首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
《Inorganica chimica acta》1986,123(4):181-187
The compounds [(CH3Hg)AAdH]NO3 (1) and [(CH3Hg)AAd]·4H2O (2) have been isolated from aqueous 1:1 solutions of CH3HgOH and 8-azaadenine (AAdH) at respective pH values of 2 and 5. Their structures have been established by X-ray structural analysis. N9 is the metal binding site in both complexes. Alteration of the metal to ligand ratio to 2:1 at a pH of 5 allows the preparation of [(CH3Hg)2AAd]NO3·H2O (3) in which the base is coordinated at both N3 and N9. The compound [(CH3Hg)3AAdH−1]NO3 (4), in which N1, N6 and N9 function as binding sites for the CH3Hg+ cation, is formed in a 3:1 solution at a pH of 6.5. X-ray structural analyses have been performed on 3 and 4. N8 takes part in weak intermolecular secondary bonds to symmetry related Hg9 atoms in all four complexes. The relevance of the structures to an understanding of the basicities of the nitrogen atoms in 8-azaadenine and their alteration upon metal coordination of N9 and N6 is discussed.  相似文献   

2.
The interaction of MeHg(II) with xanthosine (Xanth H2, 1) in aqueous medium has been found to lead to several methylmercurated complexes depending on the reactant stoichiometries and the pH. The N-bound complexes [(MeHg)(Xanth H)] (2), [(MeHg)2Xanth] (3), [(MeHg)3(Xanth)]NO3 (4), [(MeHg)(Xanth H2)]NO3 (5), and the N- and C-bound complex [(MeHg)4(Xanth)]NO3 (6) have thus been prepared. The complexes were characterized by means of 1H and 13C nuclear magnetic resonance and infrared as well as elemental analysis. Formation of the carbon-bound methylmercurated species 6 is in accord with our previous results obtained with inosine and imidazole derivatives, thus substantiating our proposal that activation through electrophilic coordination at N7 is a requirement for C8-H abstraction. Correlations are drawn between 2J(1H-119Hg) values and pKa as well as 13C chemical shifts.  相似文献   

3.
The ruthenium complexes [RuII(bbp)(L)(Cl)] (1), [RuII(bbp)(L)(H2O)] (2) and [RuII(bbp)(L)(DMSO)] (3) {bbp = 2,6-bis(benzimidazol-2-yl)pyridine, L = o-iminoquinone} have been synthesized in a stepwise manner starting from [RuIII(bbp)Cl3]. The single crystal X-ray structures, except for the complex 2, have been determined. All the complexes were characterized by UV-Vis, FT-IR, 1H NMR, Mass spectroscopic techniques and cyclic voltammetry. The RuIII/RuII couple for complexes 1, 2, and 3 appears at 0.63, 0.49, 0.55 V, respectively versus SCE. It is observed that complex 2, on refluxing in acetonitrile, results into [RuII(bbp)(L)(CH3CN)], 4 which has been prepared earlier in a different method. The structural, spectral and electrochemical properties of complexes 1, 2 and 3 were compared to those of earlier reported complex 4, [RuII(bbp)(L)(CH3CN)].  相似文献   

4.
The manganese complexes [MnII(Hbmimpm)2(NO3)](NO3) · Et2O (1), [MnIII(bmimpm)2(OAc)] · 2CH2Cl2(2), and [MnIII(bmiapm)2(OAc)] · MeOH · H2O · CH2Cl2(3) containing the new ligands Bis(1-methylimidazol-2-yl)-(4-methoxyphen-1-yl)methanol (Hbmimpm) and Bis[(1-methylimidazol-2-yl)](2-aminophenyl)methanol (Hbmiapm) were synthesized. They are good structural models for the reduced (1) and oxidized (2, 3) form of manganese superoxide dismutase. All complexes were characterized by spectroscopic methods and X-ray structure analysis. Compounds 1 and 2 crystallize in the monoclinic space group P21/c whereas complex 3 crystallizes in the monoclinic space group P21/n. The coordination sphere around the manganese cores is distorted octahedral with two corresponding tridentate ligands representing the protein ligands and one nitrate (1) or acetate (2, 3) ion occupying two cis positions. Similar to the enzyme the Mn(III) complex 2 reacts with sodium azide. The obtained microcrystalline azide adduct was characterized by UV-Vis and IR spectroscopy.  相似文献   

5.
The reactions of the carbonyl anion [PtCl3(CO)]- with SnCl2 in the presence of CO in both methylene chloride and acetone are reported. In the former solvent, only PtII-SnCl3 species are formed. These have been identified by 13C, 119Sn and 195Pt NMR measurements as cis-[PtCl2(SnCl3)(CO)]-, (I), trans- [PtCl(SnCl3)2(CO)]-, (II), and [Pt(SnCl3)4(CO)]2-, (III). Salts of these complexes have been isolated. In contrast, when acetone is the solvent, reduction of the platinum occurs to give two new complexes. On the basis of NMR measurements, we assign one of these as the PtI dimer [Pt2(SnCl3)4(CO)2]2-, (IV), and the other as a platinum triangle (VI) containing terminal CO ligands and two types of Sn ligand. The PtII compound (IV) can also be generated by treating a CH2Cl2 solution of trans-[PtCl(SnCl3)2- (CO)]-, (II), with dihydrogen. NMR spectroscopic data, including those from measurements on samples of the complexes containing 13C-enriched CO, are reported and discussed.  相似文献   

6.
A new mononuclear tetracyanometallic complex, (n-Bu4N)[(dbphen)Fe(CN)4] (1, dbphen = 5,6-dibromo-1,10-phenanthroline), has been prepared by reacting [(dbphen)FeII(py)2(SCN)2] and KCN in water and further oxidized with chlorine. With the use of 1 as building block, two trinuclear Fe2M complexes, [(dbphen)2Fe2(CN)8Cu(Me3tacn)]·3H2O (2), [(dbphen)2Fe2(CN)8Ni(dabhctd)]·2H2O (3) and a chain complex of squares [(dbphen)2Fe2(CN)8Co(MeOH)2]n (4), have been synthesized and structurally characterized. Magnetic studies show ferromagnetic coupling between FeIII and MII (M = Cu, 2; Ni, 3) ions bridged by cyanides in complexes 2 and 3, while complex 4 exhibits meta-magnetic behavior.  相似文献   

7.
Three complexes of composition [Co2IICo2III(H2hbhpd)2(H4hbhpd)2(H2O)2]Cl2(CH3OH)4 (1), [Co2IICo2III(H2hbhpd)2(H4hbhpd)2(H2O)2](NO3)2(CH3OH)4 (2) and [Ni2(H4hbhpd)2(NO3)](NO3)(CH3OH)1.5 (3) (H5hbhpd = 2-(2-hydroxy-benzylamino)-2-hydroxymethyl-propane-1,3-diol) have been synthesized and their structures have been characterized. Complexes 1 and 2 are mixed-valence cobalt clusters and display face-sharing monovacant dicubane structures. In the complexes 1 and 2, one of the three alkyl hydroxyl groups of H5hbhpd ligand is deprotonated instead of deprotonation of phenyl hydroxyl group; thus monoanionic H4hbhpd ligand displays novel η3, η1, η1, μ3 coordination mode. Complex 3 is binuclear, and the two metal centers of 3 are bridged by two deprotonated phenyl hydroxyl oxygen atoms and iso-orthogonalized by a nitrato group in η1η1-O,O′ coordination fashion. Variable-temperature solid-state dc magnetization studies have been performed in the temperature range 2-300 K for compounds 1 and 3. Antiferromagnetic interactions were determined for 1 and ferromagnetic couplings were found for 3.  相似文献   

8.
9.
The syntheses and crystal structures of two new hexanuclear complexes are reported: [{(LCuII(ONO2))(LCuII(H2O))NdIII}2(μ-C2O4)](NO3)2 · 6H2O (1) and [{(LNiII(H2O))(N(CN)2)}2PrIII}2(ONO2)](OH) · 2H2O · 3CH3CN (2) (L is the dianion of the Schiff-base resulted from the 2:1 condensation of 3-methoxysalyciladehyde with 1,3-propanediamine). Compounds 1 and 2 were obtained by connecting heterotrinuclear cationic complexes [{LMII}2LnIII]3+ with oxalato or nitrato linkers. The structure of the complex cation in 1 shows two almost linear trinuclear [Cu2Nd] moieties which are linked by a bis-chelating oxalato bridge between the neodymium ions. The hexanuclear cationic moiety in 2 is built up of two heterotrinuclear [Ni2Pr] units that are linked by a nitrato group bridging two praseodymium(III) ions. The spectroscopic (FTIR, UV-Vis) and magnetic properties of 1 and 2 have been investigated.  相似文献   

10.
11.
Electrospray (ESI) mass spectra analysis of acetonitrile solutions of a series of neutral chloro dimers, pincer type, and monomeric palladacycles has enabled the detection of several of their derived ionic species. The monometallic cationic complexes Pd[κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2]+ (1a) and [Pd[κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)]+ (1b) and the bimetallic cationic complex [κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2]Pd-Cl-Pd[κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2]+ (1c) were detected from an acetonitrile solution of the pincer palladacycles Pd[κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2](Cl) 1. For the dimeric compounds {Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](μ-Cl)}2 (2, Y=H and 3, CF3), highly electronically unsaturated palladacycles [Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2]+ (2d, 3d) and their mono and di-acetonitrile adducts, namely, [Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)]+ (2e, 3e) and [Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)2]+ (2f and 3f) were detected together with the bimetallic complex [Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2]-Cl-Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N](CH3)2]+ (2a, 3a) and its acetonitrile adducts [κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)Pd-Cl-Pd[ κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2]+ (2b, 3b) and [κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)Pd-Cl-Pd[κ1-C, κ1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2(CH3CN)]+ (2c, 3c). The dimeric palladacycle {Pd[κ1-C1-N-C(CH3O-2-C6H4)C(Cl)CH2N(CH3)2](μ-Cl)}2 (4) is unique as it behaves as a pincer type compound with the OCH3 substituent acting as an intramolecular coordinating group which prevents acetonitrile full coordination, thus forming the cationic complexes [(C6H4(o-CH3O)CC(Cl)CH2N(CH3)2OCN)Pd]+ (4b), [(C6H4(o-CH3O)CC(Cl)CH2N(CH3)2- κOCN)Pd(CH3CN)]+ (4c) and [(C6H4 (o-MeO)CC(Cl)CH2N(CH3)2O, κCN)Pd-Cl-Pd(C6H4(o-CH3O)CC(Cl)CH2N(CH3)2OCN)]+ (4a). ESI-MS spectra analysis of acetonitrile solutions of the monomeric palladacycles Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](Cl)(Py) (5, Y=H and 6, Y=CF3) allows the detection of some of the same species observed in the spectra of the dimeric palladacycles, i.e., monometallic cationic 2d-3d, 2e-3e and {Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](Py)}+ (5a, 6a) and {Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)(Py)}+ (5b, 6b) and the bimetallic 2a, 3a, 2b, 3b, 2c and 3c. In all cationic complexes detected by ESI-MS, the cyclometallated moiety was intact indicating the high stability of the four or six electron anionic chelate ligands. The anionic (chloride) or neutral (pyridine) ligands are, however, easily replaced by the acetonitrile solvent.  相似文献   

12.
Ray K  Lee SM  Que L 《Inorganica chimica acta》2008,361(4):1066-1069
The mechanism of formation of [FeIV(O)(N4Py)]2+ (2, N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) from the reaction of [FeII(N4Py)(CH3CN)]2+ (1) with m-chloroperbenzoic acid (mCPBA) in CH2Cl2 at −30 °C has been studied on the basis of the visible spectral changes observed and the reaction stoichiometry. It is shown that the conversion of 1 to 2 in 90% yield requires 1.5 equiv. peracid and takes place in two successive one-electron steps via an [FeIII(N4Py)OH]2+(3) intermediate. The first oxidation step uses 0.5 equiv. peracid and produces 0.5 equiv. 3-chlorobenzoic acid, while the second step uses 1 equiv. peracid and affords byproducts derived from chlorophenyl radical. We conclude that the FeII(N4Py) center promotes O-O bond heterolysis, while the FeIII(N4Py) center favors O-O bond homolysis, so the nature of O-O bond cleavage is dependent on the iron oxidation state.  相似文献   

13.
Neutral tris(trimethylsilylmethyl) complexes [Ln(CH2SiMe3)3(L)] (Ln = Sc (1), Lu (2)) and cationic bis(trimethylsilylmethyl) complexes [Ln(CH2SiMe3)2(L)(THF)]+[BPh4], (Ln = Sc (3), Lu (4)) that contain bis(2-methoxyethyl)(trimethylsilyl)amine (L = Me3SiN(CH2CH2OMe)2) as a neutral, tridentate ligand were synthesized and characterized by NMR spectroscopy. X-ray structural analysis was performed for the scandium complex 1 and exhibited a distorted octahedral coordination geometry with a facially arranged ligand at the neutral scandium center. NMR spectroscopy corroborated the coordination of the tertiary amine function of the ligand to the metal. Complexes 3 and 4 expand the still limited range of cationic rare-earth metal alkyl complexes with known neutral, multidentate ligands.  相似文献   

14.
Uranyl(VI) and thorium(IV) complexes of the type UO2(NO3)2(L1)2, UO2(NO3)2(L2)2, UO2(CH3COO)2L1, UO2(CH3COO)2L2, Th(NO3)4(L1)2 and Th(NO3)4(L2)2 (L1 = (2-nitro)phenyl-bis-phenyl phosphine oxide, L2 = triferrocenylphosphine oxide) are reported, together with their physico-chemical properties.The crystal structure of UO2(NO3)2(L1)2 is also reported. The crystals are monoclinic, space group P21/n with a = 17.78(1), b = 13.88(1), c = 17.37(1) Å, β = 114.8(1)° for Z = 4. The uranium atom is 8-coordinated, the uranyl(VI) group being equatorially surrounded by an irregular hexagon of six oxygen atoms from two trans neutral ligands and two nitrato groups.  相似文献   

15.
Three new trinuclear copper(II) complexes, [(CuL1)33-OH)](ClO4)2·3.75H2O (1), [(CuL2)33-OH)](ClO4)2(2) and [(CuL3)33-OH)](BF4)2·0.5CH3CN (3) have been synthesized from three tridentate Schiff bases HL1, HL2, and HL3 (HL1 = 2-[(2-amino-ethylimino)-methyl]-phenol, HL2 = 2-[(2-methylamino-ethylimino)-methyl]-phenol and HL3 = 2-[1-(2-dimethylamino-ethylimino)-ethyl]-phenol). The complexes are characterized by single-crystal X-ray diffraction analyses, IR, UV-vis and EPR spectroscopy, and variable-temperature magnetic measurements. All the compounds contain a partial cubane [Cu3O4] core consisting of the trinuclear unit [(CuL)33-OH)]2+ together with perchlorate or fluoroborate anions. In each of the complexes, the three copper atoms are five-coordinated with a distorted square-pyramidal geometry except in complex 1, in which one of the CuII ions of the trinuclear unit is six-coordinate being in addition weakly coordinated to one of the perchlorate anions. Variable-temperature magnetic measurements and EPR spectra indicate an antiferromagnetic exchange coupling between the CuII ions of complexes 1 and 2, while this turned out to be ferromagnetic for complex 3. Experimental values have been fitted according to an isotropic exchange Hamiltonian. Calculations based on Density Functional Theory have also been performed in order to estimate the exchange coupling constants in these three complexes. Both sets of values indicate similar trends and specially calculated J values establish a magneto-structural correlation between them and the Cu-O-Cu bond angle, in that the coupling is more ferromagnetic for smaller bond angle values.  相似文献   

16.
Mercury(II) bridge complexes of the type [Nuc-Hg-Nuc] (Nuc = thymidine or guanosine), and methylmercury(II) complexes of thymidine and guanosine of the type [CH3Hg(Nuc)], have been prepared under appropriate conditions of pH and reactant's stochiometry in acqueous soluton. The various complexes have been characterized by 1H and 13C NMR and used as probes, in competition and exchange studies, to establish the relative affinities of Hg(II) and CH3Hg(II) towards the nucleosides guanosine and thymidine. These studies have confirmed that Hg(II) and CH3Hg(II) bind to N3 of thymidine in preference to N1 of guanosine. The studies further show that reactions of mercury(II) with the nucleosides are thermodynamically controlled; the preperential binding reflects the relative stabilities of the respective complexes.  相似文献   

17.
Iron (II) and iron (III) complexes, [FeII(DEDTC)2(dppe)] · CH2Cl2 (1), [FeII(ETXANT)2(dppe)] (2) (DEDTC = diethyldithiocarbamate, ETXANT = ethyl xanthate, dppe = 1,2-bis (diphenylphosphino) ethane), and [FeIII(DEDTC)2(dppe)] [FeIIICl4] (3) have been synthesized and characterized. Since 3 contains two magnetic centers, an anion metathesis reaction has been conducted to replace the tetrahedral FeCl4 by a non-magnetic BPh4 ion producing [FeIII(DEDTC)2(dppe)]BPh4 (4) for the sake of unequivocal understanding of the magnetic behavior of the cation of 3. With the similar end in view, the well-known FeCl4 ion, the counter anion of 3, is trapped as PPh4[FeIIICl4] (5) and its magnetic property from 298 to 2 K has been studied. Besides the spectroscopic (IR, UV-Vis, NMR, EPR, Mass and XPS) characterization of the appropriate compounds, especially 2, others viz. 1, 3 and 4 have been structurally characterized by X-ray crystallography. While FeII complexes, 1 and 2, are diamagnetic, the FeIII systems, namely the cations of 3, and 4 behave as low-spin (S = 1/2) paramagnetic species from 298 to 50 K. Below 50 K 3 shows gradual increase of χMT up to 2 K suggesting ferromagnetic behavior while 4 exhibits gradual decrease of magnetic moment from 60 to 2 K, indicating the occurrence of weak antiferromagnetic interaction. These conclusions are supported by the Mössbauer studies of 3 and 4. The Mössbauer pattern of 1 exhibits a doublet site for diamagnetic (2-400 K) FeII. The compounds 1, 2 and 4 encompass interesting cyclic voltammetric responses involving FeII, FeIII and FeIV.  相似文献   

18.
A novel hexanuclear copper complex [Cu6(NO3)12(opytrizediam)2(H2O)][(CH3)2CO]0.5(CH3CH2CH2OH)0.5 (1) with a NO3 bridge has been synthesized by reaction of Cu(NO3)2 · 3H2O with the new potentially octadentate ligand opytrizediam in n-propanol/acetone solution (opytrizediam=N,N-{2,4-di[(di-pyridin-2-yl)amine]-1,3,5-triazine} ethylenediamine). A single-crystal X-ray diffraction analysis showed the presence of six structurally different copper centres. The coordination spheres of four copper(II) ions are best described as square-pyramidal CuN2O3 chromophores while the two other copper(II) ions are in a trigonal-bipyramidal CuN4O environment. Variable-temperature studies on 1 revealed a unique ferromagnetic coupling of two copper(II) ions bridged by a didentate nitrate anion and separated by a distance of 6.391(6) Å, with J=8.6(1) cm−1.  相似文献   

19.
Reaction of the imidazolidinyl phenolate-based ligand, H3L [(2-(2′-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine)] with Cu(ClO4)2·6H2O produces an aqua-bridged cationic reactant complex [Cu2(μ-H2O)(μ-L)][ClO4]·1.5H2O (1·1.5H2O). Solution phase interaction of 1·1.5H2O with SCN anions in 1:1 molar ratio leads to [Cu2(μ-L)(NCS)]·2H2O (2·2H2O) that does not possess anymore the reactive aqua bridge but instead a terminal SCN anion coordinated only to one CuII ion. Whereas in 1:2 molar ratio, partial extrusion of the CuII ions takes place to generate in situ [Cu(NCS)3(OH2)] anions. These complex anions then quantitatively replace anions in 1·1.5H2O via ‘anion metathesis’ and concurrently remove the aqua bridge by coordination of linear MeCN to one of the CuII ions to give [Cu2(μ-L)(CH3CN)][Cu(NCS)3(OH2)] (3). The literature unknown [Cu(NCS)3(OH2)] anion forms an intimate H-bonded assembly with the cationic part of 3 to yield a novel [Cu3] isosceles triangle. The precursor complex is known as antiferromagnetic whereas in 2·2H2O, the CuII (S = 1/2) ions in a dinuclear entity exhibit ferromagnetic interactions (J/kB = +15.0 K and g = 2.22) to yield an ST = 1 spin ground state in good agreement with the M versus H data below 8 K.  相似文献   

20.
The coordination chemistry of a flexible poly(triazolyl)alkane derivative, fluconazole (HFlu), with a series of transition metal ions and dicyanamide (dca) anionic co-ligand has been explored to afford six new metal-organic coordination polymers. Complexes [M(HFlu)2(dca)2]n (M = MnII for 1, FeII for 2, CoII for 3, ZnII for 5, and CdII for 6) have the isostructural 1-D double-chain array via bridging fluconazole, whereas [Cu3(Flu)2(dca)4(CH3OH)2]n (4) shows an unusual 2-D layered metal-organic framework with dimeric CuII subunits. Notably, both types of coordination patterns are extended into distinct 3-D supramolecular networks via hydrogen-bonding interactions. This result indicates that the choice of metal ion has a significant effect on these polymeric structures as well as the binding modes of the ligands, which is discussed in detail. The ZnII and CdII complexes 5 and 6 display similar fluorescent emissions at 260 nm in the solid state, which essentially are intraligand transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号