首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The second-order rate constants (M?1sec?1, 25°C, pH 8.2, I = 0.15 M) for the oxidation to (semi-met)0of deoxyhemerythrin from Phascolopsis gouldii (P.g.) and Themiste zostericola (T.z.) have been determined for Fe(CN)5(4-NH2py)2? (3.6 × 104 T.z.,2.8 × 102P.g.),Fe(CN)5NH32?(2.4 × 104 T.z.), Fe(CN)63? (1.0 × 105 T.z.,1.4 × 102P.g.), Fe(CN)5PPh32? (7.3 × 105T.z.), and Fe(CN)4dipy- (~6 × 106 T.z.,7.5 × 104 P.g.). Corresponding rate constants for the oxidation of (semi-met)R to met are: Fe(CN)5(4-NH2py)2? (1.2 × 103 P.g.), Fe(CN)63? (3.4 × 105 T.z., 4.5 × 10 Fe(CN)5PPh32? (4.4 × 104P.g.), Fe(CN)4dipy? (1.7 × 105P.g.), and Coterpy23+ (5.1 P.g.) The rates of oxidation of deoxy- and (semi-met)R myohemetythrin by Fe(CN)63? were too rapid for stopped-flow measurement. The Marcus relationship for cross-reactions was successfully applied to these data.  相似文献   

2.
The binding of[Co(CN)6]3?, and that of[Fe(CN)6]3? and [Ru(CN)6]4? using a competitive method, to horse cytochrome c has been studied by 59 Co NMR spectroscopy. At I = 0.07 M, without added salt and in 2H2O at ph* 7.3 (measured in 2H2O) and 25°C, there are at least two binding sites on ferricytochrome c and ferrocytochrome c for [Co(CN)6]3?. Association constants were determined to be 2.0 ± 0.6 × 103M?1 and 1.5 ± 0.5 × 102M?1 respectively. with no effect of the oxidation state of the cytochrome. At higher ionic strength (I = 0.12 M adjusted with KCl the binding markedly decreased, and, although it was not possible to determine the precise binding stoichiometry and magnitude of association constants, it is clear that the association constants are ≤ 1.5 × 10tM?1 The binding of [Ru(CN)6]4? at I = 0.07, without added salt and in 2H2O at pH 1.3 and 23°C, was not precisely defined, but its binding strength relative to that of [Fe(CN)6]3? was determined. Extrapolating this to I = 0.12 (KCl) suggests that under these conditions the association constant for [Ru(CN)6]4? binding to ferricytochrome c is ≤ 3 × 102M?1.  相似文献   

3.
Kinetic studies of the reduction of ferrioxamine B (Fe(Hdesf)+) by Cr(H2O)62+, V(H2O)62+, and dithionite have been performed. For Cr(H2O)62+ and V(H2O)62+, the rate is ?d[Fe(Hdesf)+]/dt = k[Fe(Hdesf)+][M2+]. For Cr(H2O)62+, k = 1.19 × 104 M?1 sec?1 at 25°C and μ = 0.4 M, and k is independent of pH from 2.6 to 3.5. For V(H2O)62+, k = 6.30 × 102 M?1 sec?1 at 25°C, μ = 1.0 M, and pH = 2.2. The rate is nearly independent of pH from 2.2 to 4.0. For Cr(H2O)62+ and V(H2O)62+, the activation parameters are ΔH = 8.2 kcal mol?1, ΔS ?12 eu and ΔH = 1.7 kcal mol?1, ΔS = ?40 eu (at pH 2.2) respectively. Reduction by Cr(H2O)62+ is inner-sphere, while reduction by V(H2O)62+ is outer-sphere. Reduction by dithionite follows the rate law ?d[Fe(Hdesf)+]/dt =kK12[Fe(Hdesf)+][S2O42?]12 where K is the equilibrium constant for dissociation of S2O42? into SO2? radicals. The value of k at 25°C and μ = 0.5 is 2.7 × 103 M?1 sec?1 at pH 5.8, 3.5 × 103 M?1 sec?1 at pH 6.8, and 4.6 × 103 M?1 sec?1 at pH 7.8, and ΔH = 6.8 kcal mol?1 and ΔS = ?19 eu at pH 7.8.  相似文献   

4.
Stopped-flow kinetic studies of the formation of ferrioxamine B were performed. Formation of the complex follows the rate law
where Ka is the acid dissociation constant of the iron(III) aquo species in 0.1 M formate buffer. At 25°C k1 = 3.94 × 102M?1 sec?1, k2Ka = 1.18 × 10?1 sec?1, k3 = 3.6 × 10?1 sec?1. Activation parameters for k1 are ΔH = 11.7 kcal mole?1 and ΔS = ?8 cal K?1 mole?1. An associative mechanism is proposed. Attachment of the first chelate ring is the slow step and favorably positions the second chelate ring for attachment. Coordination of two chelate rings favorably positions the third chelate ring for attachment. These results are compared to kinetics of formation of model complexes and to a previous study of the formation of ferrioxamine B in which attachment of the third chelate ring was proposed as the slow step  相似文献   

5.
The reactions of copper(II)-ahphatic polyamine complexes with cysteine, cysteine methyl ester, penicillamine. and glutathione have been investigated, with the goal of understanding the relationship between RS?-Cu(II) adduct structure and preferred redox decay pathway. Considerable mechanistic flexibility exists within this class of mercapto ammo acid oxidations, as changes in the rate law could be induced by modest variations in reductant concentration (at fixed [Cu(II)]o), pH, and the structure of the redox partners. With excess cysteine present at 25°C, pH 5 0, I = 0 2 M (NaOAc), decay of 1:1 cys-S?-Cu(II) transient adducts was found to be first order in both cys-SH and transient. Second-order rate constants characteristic of Cu(dien)2+ (6 1 × 103M?1sec?1), Cu(Me5dien)2+ (2.7 × 103M?1 sec?1), Cu(en)22+ (2.1 × 103M?1 sec?1), and Cu(dien)22+ (4.7 × 103 M?1 sec ?1) are remarkably similar, considering substantial differences in the composition and geometry of the oxidant first coordination sphere. A mechanism involving attack of cysteine on the coordinated sulfur atom of the transient, giving a disulfide anion radical intermediate, is proposed to account for these results Moderate reactivity decreases in the cysteine-Cu(dien)2+, Cu(Me5dien)2+ reactions with increasing [H+] (pH 4–6) reflect partial protonation of the polyamine ligands. A very different rate law, second order in the RS?-Cu(II) transient and approximately zeroth order in mercaptan, applies in the pH 5.0 oxidations of cysteine methyl ester, penicillamine, and glutathione by Cu(dien)2+ and Cu(Me5dien)2+. This behavior suggests the mtermediacy of di-μ-mercapto-bridged binuclear Cu(II) species, in which a concerted two-electron change yields the disulfide and Cu(I) products. Similar hydroxo-bridged intermediates are proposed to account for the transition from first- to second-order transient dependence in cysteine oxidations by Cu(dien)2+ and Cu(Me5dien)2+ as the pH is increased from 5 to 7. Yet another rate law, second order in transient and first order in cysteine, applies in the pH 5.0 oxidation of cysteine by Cu(Me6tren)2+ (k(25°C) 7.5 × 107 M?2 sec?1, I = 0.2 M). Steric rigidity of this trigonal bipyramidal oxidant evidently protects the coordinated sulfur atom from attack in a RSSR?-forming pathway. Formation of a coordinated disulfide in the rate-determining step is purposed, coupled with attack of a noncoordinated cysteine molecule on a vacated coordination position to stabilize the (Me6(tren)Cu(I) product.  相似文献   

6.
The rate constants of the reactions between pulse radiolytically produced superoxide anions and the Cu(II) chelates of salicylate, acetylsalicylate, p-aminosalicylate and diisopropylsalicylate were determined at pH 7.5 and found to range from 0.8 to 2.4 × 109 M?1 sec?1. It was intriguing to note that they had a superoxide dismutase activity identical with that of native cuprein-copper (k245 = 1.3 × 109 M?1 sec?1 per g-atom of Cu). These measurements confirm our earlier observations using indirect assays that all copper salicylates act as perfect model superoxide dismutases and favour the proposal that the activity of anti-inflammatory agents might be assigned to their in vivo formed Cu complexes.  相似文献   

7.
Two trypsin inhibitors, LA-1 and LA-2, have been isolated from ridged gourd (Luffa acutangula Linn.) seeds and purified to homogeneity by gel filtration followed by ion-exchange chromatography. The isoelectric point is atpH 4.55 for LA-1 and atpH 5.85 for LA-2. The Stokes radius of each inhibitor is 11.4 å. The fluorescence emission spectrum of each inhibitor is similar to that of the free tyrosine. The biomolecular rate constant of acrylamide quenching is 1.0×109 M?1 sec?1 for LA-1 and 0.8 × 109 M?1 sec?1 for LA-2 and that of K2HPO4 quenching is 1.6×1011 M?1 sec?1 for LA-1 and 1.2×1011M?1 sec?1 for LA-2. Analysis of the circular dichroic spectra yields 40%α-helix and 60%Β-turn for La-1 and 45%α-helix and 55%Β-turn for LA-2. Inhibitors LA-1 and LA-2 consist of 28 and 29 amino acid residues, respectively. They lack threonine, alanine, valine, and tryptophan. Both inhibitors strongly inhibit trypsin by forming enzymeinhibitor complexes at a molar ratio of unity. A chemical modification study suggests the involvement of arginine of LA-1 and lysine of LA-2 in their reactive sites. The inhibitors are very similar in their amino acid sequences, and show sequence homology with other squash family inhibitors.  相似文献   

8.
The DNA-binding and photonuclease activity of newly synthesized tetra-azamacrocyclic ligand L (C32H32N8O4) and its complexes of type [MLCl2] and [ML]Cl2 (where M = Co(II), Fe(II) and Cu(II); L = N,N′-[3-(4-{5-[(2-amino-ethylamino)-methyl]-isoxazol-3yl}-phenyl)-isoxazol-5-yl methyl-ethane-1,2-diamine] are specified. An octahedral geometry has been proposed for Fe(II) and Co(II) complexes, while the Cu(II) complex has a square planar environment. The absorption spectral results indicate that the complexes bind with the base pairs of DNA, with an intrinsic binding constant Kb of Fe(II), Co(II), and Cu(II) complexes found to be 3.2 × 104 M?1, 5.3 × 104 M?1, and 4.2 × 104 M?1, respectively, in 5 mM Tris-HCl/50 mM NaCl buffer at pH 7.2. The large enhancement in the relative viscosity of DNA on binding to the complexes supports the proposed DNA binding modes. The viscosity and thermal denaturation studies sustain the effective intercalation with DNA. The DNA photocleavage studies demonstrated that compounds exhibit significant photonuclease activity by a concentration dependent on singlet oxygen mediated mechanism.  相似文献   

9.
A kinetic study of the oxidation of (hydroxyethyl)ferrocene (HEF) by [2-pyridylmethylbis(2-ethyl-thioethyl)ainine]copper(II) (Cu(pmas)2+) is reported, with the objective of documenting the influence of the two thioether sulfur ligands on the electron transfer rate. Both reactants exhibit a first-order dependence at pH 6, I = 0.1 M(NaNO3); k(25°C) = 1.3 × 104M−1sec−1, ΔH3 = 10.1 kcal/mole, ΔS3 = −6 eu. The apparent Cu(pmas)2+/+ self-exchange electron transfer rate constant calculated from this reaction on the basis of relative Marcus theory (4.7 × 101M−1 sec−1) agrees well with previous findings on ferrocytochrome c, Fe(CN)64−, and Ru(NH3)5py2+ oxidations. Spectrophotometric titrations of Cu(pmas)2+ and Cu(tmpa)2+ (tmpa = tris(2-pyridylmethyl)amine) with azide ion showed that both Cu(pmas)N3)+ (Kf1 = 3.1 × 103M−1) and Cu(pmas)(N3)2 (Kf2 = 3.5 × 101M−1) but Cu(tmpa)(N3)+ (Kf = 6.6 × 102M−1) are formed up to 0.15 M N3 (25°C, pH 6, I = 0.2 M), suggesting that a thioether sulfur atom is displaced in the uptake of a second N3 ion by Cu(pmas)(N3)+. The effect of thioether sulfur displacement by azide ion on the HEF-Cu(pmas)2+ reaction rate may be understood entirely through the tendency of N3 to shift the position of the redox equilibrium towards the reactant side, without invoking any special role for the sulfur ligand in promoting electron transfer reactivity.  相似文献   

10.
The stoichiometry and rate of oxidation with dioxygen of tetra-(p-sulfonatophenyl)-porphinatomanganese(II) and the bisimidazole tetra(p-sulfonatophenyl)porphinato-iron(II) were studied in aqueous solutions at neutral pH. The stoichiometry for both complexes was determined; two molecules of metalloporphyrin reacted with dioxygen to produce the +3 oxidation state of the metalloporphyrins and hydrogen peroxide. The rate law for the oxidation of Mn(II)-TPPS is rate = k′[Mn(II)-TPPS][O2], with k′ at 26.5° of 2.6 × 105 M?1 sec?1. The rate law for the oxidation of Fe(II)-TPPS in the presence of imidazole is
with k″ = 10,100 sec?1. Some possible mechanisms consistent with these data are discussed.  相似文献   

11.
Four complexes [Pd(L)(bipy)Cl]·4H2O (1), [Pd(L)(phen)Cl]·4H2O (2), [Pt(L)(bipy)Cl]·4H2O (3), and [Pt(L)(phen)Cl]·4H2O (4), where L = quinolinic acid, bipy = 2,2’-bipyridyl, and phen = 1,10-phenanthroline, have been synthesized and characterized using IR, 1H NMR, elemental analysis, and single-crystal X-ray diffractometry. The binding of the complexes to FS-DNA was investigated by electronic absorption titration and fluorescence spectroscopy. The results indicate that the complexes bind to FS-DNA in an intercalative mode and the intrinsic binding constants K of the title complexes with FS-DNA are about 3.5?×?104 M?1, 3.9?×?104 M?1, 6.1?×?104 M?1, and 1.4?×?105 M?1, respectively. Also, the four complexes bind to DNA with different binding affinities, in descending order: complex 4, complex 3, complex 2, complex 1. Gel electrophoresis assay demonstrated the ability of the Pt(II) complexes to cleave pBR322 plasmid DNA.  相似文献   

12.
The kinetics of methemoglobin reduction by Fe(EDTA)2? have been studied and found to follow a second order rate law with k = 29.0 M?1 s?1 [25°C, μ = 0.2 M, pH 7.0 (phosphate)], ΔH3 = 5.5 ± 0.7 kcal/mol, and ΔS2= ?33 ± 2 e.u.. The electrostatics-corrected self-exchange rate constant (k11corr) for hemoglobin based on the Fe(EDTA)2? cross-reaction is 2.79×10?3M?1 s?1. This rate constant is compared with others reported for a water-soluble iron porphyrin and calculated from published data for the reactions of myoglobin and hemoglobin with Fe(EDTA)2? and Fe(CDTA)2?/?. The k11corr values for these systems range over ten orders of magnitude with heme ? myoglobin > hemoglobin.  相似文献   

13.
The kinetics of the reduction by aniline and a series of substituted anilines of a peroxidatically active intermediate, formed by oxidation of deuteroferriheme with hydrogen peroxide, have been studied by stopped-flow spectrophotometry. The reaction with aniline was first order with respect to [intermediate] and showed first-order saturation kinetics with respect to [aniline]. The second-order rate constant was 2.0 ± 0.2 × 105 M?1 sec?1 at 25°C (independent of pH in the range 6.60–9.68) compared with the value of 2.4 × 105 M?1 sec?1 for the reaction of aniline with horseradish peroxidase Compound I. The effect of aniline substituents upon reactivity towards the heme intermediate closely paralled those reported for reaction with the enzymic intermediate. Anilines bearing electron-donating substituents reacted more rapidly and those bearing electron-withdrawing substituents more slowly than the unsubstituted amine. The rate constants for the heme intermediate reactions (kdfh)found to be related to those for the enzymic reactions (khrp) by the equation:log kDFH= 0.65log kHRP+ 1.96 with a correlation coefficient of 0. 98.  相似文献   

14.
Porphyrins are a chemical class that is widely used in drug design. Cationic porphyrins may bind to DNA guanine quadruplexes. We report the parameters of the binding of 5,10,15,20-tetrakis(N-carboxymethyl-4-pyridinium) porphyrin (P1) and 5,10,15,20-tetrakis(N-etoxycarbonylmethyl-4-pyridinium) porphyrin (P2) to antiparallel telomeric G-quadruplex formed by d(TTAGGG)4 sequence (TelQ). The binding constants (K i ) and the number of binding sites (N j ) were determined from absorption isotherms generated from the absorption spectra of complexes of P1 and P2 with TelQ. Compound P1 demonstrated a high affinity to TelQ (K i = (40 ± 6) × 106 M?1, N 1 = 1; K 2 = (5.4 ± 0.4) × 106 M?1, N 2 = 2). In contrast, the binding constants of P2-TelQ complexes (K 1 = (3.1 ± 0.2) × 106 M?1, N 1 = 1; K 2 = (1.2 ± 0.2) × 106 M?1, N 2 = 2) were one order of magnitude smaller than the corresponding values for P2-TelQ complexes. Measurements of the quantum yield and fluorescence lifetime of the drug’s TelQ complexes revealed two types of binding sites for P1 and P2 on the quadruplex oligonucleotide. We concluded that strong complexes can result from the interaction of the porphyrins with TTA loops whereas the weaker complexes are formed with G-quartets. The altered TelQ conformation detected by the circular dichroism spectra of P1-TelQ complexes can be explained by the disruption of the G-quartet. We conclude that peripheral carboxy groups contribute to the high affinity of P1 for the antiparallel telomeric G-quadruplex.  相似文献   

15.
Using a liquid chromatography method that separates the two sulfonium diastereoisomers of adenosylmethionine, we have found that immature soybeans, soybean callus culture, radish leaves, yeast and rat liver contain only the (S)-sulfonium form of S-adenosylmethionine. Our findings contradict the suggestion by Stolowitz and Minch that 10–20% of naturally-occurring adenosylmethionine may have the (R)-configuration at the sulfonium pole. Absence of the (R)-sulfonium isomer of adenosylmethionine in biological materials indicates that the (R)-sulfonium form of adenosylmethionine present in commercial adenosylmethionine samples is an artifact of the isolation procedure. Our method of measuring the isomers of adenosylmethionine enabled us to readily determine the rate of racemization and hydrolysis of adenosylmethionine. Our rate constants for racemization (Kr) and hydrolysis (Kh) were 2.4 × 10?6 sec?1 and 12.3 × 10-?6 sec?1, respectively; values which are noticeably different from those of Wu and co-workers which were obtained with a more complicated method (Kr = 8 × 10?1 sec?1; Kh = 6 × 10?6 sec?1). We believe the absence of the (R)-isomer in vivo is best explained by stabilization of the (S)-isomer as suggested by Wu et al. Although the tissues we have analysed contained the (S)-sulfonium form of adenosylmethionine exclusively, when ethionine-resistant soybean cell lines were given ethionine, they accumulated both sulfonium diastereoisomers of adenosylethionine.  相似文献   

16.
We have previously shown that methionine–heme iron coordination is perturbed in domain-swapped dimeric horse cytochrome c. To gain insight into the effect of methionine dissociation in dimeric cytochrome c, we investigated its interaction with cyanide ion. We found that the Soret and Q bands of oxidized dimeric cytochrome c at 406.5 and 529 nm redshift to 413 and 536 nm, respectively, on addition of 1 mM cyanide ion. The binding constant of dimeric cytochrome c and cyanide ion was obtained as 2.5 × 104 M?1. The Fe–CN and C–N stretching (ν Fe–CN and ν CN) resonance Raman bands of CN?-bound dimeric cytochrome c were observed at 443 and 2,126 cm?1, respectively. The ν Fe–CN frequency of dimeric cytochrome c was relatively low compared with that of other CN?-bound heme proteins, and a relatively strong coupling between the Fe–C–N bending and porphyrin vibrations was observed in the 350–450-cm?1 region. The low ν Fe–CN frequency suggests weaker binding of the cyanide ion to dimeric cytochrome c compared with other heme proteins possessing a distal heme cavity. Although the secondary structure of dimeric cytochrome c did not change on addition of cyanide ion according to circular dichroism measurements, the dimer dissociation rate at 45 °C increased from (8.9 ± 0.7) × 10?6 to (3.8 ± 0.2) × 10?5 s?1, with a decrease of about 2 °C in its dissociation temperature obtained with differential scanning calorimetry. The results show that diatomic ligands may bind to the heme iron of dimeric cytochrome c and affect its stability.  相似文献   

17.
The acid-catalyzed hydrolysis of heparin from Cu(II) complex was studied as a function of time and temperature. Four independent calculations showed that the hydrolysis, during the 5-hr period examined, obeys the first-order kinetic law. Specific rate constants, calculated at 50°C, 57°C, 65°C, 71°C, and 80°C, were 3.3 × 10?5 sec?1, 6.5 × 10?5 sec?1, 10.4 × 10?5 sec?1, 15.1 × 10?5 sec?1, and 26.6 × 10?5 sec?1, respectively. Arrhenius plots of the data yielded 14.7 kcal as the energy of activation. An independent run of the self-hydrolysis of heparin at 57°C also obeyed first-order kinetics and its specific rate constant of 6.4 × 10?5 sec?1 is in excellent agreement with that of the hydrolysis of Cu(II)-heparin at 57°C. The anticoagulant activity of heparin and of the Cu(II)-heparin are not appreciably different. Further, the inactivation of heparin closely parallels Cu(II) release from the Cu(II) complex which in turn parallels desulfation.  相似文献   

18.
The binding of the fluorescent analog of adenosine diphosphate (ADP)1, 1,N6-ethenoadenosine diphosphate (εADP) to myosin and its subfragments, heavy meromyosin (HMM) and subfragment one (S1), has been studied under analagous conditions to those previously used in comparable studies on the binding of ADP to these molecules. The results indicate that there are two binding sites for εADP on myosin and HMM, and one site on S1. The dissociation constants for all had an identical value, within experimental error, of 2.0 (± .5) × 10?5 M?1. This is identical to the values found by Young (J. Biol. Chem., 242, 2790 (1967)) for ADP. In addition, the kinetics of hydrolysis of εATP versus ATP by S1 were studied. Values of Vmax and Km were 25 μM phosphate sec?1 (gm protein)?1 and 5 × 10?5 M?1 for ATP, and 80 μN phosphate sec?1 (gm protein)?1 and 45 × 10?5 M?1 for εATP. The results indicate that the increased Vmax that occurs when εATP is used as a substitute for ATP is not due to either an increased binding affinity of ATP for myosin and its subfragments, nor due to a decreased binding affinity of εATP versus ADP. This in turn suggests that the increase in Vmax may be due to an increased hydrolytic rate of εATP vs ATP in the enzyme substrate complex.  相似文献   

19.
Maximum levels of binding of α-bungarotoxin to foetal human brain membranes were found to remain essentially constant at 30–50 fmol/mg protein (1.1–1.5 pmol/g wet weight in whole brain) between gestational ages of 10 and 24 weeks. Equilibrium binding of α-bungarotoxin to both membranes and to detergent extracts showed saturable specific binding to a single class of sites with Kd (app) values of 3.5 × 10?9 M and 2.4 × 10?9 M respectively. Association rate constants, determined from time courses of binding of α-bungarotoxin to membranes and detergent extracts, were 2.3 × 105 M?1 sec?1 and 2.6 × 105 M?1 sec?1 respectively. Dissociation of α-bungarotoxin from both membrane and detergent extracts showed a rapid initial rate with T12 approx 15 min which, in the case of the detergent extract, was followed by a slower dissociation accounting for the remaining 20% of the bound ligand. Competition studies with a number of cholinergic ligands indicated that the α-bungarotoxin-binding sites in foetal brain display a predominantly nicotinic profile.  相似文献   

20.
The complexation reactions of O-phospho-DL-serine with Ni(II) or Co(II) were studied at 25°C and ionic strength 0.2 M (KNO3) by temperature-jump. The observed rate constants for formation of the Ni2+ and Co+2 monocomplexes were (1.32 ± 0.09) × 105 and (1.73 ± 0.33) × 107 M?1 sec?1, respectively. Complexation is postulated to involve formation of a monocoordinated steady state intermediate followed by rate-determining chelate ring closure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号