首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of female wasp reproductive gland secretions, host fat body and hemolymph, and mechanical constriction of the parasitoid egg on protein synthesis were studied in eggs of Microplitis croceipes (Braconidae) dissected from the wasp ovary. Protein synthesis was measured by 35S-methionine incorporation in eggs held in tissue culture medium for 16 h after treatment. Synthesis was stimulated in oocytes obtained from three regions of the ovary (egg tube, reservoir, and calyx) by fat body and venom gland but not by calyx fluid. A combination of fat body, venom gland, and calyx fluid did not enhance the level of synthesis relative to that of fat body or venom gland alone. Host hemolymph inhibited protein synthesis when incubated directly with the dissected eggs but not when the eggs were collected from an artificial oviposition substrate (AOS) containing hemolymph. The inhibitory effect of the hemolymph is thought to be due to the occurrence of melanization. Mechanical constriction did not alter the rate of synthesis, confirming an earlier report that synthesis in newly deposited eggs in ongoing and is not dependent on mechanical activation during the act of oviposition. Mechanisms responsible for sustaining protein synthesis in eggs for 16 h in vitro after their exposure to host hemolymph in the AOSs or fat body and venom gland are not known. Only a small percentage (less than 2%) of dissected ovarial reservoir oocytes that were mechanically constricted and exposed to the venom gland, calyx fluid, and host fat body hatched in vitro. In contrast, an earlier study demonstrated that 38% of eggs oviposited by female wasps into AOSs developed and hatched.  相似文献   

2.
Poliovirus has a single-stranded RNA genome of positive polarity that serves two essential functions at the start of the viral replication cycle in infected cells. First, it is translated to synthesize viral proteins and, second, it is copied by the viral polymerase to synthesize negative-strand RNA. We investigated these two reactions by using HeLa S10 in vitro translation-RNA replication reactions. Preinitiation RNA replication complexes were isolated from these reactions and then used to measure the sequential synthesis of negative- and positive-strand RNAs in the presence of different protein synthesis inhibitors. Puromycin was found to stimulate RNA replication overall. In contrast, RNA replication was inhibited by diphtheria toxin, cycloheximide, anisomycin, and ricin A chain. Dose-response experiments showed that precisely the same concentration of a specific drug was required to inhibit protein synthesis and to either stimulate or inhibit RNA replication. This suggested that the ability of these drugs to affect RNA replication was linked to their ability to alter the normal clearance of translating ribosomes from the input viral RNA. Consistent with this idea was the finding that the protein synthesis inhibitors had no measurable effect on positive-strand synthesis in normal RNA replication complexes. In marked contrast, negative-strand synthesis was stimulated by puromycin and was inhibited by cycloheximide. Puromycin causes polypeptide chain termination and induces the dissociation of polyribosomes from mRNA. Cycloheximide and other inhibitors of polypeptide chain elongation "freeze" ribosomes on mRNA and prevent the normal clearance of ribosomes from viral RNA templates. Therefore, it appears that the poliovirus polymerase was not able to dislodge translating ribosomes from viral RNA templates and mediate the switch from translation to negative-strand synthesis. Instead, the initiation of negative-strand synthesis appears to be coordinately regulated with the natural clearance of translating ribosomes to avoid the dilemma of ribosome-polymerase collisions.  相似文献   

3.
Teratocytes originate from the dissociation of the extraembryonic serosal membrane in some Braconidae and Scelionidae. Methods used to culture teratocytes in vitro are described and the yield of teratocyte secreted proteins (TSP) was measured. Although 90% are viable after 6 days, in vitro teratocytes reached only half the diameter (32&mgr;m) of the same age teratocytes obtained in vivo. Teratocytes cultured in vitro secrete as much as 0.7&mgr;g of protein per day per larval equivalent ( approximately 900 cells). Presence of parasitoid larvae enhanced teratocyte viability while periodic exchange of medium did not. However, medium exchange significantly increased the total amount of protein secreted. Size and viability were improved with the addition of 10% FBS to the Ex-cell 400 culture medium. Non-denaturing PAGE showed at least 15 proteins with molecular sizes estimated to be between 24 to 347kDa in medium containing teratocytes. An in vitro fat body assay was developed to measure the effect of TSP on protein synthesis and juvenile hormone esterase (JHE) activity. Crude TSP inhibited in vitro incorporation of [(35)S]-methionine into protein synthesized by the fat body. The amount of JHE released from in vitro fat body treated with crude TSP was significantly less than controls, most likely caused by the inhibition of general protein synthesis. The active fraction of TSP passed through a 30kDa molecular weight cutoff filter but was retained by a 3kDa filter. SDS-PAGE revealed four proteins with molecular weights between 8 and 20kDa not present in control medium incubated without teratocytes.  相似文献   

4.
Replication of plus-strand RNA viruses depends on host factors that are recruited into viral replicase complexes. Previous studies showed that eukaryotic translation elongation factor (eEF1A) is one of the resident host proteins in the highly purified tombusvirus replicase complex. Using a random library of eEF1A mutants, we identified one mutant that decreased and three mutants that increased Tomato bushy stunt virus (TBSV) replication in a yeast model host. Additional in vitro assays with whole cell extracts prepared from yeast strains expressing the eEF1A mutants demonstrated several functions for eEF1A in TBSV replication: facilitating the recruitment of the viral RNA template into the replicase complex; the assembly of the viral replicase complex; and enhancement of the minus-strand synthesis by promoting the initiation step. These roles for eEF1A are separate from its canonical role in host and viral protein translation, emphasizing critical functions for this abundant cellular protein during TBSV replication.  相似文献   

5.
Although host protein synthesis is preferentially inhibited, there is a steady decline in the ability of Chinese hamster ovary (CHO) cells infected with vesicular stomatitis virus (VSV) to synthesize both host and viral proteins. We previously reported finding an mRNA-ribonucleoprotein particle (mRNP) that contained all five VSV mRNAs and viral N protein exclusively. This particle apparently regulates translation by sequestering a majority of the VSV mRNA made late in infection and thus rendering it unavailable for protein synthesis. In the present investigation the mRNP was also shown to inhibit in vitro protein synthesis in rabbit reticulocyte and wheat germ lysates programmed with mRNA isolated from VSV-infected cells. The synthesis of eIF-2 X GTP X Met-tRNA (ternary) complex, the first step in initiation of protein synthesis, was markedly inhibited by the mRNP. The inhibition was partially reversed by addition of purified eIF-2 to the inhibited lysate or ternary complex formation reaction. These results indicate a dual role of the mRNP in regulating protein synthesis during infection. Nucleocapsid also inhibited in vitro protein synthesis, although this inhibition was not reversed by eIF-2. Nucleocapsid did not inhibit ternary complex formation in vitro. Consequently, nucleocapsid may also regulate in vivo protein synthesis, but by a mechanism different from the mRNP.  相似文献   

6.
Endoparasitoid wasps introduce venom into their host insects during the egg-laying stage. Venom proteins play various roles in the host physiology, development, immunity, and behavior manipulation and regulation. In this study, we identified a venom protein, MmRho1, a small guanine nucleotide-binding protein derived from ovary in the endoparasitoid wasp Microplitis mediator and found that knockdown of its expression by RNA interference caused down-regulation of vitellogenin and juvenile hormone, egg production, and cocoons formation in the female wasps. We demonstrated that MmRho1 entered the cotton bollworm's (host) hemocytes and suppressed cellular immune responses after parasitism using immunofluorescence staining. Furthermore, wasp MmRho1 interacted with the cotton bollworm's actin cytoskeleton rearrangement regulator diaphanous by yeast 2-hybrid and glutathione s-transferase pull-down. In conclusion, this study indicates that MmRho1 plays dual roles in wasp development and the suppression of the host insect cellular immune responses.  相似文献   

7.
Thrombospondins are thought to function as inhibitors of angiogenesis. However, the mechanism(s) of this activity is not well understood. In this study, we have used the yeast two-hybrid system to identify proteins that interact with the thrombospondins 1 (TSP1) and 2 (TSP2) properdin-like type 1 repeats (TSR). One of the proteins identified that interacted with both TSR was matrix metalloproteinase 2 (MMP2). The isolated MMP2 cDNA clone encoded amino acid residues 237-633, which include the fibronectin-like gelatin binding region flanking the catalytic center and the carboxyl hemopexin-like region. Further testing of this clone demonstrated that the TSR interacted with the NH(2)-terminal region of the MMP2 that contains the catalytic domain. The protein interaction observed in yeast was further demonstrated by immunoprecipitation and Western blotting using purified intact TSP1, TSP2, MMP2, and MMP9. Although MMP2 interacted with TSP1 and TSP2 via its gelatin-binding domain or a closely mapping site, neither TSP1 nor TSP2 was degraded by MMP2 in vitro. Tissue culture and in vitro assays demonstrated that the presence of purified TSR and intact TSP1 resulted in inhibition of MMP activity. The ability of TSP1 to inhibit MMP3-dependent activation of pro-MMP9 and thrombin-induced activation of pro-MMP2 suggests that the TSPs may inhibit MMP activity by preventing activation of the MMP2 and MMP9 zymogens.  相似文献   

8.
An antiviral protein (25 kD) isolated from leaves of Celosia cristata (CCP 25) was tested for depurination study on ribosomal RNA from yeast. Ribosomal RNA yielded 360 nucleotide base fragment after treatment with CCP 25 indicating that CCP 25 was a ribosome inactivating protein. CCP 25 also inhibited translation of brome mosaic virus (BMV) and pokeweed mosaic virus (PMV) RNAs in rabbit reticulocyte translation system. The radioactive assay showed that incorporation of [35S]-methionine was less in translation proteins of BMV nucleic acid when CCP 25 was added to translation system. This indicated that antiviral protein from Celosia cristata not only depurinated ribosomal RNA but also inhibited translation of viral RNA in vitro.  相似文献   

9.
Host factors are recruited into viral replicase complexes to aid replication of plus-strand RNA viruses. In this paper, we show that deletion of eukaryotic translation elongation factor 1Bgamma (eEF1Bγ) reduces Tomato bushy stunt virus (TBSV) replication in yeast host. Also, knock down of eEF1Bγ level in plant host decreases TBSV accumulation. eEF1Bγ binds to the viral RNA and is one of the resident host proteins in the tombusvirus replicase complex. Additional in vitro assays with whole cell extracts prepared from yeast strains lacking eEF1Bγ demonstrated its role in minus-strand synthesis by opening of the structured 3' end of the viral RNA and reducing the possibility of re-utilization of (+)-strand templates for repeated (-)-strand synthesis within the replicase. We also show that eEF1Bγ plays a synergistic role with eukaryotic translation elongation factor 1A in tombusvirus replication, possibly via stimulation of the proper positioning of the viral RNA-dependent RNA polymerase over the promoter region in the viral RNA template.These roles for translation factors during TBSV replication are separate from their canonical roles in host and viral protein translation.  相似文献   

10.
Polydnaviruses are obligate symbionts of some parasitic hymenopteran wasps responsible for modifying the physiology of their host lepidopteran larvae to benefit the endoparasite. Injection of Campoletis sonorensis ichnovirus (CsIV) into Heliothis virescens larvae alters larval growth, development and immunity but genes responsible for alterations of host physiology are not well described. Recent studies of polydnavirus genomes establish that these genomes encode families of related genes expressed in parasitized larvae. Here we evaluate five members of the CsIV cys-motif gene family for their ability to inhibit growth and development of lepidopteran larvae. To study the function of cys-motif proteins, recombinant proteins were produced from baculovirus expression vectors and injected or fed to H. virescens larvae in diet. rVHv1.1 was identified as the most potent protein tested causing a significant reduction in growth of H. virescens and Spodoptera exigua larvae. H. virescens larvae ingesting this protein also exhibited delayed development, reductions in pupation and increased mortality. Increased mortality was associated with chronic sub-lethal baculovirus infections. Taken together, these data indicate that the cys-motif proteins have pleiotropic effects on lepidopteran physiology affecting both development and immunity.  相似文献   

11.
12.
During virus assembly, the capsid proteins of RNA viruses bind to genomic RNA to form nucleocapsids. However, it is now evident that capsid proteins have additional functions that are unrelated to nucleocapsid formation. Specifically, their interactions with cellular proteins may influence signaling pathways or other events that affect virus replication. Here we report that the rubella virus (RV) capsid protein binds to poly(A)-binding protein (PABP), a host cell protein that enhances translational efficiency by circularizing mRNAs. Infection of cells with RV resulted in marked increases in the levels of PABP, much of which colocalized with capsid in the cytoplasm. Mapping studies revealed that capsid binds to the C-terminal half of PABP, which interestingly is the region that interacts with other translation regulators, including PABP-interacting protein 1 (Paip1) and Paip2. The addition of capsid to in vitro translation reaction mixtures inhibited protein synthesis in a dose-dependent manner; however, the capsid block was alleviated by excess PABP, indicating that inhibition of translation occurs through a stoichiometric mechanism. To our knowledge, this is the first report of a viral protein that inhibits protein translation by sequestration of PABP. We hypothesize that capsid-dependent inhibition of translation may facilitate the switch from viral translation to packaging RNA into nucleocapsids.  相似文献   

13.
The nonsegmented, negative-sense RNA genome of measles virus (MV) is encapsidated by the virus-encoded nucleocapsid protein (N). In this study, we searched for N-binding cellular proteins by using MV-N as bait and screening the human T-cell cDNA library by yeast two-hybrid assay and isolated the p40 subunit of eukaryotic initiation factor 3 (eIF3-p40) as a binding partner. The interaction between MV-N and eIF3-p40 in mammalian cells was confirmed by coimmunoprecipitation. Since eIF3-p40 is a translation initiation factor, we analyzed the potential inhibitory effect of MV-N on protein synthesis. Glutathione S-transferase (GST)-fused MV-N (GST-N) inhibited translation of reporter mRNAs in rabbit reticulocyte lysate translation system in a dose-dependent manner. Encephalomyocarditis virus internal ribosomal entry site-mediated translation, which requires canonical initiation factors to initiate translation, was also inhibited by GST-N. In contrast, a unique form of translation mediated by the intergenic region of Plautia stali intestine virus, which can assemble 80S ribosomes in the absence of canonical initiation factors, was scarcely affected by GST-N. In vivo expression of MV-N induced by the Cre/loxP switching system inhibited the synthesis of a transfected reporter protein, as well as overall protein synthesis. These results suggest that MV-N targets eIF3-p40 and may be involved in inhibiting MV-induced host translation.  相似文献   

14.
1. Phytohaemagglutinin stimulates the transformation into blast cells of human lymphocytes incubated in vitro. This transformation is accompanied by an increase in the incorporation of [(14)C]leucine into protein and [(3)H]uridine into RNA. 2. The incorporation of [(14)C]leucine by cultures grown in the presence or absence of phytohaemagglutinin is inhibited to the same extent by cycloheximide, a known inhibitor of protein synthesis. 3. Lymphocytes grown without phytohaemagglutin synthesize mainly non-ribosomal RNA. [(3)H]Uridine incorporation by these cells was increased by cycloheximide. 4. Lymphocytes incubated with phytohaemagglutinin begin to synthesize substantial quantities of ribosomal RNA. Under these conditions [(3)H]uridine incorporation was partially inhibited by cycloheximide. This inhibition is shown to be largely a result of inhibition of the synthesis of ribosomal RNA.  相似文献   

15.
Price BD  Roeder M  Ahlquist P 《Journal of virology》2000,74(24):11724-11733
Flock house virus (FHV), a positive-strand RNA animal virus, is the only higher eukaryotic virus shown to undergo complete replication in yeast, culminating in production of infectious virions. To facilitate studies of viral and host functions in FHV replication in Saccharomyces cerevisiae, yeast DNA plasmids were constructed to inducibly express wild-type FHV RNA1 in vivo. Subsequent translation of FHV replicase protein A initiated robust RNA1 replication, amplifying RNA1 to levels approaching those of rRNA, as in FHV-infected animal cells. The RNA1-derived subgenomic mRNA, RNA3, accumulated to even higher levels of >100,000 copies per yeast cell, compared to 10 copies or less per cell for 95% of yeast mRNAs. The time course of RNA1 replication and RNA3 synthesis in induced yeast paralleled that in yeast transfected with natural FHV virion RNA. As in animal cells, RNA1 replication and RNA3 synthesis depended on FHV RNA replicase protein A and 3'-terminal RNA1 sequences but not viral protein B2. Additional plasmids were engineered to inducibly express RNA1 derivatives with insertions of the green fluorescent protein (GFP) gene in subgenomic RNA3. These RNA1 derivatives were replicated, synthesized RNA3, and expressed GFP when provided FHV polymerase in either cis or trans, providing the first demonstration of reporter gene expression from FHV subgenomic RNA. Unexpectedly, fusing GFP to the protein A C terminus selectively inhibited production of positive- and negative-strand subgenomic RNA3 but not genomic RNA1 replication. Moreover, changing the first nucleotide of the subgenomic mRNA from G to T selectively inhibited production of positive-strand but not negative-strand RNA3, suggesting that synthesis of negative-strand subgenomic RNA3 may precede synthesis of positive-strand RNA3.  相似文献   

16.
Qualitative and quantitative changes in haemolymph proteins in Heliothis virescens were observed in larvae injected with either Microplitis croceipes teratocytes or teratocyte secreted proteins (TSP). Haemolymph protein titres in hosts receiving either 0.5 or 1 larval equivalent (LE) of teratocytes were similar to those of parasitized larvae, whereas a single injection of 4LE of TSP was required to induce a similar response. SDS-PAGE showed that the 82kDa monomer of riboflavin-binding protein and the 74/76kDa monomers of storage proteins were significantly reduced in parasitized larvae and in nonparasitized larvae treated with TSP. Concentrations of a 155kDa monomer (insectacyanin chromoprotein) also were reduced in parasitized larvae and those injected with either teratocytes or TSP. Two monomers (56 and 60kDa) were unique to parasitized larvae. Treated larvae required several days longer than controls to reach a comparable premetamorphic stage (burrowing-digging). Reductions in fat body proliferation similar to those seen in parasitized larvae were observed in larvae treated with either 1LE of teratocytes, or with 2 or 4LEs of TSP. Perivisceral fat body weights from larvae treated with either 0.25 or 0.5LE of teratocytes were significantly reduced, but less so than those which received 1LE. Thus, fat body proliferation in both teratocyte- and TSP-treated larvae was inhibited in a dose-dependent manner. Both light- and transmission electron microscopy observations revealed cytological differences in fat body tissues of larvae injected with either teratocytes or TSP from the condition observed in parasitized larvae and noninjected controls. Gross dissection of periviseral fat body from parasitized, teratocyte-injected and TSP-injected larvae showed tissue much less developed and differing considerably in appearance from controls. Observed differences included reduced size and/or number of lipid bodies and qualitative and quantitative changes in other cytoplasmic organelles.  相似文献   

17.
The thrombospondins (TSPs) are a family of extracellular glycoproteins that display distinct patterns of temporal and spatial expression during development. In this study, we investigated the expression of two of the TSPs–TPS1 and TSP2– during the course of differentiation of embryonal carcinoma cells in vitro. We report that both TSP1 and TSP2 mRNA and protein synthesis are induced during the differentiation of P19EC cells into neurons, glial cells, and fibroblasts. Immunofluorescence studies indicate that TSP1 displays a fibrillar pattern of staining, characteristic of an extracellular matrix protein, in differentiated P19EC cells. In contrast, TSP2 is cell-associated and is present on differentiated P19EC cells and on primary neurons and glial cells obtained from a 17-day embyronic mouse cerebral cortex. Interestingly, although both TSP1 and TSP2 are more prevalent in areas of differentiated cells, they display distinct patterns of deposition. These observations suggest that TSP1 and TSP2 may function differently during neurogenesis. The response of TSP1 and TSP2 to differentiation of P19EC cells indicates that this cell system will serve as a valuable model for the study of TSP expression and function during neurogenesis. © 1994 Wiley-Liss, Inc.  相似文献   

18.
Hepatitis C virus core protein binds to a DEAD box RNA helicase.   总被引:19,自引:0,他引:19  
Approximately 4 million Americans are infected with the hepatitis C virus (HCV), making it a major cause of chronic liver disease. Because of the lack of an efficient cell culture system, little is known about the interaction between HCV and host cells. We performed a yeast two-hybrid screen of a human liver cell cDNA library with HCV core protein as bait and isolated the DEAD box protein DBX. DBX has significant amino acid sequence identity to mouse PL10, an ATP-dependent RNA helicase. The binding of DBX to HCV core protein occurred in an in vitro binding assay in the presence of 1 M NaCl or detergent. When expressed in mammalian cells, HCV core protein and DBX were co-localized at the endoplasmic reticulum. In a mutant strain of Saccharomyces cerevisiae, DBX complemented the function of Ded1p, an essential DEAD box RNA helicase. HCV core protein inhibited the growth of DBX-complemented mutant yeast but not Ded1p-expressing yeast. HCV core protein also inhibited the in vitro translation of capped but not uncapped RNA. These findings demonstrate an interaction between HCV core protein and a host cell protein involved in RNA translation and suggest a mechanism by which HCV may inhibit host cell mRNA translation.  相似文献   

19.
Infection of mammalian cells by Sindbis virus (SINV) profoundly blocks cellular mRNA translation. Experimental evidence points to viral non‐structural proteins (nsPs), in particular nsP2, as the mediator of this inhibition. However, individual expression of nsP1, nsP2, nsP3 or nsP1‐4 does not block cellular protein synthesis in BHK cells. Trans‐complementation of a defective SINV replicon lacking most of the coding region for nsPs by the co‐expression of nsP1‐4 propitiates viral RNA replication at low levels, and inhibition of cellular translation is not observed. Exit of nuclear proteins including T‐cell intracellular antigen and polypyrimidine tract‐binding protein is clearly detected in SINV‐infected cells, but not upon the expression of nsPs, even when the defective replicon was complemented. Analysis of a SINV variant with a point mutation in nsP2, exhibiting defects in the shut‐off of host protein synthesis, indicates that both viral RNA replication and the release of nuclear proteins to the cytoplasm are greatly inhibited. Furthermore, nucleoside analogues that inhibit cellular and viral RNA synthesis impede the blockade of host mRNA translation, in addition to the release of nuclear proteins. Prevention of the shut‐off of host mRNA translation by nucleoside analogues is not due to the inhibition of eIF2α phosphorylation, as this prevention is also observed in PKR?/? mouse embryonic fibroblasts that do not phosphorylate eIF2α after SINV infection. Collectively, our observations are consistent with the concept that for the inhibition of cellular protein synthesis to occur, viral RNA replication must take place at control levels, leading to the release of nuclear proteins to the cytoplasm.  相似文献   

20.
Proteomic analyses in yeast have identified a large number of proteins that are associated with preribosomal particles. However, the product of the yeast ORF YJL010C, herein designated as Nop9, failed to be identified in any previous physical or genetic analysis of preribosomes. Here we report that Nop9 is a nucleolar protein, which is associated with 90S and 40S preribosomes. In cells depleted of Nop9p, early cleavages of the 35S pre-rRNA are inhibited, resulting in the nucleolar retention of accumulated precursors and a failure to synthesize 18S rRNA. Nop9 contains multiple pumilio-like putative RNA binding repeats and displays robust in vitro RNA binding activity. The identification of Nop9p as a novel, essential factor in the nuclear maturation of 90S and pre-40S ribosomal subunits shows that the complement of ribosome synthesis factors remains incomplete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号