首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Spermatogenic cells isolated from adult and prepubertal mice by unit gravity sedimentation were used to examine enzyme activities and synthesis of the lactate dehydrogenase (LDH) isozymes during spermatogenesis. The synthesis and activity of LDH-C4, the germ cell-specific isozyme, was detected earliest in isolated preleptotene and leptotene/zygotene spermatocytes prior to the mid-pachytene stage of meiosis reported previously. The LDH-C4 isozyme was prominent in pachytene spermatocytes, round spermatids, and condensing spermatids, whereas spermatozoa contained only the LDH-C4 isozyme. In addition, somatic-type LDH isozymes consisting primarily of LDH-B subunits were present in germ cells throughout spermatogenesis. This is in contrast to a previous report that the LDH-B subunit was not synthesized in germ cells. Sertoli cells were further shown to exhibit comparable amounts of five tetrameric LDH isozymes formed by combination of muscle-type LDH-A and heart-type LDH-B subunits.  相似文献   

4.
It has been widely accepted that mammalian sperm acrosin is first synthesized only in the postmeiotic stages of spermatogenic cells. In this study, we carried out Northern blot analysis of RNAs prepared from purified populations of mouse spermatogenic cells. The acrosin mRNA was obviously found in meiotic pachytene spermatocytes, and the mRNA content markedly increased in postmeiotic round spermatids. Also, the acrosin mRNA in pachytene spermatocytes was functionally associated with polysomes. These results provide evidence that acrosin biosynthesis is already started in meiotic cells and continues through the early stages of spermiogenesis.  相似文献   

5.
Spermatogenic cells isolated from prepubertal and adult mice by unit gravity sedimentation have been used to examine proteins synthesized in a stage-specific manner throughout meiosis and early spermiogenesis. Preleptotene, leptotene/zygotene, and pachytene spermatocytes were isolated from 17-day-old mice. Adult pachytene spermatocytes and round spermatids were isolated from mature animals. These germ cells were then cultured in defined medium with [35S]methionine [( 35S]met) for 4-5 h. For each cell type, relative [35S]met incorporation was determined and labeled proteins were compared by two-dimensional (2D) polyacrylamide gel electrophoresis and autoradiography. Levels of [35S]met incorporation by isolated germ cells correlate closely with previous autoradiographic estimates of protein synthesis during spermatogenesis (Monesi, 1967). Pachytene spermatocytes from prepubertal mice incorporate the highest levels of [35S]met, when expressed either as cpm/-10(6) cells or cpm/mg protein. Comparisons of 2D autoradiograms indicated that many proteins, including actin and tubulins, are synthesized at approximately equal levels in all stages examined. Other proteins, including heat-shock proteins and multiple plasma membrane constituents, are synthesized in a stage-specific manner in leptotene/zygotene spermatocytes, pachytene spermatocytes, and round spermatids. These studies define conditions for monitoring protein synthesis in isolated spermatogenic cells prior to the pachytene stage of meiosis, provide a 2D map of proteins synthesized at these earlier meiotic stages, and examine the synthesis of several proteins previously identified on 2D gels with biochemical and immunological methods.  相似文献   

6.
A monoclonal antibody (13D3) has been developed that recognizes a 71 kilodalton (71 kDa) protein on two-dimensional immunoblots of proteins extracted from a mixture of mouse spermatogenic cells (mainly pachytene spermatocytes and spermatids). This protein was shown by immunoblotting and adenosine triphosphate (ATP)-binding characteristics to be identical to a 71 kDa mouse heat-shock cognate (hsc) protein, hsc71, present in 3T3 cells. Along with a 70 kDa heat-shock inducible protein (hsp70), and a 74 kDa heat-shock cognate protein (hsc74), hsc71 is a product of the mouse HSP70 multigene family. Although antibody 13D3 reacted strongly with hsc71, it reacted only faintly with hsp70 in 3T3 cells, and not at all with hsc74 or a germ cell-specific hsp70-like protein (P70) on immunoblots of mixed germ cells. Antibody 13D3 is unique among known antibodies in its pattern of reaction with these heat-shock proteins. In immunofluorescence studies on isolated germ cells, 13D3 reacted uniformly with the cytoplasm of pachytene spermatocytes, round spermatids, and residual bodies, but only with the midpiece of spermatozoa. Antibody 13D3 recognizes other proteins in addition to hsc71 on two-dimensional immunoblots of condensing spermatids and spermatozoa. Two of the proteins (70 kDa/pI 6.4 and 70 kDa/pI 6.5) were present in condensing spermatids and spermatozoa, and another protein (69 kDa/pI 7.0) was detected only in spermatozoa. The new proteins also were recognized by monoclonal antibody 7.10, which reacts specifically with hsp70, hsc71, hsc74, and P70. Although [35S]methionine was incorporated into the new proteins in condensing spermatids, hsc71, hsc74, and P70 were not labeled. These results suggest that unique heat-shock proteins are synthesized late in spermatogenesis.  相似文献   

7.
Thirty adult stallion testes were selected with high (n = 15) and low (n = 15) Daily Sperm Production (DSP)/testis. Parenchymal samples were prepared for morphometric analysis, and the numbers of germ cells and Sertoli cells were determined. Testicular samples were homogenized, and germ cells and Sertoli cells were enumerated using phase contrast microscopy. Numbers of germ cells and Sertoli cells and potential DSP during spermatogenesis were determined. Significant correlations existed between morphometric and homogenate determinations of number per testis of preleptotene, leptotene plus zygotene primary spermatocytes (r = 0.58; P < 0.001), pachytene plus diplotene primary spermatocytes (r = 0.67; P < 0.0001), all primary spermatocytes (r = 0.67; P < 0.0001), round spermatids (r = 0.72; P < 0.0001), and Sertoli cells (r = 0.70; P < 0.0001). Significant correlations (P < 0.0001) existed between morphometric and homogenate determination of DSP/testis based on preleptotene, leptotene plus zygotene primary spermatocytes (r = 0.78), pachytene plus diplotene primary spermatocytes (r = 0.88), and round spermatids (r = 0.85). Using morphometric determination as the standard, the sensitivity (i.e., ability to detect low DSP/testis) and specificity (i.e., ability to detect high DSP/testis) by homogenate enumeration of germ cells was 81 and 93% for round spermatids, 100 and 24% for pachytene plus diplotene primary spermatocytes, and 67 and 87% for preleptotene, leptotene plus zygotene primary spermatocytes, respectively. Enumeration of primary spermatocytes in homogenates was less accurate than enumeration of round or elongated spermatids. Enumeration of round and elongated spermatids in homogenates was a rapid and useful method for determining DSP in horses, and it may prove to be a useful technique for quantitating potential DSP from testicular biopsies.  相似文献   

8.
9.
The temporal expression of cell surface antigens during mammalian spermatogenesis has been investigated using isolated populations of mouse germ cells. Spermatogenic cells at advanced stages of differentiation, including pachytene primary spermatocytes, round spermatids, and residual bodies of Regaud and mature spermatozoa, contain common antigenic membrane components which are not detected before the pachytene stage of the first meiotic prophase. These surface constituents are not detected on isolated populations of primitive type A spermatogonia, type A spermatogonia, type B spermatogonia, preleptotene primary spermatocytes, or leptotene and zygotene primary spermatocytes. These results have been demonstrated by immunofluorescence microscopy, by complement-mediated cytotoxicity, and by quantitative measurements of immunoglobulin (Ig) receptors on the plasma membrane of all cell populations examined. The cell surface antigens detected on germ cells are not found on mouse thymocytes, erythrocytes, or peripheral blood lymphocytes as determined by immunofluorescence and by cytotoxicity assays. Furthermore, absorption of antisera with kidney and liver tissue does not reduce the reactivity of the antibody preparations with spermatogenic cells, indicating that these antigenic determinants are specific to germ cells. This represents the first direct evidence for the ordered temporal appearance of plasma membrane antigens specific to particular classes of mouse spermatogenic cells. It appears that at late meiotic prophase, coincident with the production of pachytene primary spermatocytes, a variety of new components are inserted into the surface membranes of developing germ cells. The further identification and biochemical characterization of these constituents should facilitate an understanding of mammalian spermatogenesis at the molecular level.  相似文献   

10.
Spermatogenesis is a highly ordered process which requires mitotic and meiotic divisions. In this work, we studied the relative changes in the levels of the two components of the M-phase promoting factor (MPF): the regulatory subunit cyclin B1 (CycB1) and its catalytic subunit cdk1, in spermatogenic cells of rats between 16 and 90 days of life. A multivariate flow cytometry analysis of forward scatter (FSC), side scatter (SSC) and DNA content was used to identify six populations of rat germ cells: spermatogonia with preleptotene spermatocytes, young pachytene spermatocytes, middle to late pachytene spermatocytes, secondary spermatocytes with doublets of round spermatids, round spermatids, and elongated spermatids. For any population studied no significant difference in the relative cellular content of CycB1 or cdk1 proteins between animals of different ages was observed. By contrast, CycB1 and cdk1 levels were different between the different populations of germ cells. CycB1 and cdk1 were rather high in young pachytene spermatocytes and culminated in late spermatocytes, i.e. just before the first meiotic division. The relative levels of the two proteins remained high in secondary spermatocytes then decreased in round spermatids at the exit of meiosis. Similar results were obtained by Western-blot analysis of total proteins obtained from lysates of elutriated fractions of spermatocytes and spermatids. MPF activity was assessed in lysates of germ cells from 32-day-old rats or adult animals using p13suc1 agarose and histone H1 as an exogenous substrate. H1 kinase activity was higher in pachytene spermatocytes than in round spermatid fractions from both adult and young rats. These results indicate that the meiotic G2/M transition is associated to high levels of CycB1 and cdk1 leading to high MPF activity irrespective of the age of the animals.  相似文献   

11.
A substrate cycle composed of phosphofructo 1-kinase I (PFK) and fructose 1,6 bisphosphatase I (FBPase) has been proposed in rat spermatids. This substrate cycle can explain the ability of glucose to induce a decrease in intracellular ATP, a phenomenon that was related to regulation of [Ca(2+)]i in these cells. In spite of the importance of this metabolic cycle, the expression and activities of the enzymes that compose such cycle have not been systematically studied in spermatogenic cells. Here, we show that PFK and FBPase activities were present in pachytene spermatocytes and round spermatids extracts. Expression of PFK at the mRNA and protein levels showed a relatively similar expression in spermatogenic cells, but a stronger expression in Sertoli cells. Instead, expression of FBPase at the mRNA and protein levels was stronger in round and elongating spermatids as compared to other spermatogenic cells. A similar pattern was observed when evidencing FBPase activity by a NADPH-nitroblue tetrazolium-linked cytochemical assay in isolated pachytene spermatocytes and round spermatids. Rat spermatids also showed the ability to convert lactate to fructose- and glucose-6-P, indicating that both glycolytic and gluconeogenic fluxes are present in these cells. Our results indicate that a coordinated expression of key substrate cycle enzymes, at the level of PFK/FBPase, appear in the last stages of spermatogenic cell differentiation, suggesting that the co-regulation of these enzymes are required for the ability of these cells to respond to glucose and induce metabolic and Ca(2+) signals that can be important for sperm development and function.  相似文献   

12.
Summry— The study of spermatogenic cell physiology has been hindered by the absence of unbiased methods of identification of cells upon which single cell techniques are being applied. In this work, we have used histochemical techniques, digital videoimaging, quantification of chromatin-bound DNA probes, and measurements of cell diameter to identify single spermatogenic cells at different periods of development. Our criteria of identification permit the definition of four developmental stages of spermatogenesis on which to perform single cell analyses: spermatogonia B/preleptotene spermatocytes, leptotene/zygotene spermatocytes, pachytene spermatocytes, and round spermatids. The use of voltage-sensitive dyes and Ca2+-sensitive dyes does not interfere with the estimations of DNA content. The estimations of DNA content of spermatogenic cells can be performed both with near-UV exciged dyes (H33342) and long wavelength-excited dyes (ethidium bromide), allowing the use of a wide range of physiological and immunocytochemical fluorescent probes to study the spermatogenic process.  相似文献   

13.
14.
 In order to isolate genes whose expression is up-regulated after the initiation of meiosis, we screened a cDNA expression library of newt testes with antiserum against homogenates of testes derived from the spermatogonial and spermatocyte stages. We report the isolation of spermatocyte-specific cDNA clones encoding a newt homologue of the calcium-dependent phospholipid-binding protein, annexin V. Northern blot analysis showed that newt annexin V mRNA was 1.7 kb in length and was expressed strongly in testes, but weakly in other organs. In situ hybridization revealed that the expression of newt annexin mRNA was barely observed in spermatogonia, but increased significantly in leptotene-zygotene primary spermatocytes and reached a maximum level in pachytene spermatocytes and round spermatids. The newt annexin V cDNA predicted a 323-amino acid protein and had a 68% homology to human annexin V. The predicted amino acid sequence contained a conserved 4-fold internal repeat of approximately 70 residues like other annexin proteins. Immunoblot analysis using the monoclonal antibody against newt annexin V showed that the protein was expressed scarcely in spermatogonia but was abundantly expressed in stages from primary spermatocytes to spermatids; this pattern was consistent to that of the mRNA. Immunohistochemical analysis revealed that newt annexin V was localized in the cytoplasm of the spermatogenic cells, but not in somatic cells such as Sertoli cells or pericystic cells. These results indicate that the expression of newt annexin V is up-regulated in the spermatogenic cells after the initiation of meiosis and suggest that newt annexin V plays an important role in spermatogenesis. Received: 8 December 1995 / Accepted: 12 February 1996 Edited by H. Shimada/D. Tautz  相似文献   

15.
16.
Cell surface antigens that appear in a defined temporal sequence during mouse spermatogenesis were previously detected serologically, but not identified biochemically, with four heterologous antibodies prepared against purified populations of pachytene spermatocytes (AP), round spermatids (ARS), vas deferens spermatozoa (AVDS), and mixed seminiferous cells (ASC) [Millette and Bellvé, J Cell Biol 74:86–97, 1977]. These antigens have now been identified immunochemically on nitrocellulose blots from SDS polyacrylamide gels. Three antisera (AP, ARS, and ASC) recognize a similar subset of determinants on one-dimensional immunoblots of germ cells and plasma membranes prepared from a mixed population of late spermatogenic cells. Comparisons of minor bands to reveal differences among these antisera. AVDS exhibits the least complex binding pattern. The results indicate that at least ten surface constituents appear during the pachytene stage of meiosis, coincident with a period of maximal RNA and protein synthesis [Monesi, Exp Cell Res 39:197–224, 1965]. Furthermore, two-dimensional immunoblot comparisons of plasma membranes isolated from pachytene spermatocytes and round spermatids reveal differences between surface determinants detectable at these two spermatogenic stages. For example, ASC recognizes two newly described proteins that are restricted to pachytene spermatocytes (? Mr 57,000, pI 6.45) and to round spermatids (? Mr 39,500, pI 4.85), respectively.  相似文献   

17.
In male germ cells the repair of DNA double strand breaks (DSBs) differs from that described for somatic cell lines. Irradiation induced immunofluorescent foci (IRIF's) signifying a double strand DNA breaks, were followed in spermatogenic cells up to 16 h after the insult. Foci were characterised for Mdc1, 53BP1 and Rad51 that always were expressed in conjecture with gamma-H2AX. Subsequent spermatogenic cell types were found to have different repair proteins. In early germ cells up to the start of meiotic prophase, i.e. in spermatogonia and preleptotene spermatocytes, 53BP1 and Rad51 are available but no Mdc1 is expressed in these cells before and after irradiation. The latter might explain the radiosensitivity of spermatogonia. Spermatocytes from shortly after premeiotic S-phase till pachytene in epithelial stage IV/V express Mdc1 and Rad51 but no 53BP1 which has no role in recombination involved repair during the early meiotic prophase. Mdc1 is required during this period as in Mdc1 deficient mice all spermatocytes enter apoptosis in epithelial stage IV when they should start mid-pachytene phase of the meiotic prophase. From stage IV mid pachytene spermatocytes to round spermatids, Mdc1 and 53BP1 are expressed while Rad51 is no longer expressed in the haploid round spermatids. Quantifying foci numbers of gamma-H2AX, Mdc1 and 53BP1 at various time points after irradiation revealed a 70% reduction after 16 h in pachytene and diplotene spermatocytes and round spermatids. Although the DSB repair efficiency is higher then in spermatogonia where only a 40% reduction was found, it still does not compare to somatic cell lines where a 70% reduction occurs in 2 h. Taken together, DNA DSBs repair proteins differ for the various types of spermatogenic cells, no germ cell type possessing the complete set. This likely leads to a compromised efficiency relative to somatic cell lines. From the evolutionary point of view it may be an advantage when germ cells die from DNA damage rather than risk the acquisition of transmittable errors made during the repair process.  相似文献   

18.
19.
Normal adult human testis has been separated using a combination of mechanical and enzymatic procedures to yield a suspension of viable single cells. The predominant cell types comprising this suspension are as follows: primary pachytene spermatocytes (7% of total cells), round spermatids (17%), residual bodies and condensing spermatids (31%), and Leydig cells (15%). Separated human germ cells viewed by Nomarski differential interference microscopy closely resemble mouse spermatogenic cells in relative size and appearance. Isolation of an enriched population of human pachytene spermatocytes has been achieved using unit gravity sedimentation (STA-PUT) according to protocols originally developed for murine tissue. Pachytene cells are enriched to 75% and are contaminated only with Leydig cells and binucleated spermatid symplasts. Ultrastructural examination of isolated human pachytene spermatocytes indicates that these cells, as well as isolated round spermatids, exhibit a normal in situ morphology. Spermatocytes, for example, show numerous synaptonemal complexes, nuclear pores, annulate lamellae, and dictyosome-like saccules. Round spermatids after isolation exhibit peripheral mitochondria, annulate lamellae, developing acrosomes, and other morphological features characteristic of early spermiogenesis. Therefore, enriched populations of human spermatogenic cells seem suitable for analysis using immunofluorescent, autoradiographic, or serological methods. In particular, isolated human spermatocytes should be useful for the analysis of molecular events involved in meiosis and should facilitate investigations concerning the pathophysiology of certain human infertility conditions.  相似文献   

20.
Culture conditions that support the in vitro development of many spermatogenic stages from the frog Xenopus laevis are described. Spermatogenic cells were dissociated with collagenase and preelongation stages aseptically isolated by density gradient centrifugation in Metrizamide. The cells were then cultured in modified forms of defined nutrient oocyte medium (DNOM). The development of spermatogenic cells was affected significantly by changes in fetal calf serum concentration, cell density, energy sources, and NaCl concentration. Optimum in vitro spermatid development was obtained when spermatogenic cells were cultured at relatively high densities (3–7 × l07 cells/25 cm2) in DNOM modified to contain 10% heat-inactivated, dialyzed fetal calf serum, 2 mM 1-glutamine, 0.1 % glucose, 15 mM HEPES buffer (pH 7.4), and 38.3–48.3 mM NaCl. These culture conditions also supported the differentiation of preelongation spermatids and spermatocytes isolated by density-gradient centrifugation in Metrizamide and subsequent unit gravity sedimentation in gradients of bovine serum albumin. Approximately 95 % of such isolated spermatids and spermatocytes continued differentiating in vitro for 14 days at in vivo rates. Phase-contrast and electron microscopy of the cultured cells demonstrated that in vitro differentiation was morphologically normal between the leptotene and elongate spermatid stages. Autoradiographic studies of preleptotene development demonstrated that spermatogonia proliferated and preleptotene spermatocytes developed to zygotene in 12-day cultures. The results suggest that many spermatogenic stages in Xenopus can develop independent of Sertoli cells, and demonstrate that spermatogenic cell cultures can now be used for in vitro studies of spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号