even though the total substrate utilization had increased. When promastigotes were incubated with both glycerol and glucose, the rate of glucose consumption was unchanged but glycerol consumption decreased about 50%, and the rate of 14CO2 production from [l,(3)-14C]glycerol decreased about 60%. Alanine did not affect the rates of consumption of glucose or glycerol, but decreased 14CO2 production from these substrates by increasing flow of label into alanine. Although glucose decreased alanine consumption by 70%, it increased the rate of 14CO2 production from [U-14C]- and [l-14C]alanine by about 20%. This is consistent with rapid equilibration of alanine with pyruvate derived from glucose and yet little decrease in the specific activity of the large alanine pool.  相似文献   

2.
1. The effect of triperidol on the metabolism of glucose, pyruvate, glutamate, aspartate and glycine was studied with rat brain-cortex slices, U-14C-labelled substrates and a quantitative radiochromatographic technique. 2. Triperidol at a concentration of 0·2mm decreased the oxygen uptake and the 14CO2 production by about 30% when glucose, pyruvate and glutamate were used as substrates, whereas no effects were observed with aspartate and glycine. 3. The drug did not alter qualitatively the metabolic pattern of the substrates. 4. Quantitatively, triperidol decreased the incorporation of 14C from [U-14C]glucose and [U14-C]-pyruvate into glutamate, glutamine and γ-aminobutyrate but not into lactate, alanine and aspartate. The overall utilization rates of glucose and pyruvate were decreased. The relative specific radioactivities of glutamate and aspartate were also decreased. 5. Triperidol increased the rate of disappearance of U-14C-labelled glutamate, aspartate and glycine from the incubation medium, and altered the distribution of their metabolites between medium and tissue. 6. No appreciable effect of triperidol on [1-14C]galactose disappearance was found.  相似文献   

3.
S. Cocucci  E. Marrè 《Plant biosystems》2013,147(3-4):347-349
Abstract

On the control of carbohydrate utilization in yeast. — The results of a previous investigation showed that in higher plants the stimulating action of 2,4 dinitrophenol (DNP) on oxygen uptake and glycolysis is accompained by a fall of the level of reducing sugars, due to an increase of their respiratory utilization, and thus — according to every evidence — of the rate of hexose phosphate synthesis.

In the present work, the occurrence of a similar phenomenon in yeast (where the inhibiting effect of DNP on glucose uptake is not so much marked as in higher plant tissue) was investigated.

Here again DNP, at a 10-4M concentration, induced a rapid decrease of the disaccaride trehalose and of glycogen, such as to account for the increased rate of respiration and of fermentation. The ratio between the contributions to CO2 of Carbons 1 and respectively 6 of glucose was not significantly changed by DNP, which suggests that at least part of the DNP induced increase of glycolysis was mediated by the Embden Meyerhof pathway, and thus that a larger amount of fructose diphosphate was formed in the presence of the uncoupler.

In other experiments the effects of DNP on the dissimilation of C14 labeled glucose, glycerol and pyruvate to CO2 and ethanol, and on the incorporation of the radioactive isotope into various fractions, 15 minutes after feeding the labeled substrates, was investigated. It was found that:

1) Glucose and glycerol uptake is not markedly inhibited by DNP at the concentration employed (10–4M).

2) In the absence of DNP, a considerable portion of the radioactivity fed as glucose or glycerol and taken up by the yeast cells is recovered in the glycogen and trehalose fractions. (35% of the glucose, and 22% of the glycerol taken up). This is also observed for carbons 2 and 3, but not for carbon 1 of pyruvate. This indicates a reversibility of the glycolitic processes comprehended in the region between phospho-enol pyruvate andpolysac-carides; while the pyruvate kinase reaction appears to represent a sharp barrier at the « lower » end of glycolysis.

3) DNP almost completely inhibited the incorporation of C14 from glucose and glycerol into glycogen and trehalose, although it increased the rate of its dissimilation to CO2 and ethanol. The total amount of glucose and glycerol transformed in the various metabolites (and thus — according to every evidence — phosphorylated) was somewhat lowered and proteins synthesis severely depressed. These effects are interpreted as due to the uncoupling action of DNP at the mitochondrial level, and to the consequent general decrease of the ATP and UTP levels required for protein and for polysaccharide synthesis.  相似文献   

4.
Tolbutamide partially inhibited the growth but increased the glycogen content of Tetrahymena pyriformis in logarithmically growing cultures. Tolbutamide slightly increased 14CO2 production from [1-14C] and [6-14HC] glucose and [2-14C] pyruvate, but had little effect on the oxidation of [1-14C] acetate when any of these substrates were added to the proteose-peptone medium in which the cells had been grown. Measurement of 14CO2 production from [1-14C] and [2-I4C]-glyoxylate showed that this substrate was primarily oxidized via the glyoxylate cycle, with little if any oxidation occurring via the peroxisomal glyoxylate oxidase. Addition of tolbutamide inhibited the glyoxylate cycle as indicated by a marked reduction in label appearing in CO2 and in glycogen from labeled acetate. In control cells, addition of acetate strongly inhibited the oxidation of [2-14C]-pyruvate whereas addition of pyruvate had little effect on the oxidation of [1-14C]-acetate. Acetate was more effective than pyruvate in preventing the growth inhibitory and glycogen-increasing effects of tolbutamide. The data suggest that one effect of tolbutamide may be to interfere with the transfer of isocitrate and acetyl CoA across mitochondrial membranes.  相似文献   

5.
Rhodopseudomonas palustris TIE-1 grows photoautotrophically with Fe(II) as an electron donor and photoheterotrophically with a variety of organic substrates. However, it is unclear whether R. palustris TIE-1 conducts Fe(II) oxidation in conditions where organic substrates and Fe(II) are available simultaneously. In addition, the effect of organic co-substrates on Fe(II) oxidation rates or the identity of Fe(III) minerals formed is unknown. We incubated R. palustris TIE-1 with 2 mM Fe(II), amended with 0.6 mM organic co-substrate, and in the presence/absence of CO2. We found that in the absence of CO2, only the organic co-substrates acetate, lactate and pyruvate, but not Fe(II), were consumed. When CO2 was present, Fe(II) and all organic substrates were consumed. Acetate, butyrate and pyruvate were consumed before Fe(II) oxidation commenced, whereas lactate and glucose were consumed at the same time as Fe(II) oxidation proceeded. Lactate, pyruvate and glucose increased the Fe(II) oxidation rate significantly (by up to threefold in the case of lactate). 57Fe Mössbauer spectroscopy revealed that short-range ordered Fe(III) oxyhydroxides were formed under all conditions. This study demonstrates phototrophic Fe(II) oxidation proceeds even in the presence of organic compounds, and that the simultaneous oxidation of organic substrates can stimulate Fe(II) oxidation.  相似文献   

6.
Fermentations with yeastSaccharomyces cerevisiae in semiaerobic and in static conditions with the addition of chromic chloride into the used molasses medium were analysed. It was proved that the addition of optimal amounts of CrCl3 into the basal medium enhanced the kinetics of alcohol fermentations. The addition of 200 mg/l CrCl3 into the medium stimulated both the yeast growth and the ethanol production in all experimental conditions. On the other hand, the results showed that Cr3+ ions were incorporated into yeast cells during fermentation. Under these conditions the accumulation of Cr3+ ions was performed by yeast cells during the exponential growth phase, and with enriched amounts of 30–45 (μg/gd.m. of cells. Yeast biomass enriched with chromium ions was extracted with 01 mol/l NH4OH assuming that the extracts had the glucose tolerance factor (GTF). Then the extracts were passed through a gel-filtration column in order to isolate and purify the GTF. The presence of GTF in the purified fractions was determined by measuring the absorbance at 260 nm. It is evident from the obtained results that the added purified fractions enhanced the rates of CO2 production as well as the glucose utilization during alcoholic fermentation. As expected, the enhancement of both rates depended on the amounts of extracts added to the fermentation substrate. Thus, it is evident that purified extracts contained the GTF compound, and that Cr3+ ions were bonded to the protein molecule.  相似文献   

7.
Abstract— The effect of halothane on rat cerebral cortical metabolism was studied by measuring 14CO2 production from various [14C]-labelled substrates. Glucose metabolism was depressed by clinically-used concentrations of halothane (0.35 mm ; 1.65 MAC) which did not significantly affect the metabolism of fructose or pyruvate. We concluded that halothane blocked an early step(s) in glycolysis preceding phosphofructokinase. Hexokinase was considered unlikely as the site of blockade, leaving glucose uptake or the glucose phosphate isomerase step as the most likely site(s). Higher concentrations of halothane (0.7 mm ; 3.3 MAC) were required to block the metabolism of fructose or pyruvate to CO2. This action of halothane was attributed to the known inhibition by halothane of electron transport processes.  相似文献   

8.
  • 1.1. Indian River male broiler chickens growing from 7 to 28 days of age were fed diets containing 12, 18, 24 and 30% protein + 0 or 1 mg triiodothyronine (T3)/kg of diet to study energetic costs of lipogenesis and the use of various substrates for in vitro lipogenesis.
  • 2.2. De novo lipid and CO2 production were determined in the presence of [1-14C]pyruvate, [2-14q]pyruvate, [3-14C]pyruvate, [2-14C]acetate and [U-14C]alanine.
  • 3.3. Oxygen consumption was determined in mitochondrial preparations to estimate the energetic costs in expiants synthesizing lipid.
  • 4.4. Radiolabeled CO2 derived from [1-14C]pyruvate was used as an estimate of coenzyme A availability in liver expiants. Lipids derived from [2-14C]pyruvate, [2-14C]acetate and [U-14C]alanine estimate relative substrate efficiency.
  • 5.5. Labeled CO2 production from [1-14C]pyruvate was greatest in that group fed a 12% protein diet and least in the group fed a 30% protein diet.
  • 6.6. In addition, T3 increased CO2 production from [1-14C]pyruvate.
  • 7.7. The production of 14CO2 from the second carbon of pyruvate or acetate was increased by T3.
  • 8.8. The low-protein diet (12% protein) increased (P <0.05) lipogenesis.
  • 9.9. Adding T3 to the diets decreased carbon flux into lipid from all substrates, but increased CO2 production from all substrates without changing stage 3 and 4 respiration rates in mitochondrial preparations.
  • 10.10. These observations imply that coenzyme A availability may have regulated de novo lipogenesis in the present study.
  • 11.11. It was also concluded that previously noted effects of T3 on intermediary metabolism may involve metabolic pathways that do not involve changes in mitochondrial function.
  相似文献   

9.
Effectors of fatty acid synthesis in hepatoma tissue culture cells   总被引:1,自引:0,他引:1  
An investigation was undertaken to better understand the process of fatty acid synthesis in hepatoma tissue culture (HTC) cells. By comparing the findings to the normal liver some of the differences between normal and cancer tissue were defined. Incubation of the HTC cells in a buffered salt-defatted albumin medium showed that fatty acid synthesis was dependent upon the addition of substrate. The order of stimulation was glucose + pyruvate ~- glucose + alanine ~- glucose + lactate ~- pyruvate > glucose > alanine ? no additions. Fatty acid synthesis in HTC cells was decreased by oleate. In these respects HTC cells are similar to the liver; however, in contrast to the normal liver, N6, O2-dibutyryl cyclic adenosine 3′,5′-monophosphate (dibutyryl-cAMP) did not inhibit glycolysis or fatty acid synthesis. The cytoplasmic redox potential, as reflected by the lactate to pyruvate ratio, was found to be elevated compared to normal liver but unchanged by the addition of dibutyryl cAMP. Since higher rates of fatty acid synthesis are associated with lower lactate-to-pyruvate ratios in normal liver, it was expected that by decreasing the lactate-to-pyruvate ratio in HTC cells the rate of fatty acid synthesis would increase. One way to lower the lactate to pyruvate ratio is to increase the activity of the malate-aspartate shuttle. Stimulators of the hepatic malate-aspartate shuttle in normal liver (ammonium ion, glutamine, and lysine) had mixed effects on the redox state and fatty acid synthesis in HTC cells. Both ammonium ion and glutamine decreased the redox potential and increased the rate of fatty acid synthesis. Lysine was without effect on either process. Since NH4Cl and glutamine stimulate the movement of reducing equivalents into the mitochondria and decrease the redox potential, then the stimulation of fatty acid synthesis by NH4Cl and glutamine may be due to an increase in the movement of reducing equivalents into the mitochondria. However, if the shuttle were rate determining for fatty acid synthesis the rate from added lactate would be the same as from glucose alone but would be lower than from pyruvate which does not require the movement of reducing equivalents. This was not the case. Lactate and pyruvate gave comparable rates which were higher than glucose alone. Other possible sites of stimulation were investigated. The possibility that NH4+ and glutamine stimulated fatty acid synthesis by activating pyruvate dehydrogenase was excluded by finding that dichloroacetate, an activator of pyruvate dehydrogenase, did not stimulate fatty acid synthesis when glucose was added. Stimulation by NH4+ and glutamine at steps beyond pyruvate dehydrogenase was ruled out by the observation that NH4+ caused no stimulation from added pyruvate. NH4+ and glutamine did not alter the pentose phosphate pathway as determined by 14CO2 production from [1-14C]- or [6-14C]glucose. Ammonium ion and glutamine increased glucose consumption and increased lactate and pyruvate accumulation. The increased glycolysis in HTC cells appears to be the explanation for the stimulation of fatty acid synthesis by NH4+ and glutamine, even though glycolysis is much more rapid than fatty acid synthesis in these cells. The following observations support this conclusion. First, the percentage increase in glycolysis caused by NH4+ or glutamine is closely matched by the percentage increase in fatty acid synthesis. Second, the malate-aspartate shuttle, the pentose phosphate pathway, and the steps past pyruvate are not limiting in the absence of NH4+ or glutamine.  相似文献   

10.
The effect of anaplerotic pathways activation on CO2-dependent anaerobic glucose utilization by Escherichia coli strains deficient in the main fermentation pathways and possessing a modified system of glucose transport and phosphorylation was studied. Intracellular CO2 generation in the strains was ensured resulting from oxidative decarboxylation of pyruvic acid by pyruvate dehydrogenase. Sodium bicarbonate dissolved in the medium was used as an external source of CO2. The genes of heterologous pyruvate carboxylase and native NADH-dependent malic enzyme were overexpressed in the strains to allow anaplerotic carboxylation of pyruvic acid to oxaloacetic or malic acid. The ability of the strains to reoxidize NADH utilizing carboxylation products was additionally increased due to enhanced expression of malate dehydrogenase gene. In the case of endogenous CO2 formation, the activation of anaplerotic pathways did not cause a notable increase in the anaerobic glucose consumption by the constructed strains. At the same time, the expression of pyruvate carboxylase led to a pronounced decrease in the secretion of pyruvic acid with the concomitant increase in the yield of four-carbon metabolites. Further enhancement of NADH-dependent malic enzyme expression provoked activation of a pyruvate–oxaloacetate–malate–pyruvate futile cycle in the strains. The availability in the medium of the external CO2 source sharply increased the anaerobic utilization of glucose by strains expressing pyruvate carboxylase. The activity of the futile cycle has raised with the increased malic enzyme expression and dropped upon enhancement of malate dehydrogenase expression. As a result, the efficiency of CO2-dependent anaerobic glucose utilization coupled to the formation of four-carbon carboxylation products increased in the studied strains resulting from the primary anaplerotic conversion of pyruvic acid into oxaloacetic acid followed by the involvement of the precursor formed in NADH-consuming biosynthetic reactions dominating over the reactions of the revealed futile cycle.  相似文献   

11.
The metabolism of oligodendrocytes has been studied using cultures of oligodendrocyte-enriched glial cells isolated from cerebra of 5–8-day old rats. Cultures containing 60–80% oligodendrocytes were incubated for 16h with [3-14C]acetoacetate, d-[3-14C]3-hydroxybutyrate, [U-14C]glucose, l-[U-14C]glutamine and [1-14C]pyruvate or [2-14C]pyruvate in the presence or absence of other oxidizable substrates. Labelled CO2 was collected as an index of oxidative metabolism and the incorporation of label into total lipids, fatty acids and cholesterol was used as an index of the de novo synthesis of lipids. Glucose, acetoacetate, D-3-hydroxybutyrate, pyruvate and l-lactate were measured to determine substrate utilization and product formation under various conditions. Our results indicate that glucose is rapidly converted to lactate and is a relatively poor substrate for oxidative metabolism and lipid synthesis. Ketone bodies were used as an energy source and as precursors for the synthesis of fatty acids and cholesterol. Preferential incorporation of acetoacetate into cholesterol was not observed. Exogenous pyruvate was incorporated into both the glycerol skeleton of complex lipids and into cholesterol and fatty acids. l-Glutamine appeared to be an important substrate for the energy metabolism of these cells.  相似文献   

12.
Summary Treponema denticola was grown in serum-containing media to which 14C-labelled compounds were added. Determinations of radioactivity in the products formed indicated that the organism fermented alanine, cysteine, glycine, serine, and glucose. Fermentation products included acetate, lactate, succinate, formate, pyruvate, ethanol, CO2, H2S, and NH3. The products formed from glucose constituted a small portion of the total products. Assays of enzymatic activities in cell extracts indicated that the organism degraded glucose via the Embden-Meyerhof pathway. T. denticola possessed a coenzyme A-dependent CO2-pyruvate exchange activity associated with a clostridial-type clastic system for pyruvate metabolism. Phosphotransacetylase and acetate kinase activities were present in cell extracts. Acetyl phosphate formation and benzyl viologen reduction were detected when cell extracts were incubated with pyruvate, serine or cysteine. The data indicate that T. denticola is an amino acid fermenter and that it possesses the enzymes needed for the fermentation of glucose. However, glucose does not serve as the primary substrate when the organism grows in media including both this carbohydrate and amino acids.  相似文献   

13.
A radiorespirometer was constructed for continuous quantitation of 14CO2 released from specifically labeled substrates by intact cultured cells attached to plastic petri dishes. An airtight chamber is created by sealing the petri dish with a specially designed cover inside a thermostated holder. Rapid equilibration of released 14CO2 with a 5% CO295% air carrier gas is achieved by bubbling the carrier gas under the surface of the growth medium. Labeled CO2 is removed from the carrier gas by trapping in an organic base and quantitated by liquid scintillation counting. Additions to or sampling of the growth medium may be performed during a run and the carrier gas may be modified to test the effects of anesthetics and different O2 levels. The ability to continuously monitor 14CO2 release can provide valuable information concerning the metabolic pathways of substrate oxidation which cannot be obtained from single 14CO2 determinations. A capacity of 12 culture plates enormously increases the amount of data that can be collected in a given time. The use of liquid scintillation counting increases the sensitivity and resolution over the ion chamber and Geiger counter methods, and permits utilization of the procedure in a much wider range of laboratories. Data obtained for the oxidation of specifically 14C-labeled glucose and pyruvate by neonatal rat heart cells in culture, in both the presence and absence of oxygen, are provided as examples of the utility of the method.  相似文献   

14.
Respiratory metabolism in buckwheat seedlings   总被引:12,自引:8,他引:4       下载免费PDF全文
Effer WR  Ranson SL 《Plant physiology》1967,42(8):1042-1052
Young seedlings of buckwheat (Fagopyrum esculentum) respire in air with an RQ of unity. Analysis of respiratory substrates coupled with a study of the utilization of acetate-14C and glucose-14C suggest that both the Embden-Meyerhof-Parnas, tricarboxylic acid and pentose phosphate sequences participate in the total respiratory catabolism.

In anoxia CO2 dropped to one third of the aerobic rate and ethanol accumulated to only about one half the rate of CO2 output on a molar basis. Smaller amounts of lactate, succinate and free amino acids (particularly alanine and γ-aminobutyric acid) accumulated, carboxylic acids decreased and there were initial increased in pyruvate and α-ketoglutarate. The observed changes are consistent with residual tricarboxylic acid and pentose phosphate cycle activity in anoxia and may account for the excess CO2 production over ethanol accumulation. CO2, ethanol and lactate production did not account for all of the carbohydrate consumed in anoxia.

Relative rates of carbon loss were measured in air and in atmospheres containing 3.5%, 2.1%, 1.3% and 0.6% oxygen. The extinction point of anaerobic metabolism was 1.5%.

On return to air from anoxia the CO2 output increased and the RQ rose from 0.8 to 1.0 over the first 2-hour period. Ethanol, lactate and succinate were consumed and other constituents returned to their previous aerobic level. Some of these changes suggest a rather slow resumption of tricarboxylic acid cycle activity on return to air.

Carbon loss as CO2 in air was greater than the carbon loss as CO2 at the extinction point. Carbon loss in anoxia as CO2, ethanol and lactate was similar to carbon loss at the extinction point. Assessed in this orthodox manner buckwheat seedlings show no Pasteur effect but the complex nature of the changes in levels of metabolic substrates and intermediates do not allow firm conclusions to be drawn on the effects of oxygen on the rates of glycolysis and other respiratory processes.

  相似文献   

15.
Dichloroacetate has effects upon hepatic metabolism which are profoundly different from its effects on heart, skeletal muscle, and adipose tissue metabolism. With hepatocytes prepared from meal-fed rats, dichloroacetate was found to activate pyruvate dehydrogenase, to increase the utilization of lactate and pyruvate without effecting an increase in the net utilization of glucose, to increase the rate of fatty acid synthesis, and to decrease slightly [1-14C]oleate oxidation to 14CO2 without decreasing ketone body formation. With hepatocytes isolated from 48-h-starved rats, dichloroacetate was found to activate pyruvate dehydrogenase, to have no influence on net glucose utilization, to inhibit gluconeogenesis slightly with lactate as substrate, and to stimulate gluconeogenesis significantly with alanine as substrate. The stimulation of fatty acid synthesis by dichloroacetate suggests that the activity of pyruvate dehydrogenase can be rate determining for fatty acid synthesis in isolated liver cells. The minor effects of dichloroacetate on gluconeogenesis suggest that the regulation of pyruvate dehydrogenase is only of marginal importance in the control of gluconeogenesis.  相似文献   

16.
Summary Carbon distribution from substrates to products in Clostridium acetobutylicum ATCC 824 was investigated by adding 14C-labeled substrates as tracers. Comparison of carbon conversion between chloramphenicol (CAP)-treated and untreated cultures was also studied. The percentage of 14C recovery in butanol, acetone and ethanol from uniformly labeled [14C]glucose was increased by 17, 25 and 30%, respectively, after CAP addition. The incorporation of 14C in solvents from 14C-labeled acetate and butyrate was also increased by the antibiotic treatment. A total 14C recovery of 12% in all the products from added [14C]Na2CO3 indicates significant heterotrophic CO2 fixation in this microorganism. The ratio of carbon in butanol derived from glucose, acetate and butyrate was about 71:6:18, and this ratio was unchanged by CAP treatment.This paper represents contribution No. 2685 of the Rhode Island Agricultural Experimental StationCorrespondence to: R. W. Traxler  相似文献   

17.
1. The rate of appearance of 14CO2 from [6-14C]glucose and [3-14C]pyruvate was measured. Pyruvate is oxidized to carbon dioxide twice as fast as glucose, although the oxygen uptake is almost the same with each substrate. 2. The presence of 30μm-2,4-dinitrophenol increases the output of 14CO2 from [6-14C]glucose sixfold whereas the oxygen uptake is not quite doubled. Similar results are obtained with 0·1m-potassium chloride. The stimulating action of these two agents on the output of 14CO2 from [3-14C]pyruvate is much less than on that from [6-14C]glucose. 3. The effects of oligomycin, ouabain and triethyltin on the respiration of control and stimulated brain-cortex slices were studied. Triethyltin (1·3μm) inhibited the oxidation of [6-14C]glucose more than 70%, but did not inhibit the oxidation of[3-14C]pyruvate. [3-14C]pyruvate. 4. The production of lactic acid by brain-cortex slices incubated with glucose is twice as great as that with pyruvate. Lactic acid increases two and a half times in the presence of either triethyltin or oligomycin when the substrate is glucose, but is no different from the control when the substrate is pyruvate. 5. With kidney slices the production of lactic acid from glucose is very low. It is increased by oligomycin but not by triethyltin. 6. The results are discussed in terms of the oxidation of the extramitochondrial NADH2 produced during glycolysis.  相似文献   

18.
Dichloroacetate (2 mm) stimulated the conversion of [1-14C]lactate to glucose in hepatocytes from fed rats. In hepatocytes from rats starved for 24 h, where the mitochondrial NADHNAD+ ratio is elevated, dichloroacetate inhibited the conversion of [1-14C]lactate to glucose. Dichloroacetate stimulated 14CO2 production from [1-14C]lactate in both cases. It also completely activated pyruvate dehydrogenase and increased flux through the enzyme. The addition of β-hydroxybutyrate, which elevates the intramitochondrial NADHNAD+ ratio, changed the metabolism of [1-14C]lactate in hepatocytes from fed rats to a pattern similar to that seen in hepatocytes from starved rats. Thus, the effect of dichloroacetate on labeled glucose synthesis from lactate appears to depend on the mitochondrial oxidation-reduction state of the hepatocytes. Glucagon (10 nm) stimulated labeled glucose synthesis from lactate or alanine in hepatocytes from both fed and starved rats and in the absence or presence of dichloroacetate. The hormone had no effect on pyruvate dehydrogenase activity whether or not the enzyme had been activated by dichloroacetate. Thus, it appears that pyruvate dehydrogenase is not involved in the hormonal regulation of gluconeogenesis. Glucagon inhibited the incorporation of 10 mm [1-14C]pyruvate into glucose in hepatocytes from starved rats. This inhibition has been attributed to an inhibition of pyruvate dehydrogenase by the hormone (Zahlten et al., 1973, Proc. Nat. Acad. Sci. USA70, 3213–3218). However, dichloroacetate did not prevent the inhibition of glucose synthesis. Nor did glucagon alter the activity of pyruvate dehydrogenase in homogenates of cells that had been incubated with 10 mm pyruvate in the absence or presence of dichloroacetate. Thus, the inhibition by glucagon of pyruvate gluconeogenesis does not appear to be due to an inhibition of pyruvate dehydrogenase.  相似文献   

19.
Isolated acini from lactating rat mammary gland were incubated with glucose (5 mm) and progesterone. The steroid (0.1 mm) decreased glucose utilization and pyruvate accumulation, but increased the formation of lactate. The production of 14CO2 and 14C-labeled lipid from [1-14C]glucose, and the incorporation of 3H2O into lipid were also inhibited by progesterone. At lower concentrations of progesterone (0.01–0.025 mm) the only effects were an increased [lactate], a decreased [pyruvate], and a consequent rise in the lactate/pyruvate ratio. Addition of dichloroacetate, an activator of pyruvate dehydrogenase, did not reverse these effects and assays of active pyruvate dehydrogenase showed no inactivation by progesterone. The steroid did not affect pyruvate utilization but markedly inhibited the removal of lactate, suggesting that progesterone causes a decreased reoxidation of cytosolic NADH and thus alters the cytosolic redox state. The findings are discussed in relation to the physiological role of progesterone during pregnancy and lactation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号