首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Matrix metalloproteinases (MMP) play a pivotal role in the pathogenesis of cardiovascular diseases. Their expressions are altered in response to a variety of stimuli, including growth factors, inflammatory markers, and cytokines. In this study, we demonstrated that platelet-derived growth factor-BB (PDGF-BB) induces a dose- and time-dependent increase in MMP-2 expression in rat vascular smooth muscle cells (VSMC). Treatment with either the Rho-associated protein kinase (ROCK) inhibitor Y-27632 or suppression of ROCK-1/2 by small interfering RNA technology significantly reduced the MMP-2 expression, thus suggesting that ROCK regulates such expression. Similar results were observed when VSMC were pretreated with either U0126 or SB203580, which are selective inhibitors of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase, respectively, thus suggesting that these kinases are important for the induction of MMP-2 expression by PDGF-BB. In conclusion, these results described a novel mechanism in atherosclerosis through PDGF-BB signaling in VSMC, in which MMP-2 expression is induced via extracellular signal-regulated kinases and p38 mitogen-activated protein kinase phosphorylation, as well as ROCK.  相似文献   

3.
4.
Amelogenin (AMG) is a highly conserved protein secreted by ameloblasts. Some research indicates that AMG might induce the differentiation and maturation of odontoblasts. The aim of this study was to clarify the function of AMG during the differentiation of odontoblast-like MDPC-23 cells. The results revealed that the alkaline phosphatase activity and the number of mineralized nodules were significantly enhanced in AMG-overexpressing MDPC-23 cells during the mineralization process. Tissue-specific markers such as dentin matrix protein 1 and dentin sialophosphoprotein also elevated significantly, indicating the cell differentiation and maturation process. Furthermore, AMG could upregulate the phosphorylation levels of ERK1/2 and p38 MAPK. However, JNK, another MAPK pathway molecule, didn't change the activity at all. And the differentiation induced by AMG was abrogated when the MDPC-23 cells were treated with U0126 and SB203580, the inhibitors of ERK1/2 and p38, respectively. Taken together, our present results showed that AMG could promote the differentiation of odontoblast-like MDPC-23 cells via ERK1/2 and p38 MAPK pathways.  相似文献   

5.
6.
7.
Syndecan-1 and syndecan-4 are members of the syndecan family of transmembrane heparan sulfate proteoglycans. Vascular endothelial cells synthesize both species of proteoglycans and use them to regulate the blood coagulation-fibrinolytic system and their proliferation via their heparin-like activity and FGF-2 binding activity, respectively. However, little is known about the crosstalk between the expressions of the proteoglycan species. Previously, we reported that biglycan, a small leucine-rich dermatan sulfate proteoglycan, intensifies ALK5–Smad2/3 signaling by TGF-β1 and downregulates syndecan-4 expression in vascular endothelial cells. In the present study, we investigated the crosstalk between the expressions of syndecan-1 and other proteoglycan species (syndecan-4, perlecan, glypican-1, and biglycan) in bovine aortic endothelial cells in a culture system. These data suggested that syndecan-1 downregulated syndecan-4 expression by suppressing the endogenous FGF-2-dependent ERK1/2 pathway and FGF-2-independent p38 MAPK pathway in the cells. Moreover, this crosstalk was a one-way communication from syndecan-1 to syndecan-4, suggesting that syndecan-4 compensated for the reduced activity in the regulation of vascular endothelial cell functions caused by the decreased expression of syndecan-1 under certain conditions.  相似文献   

8.
9.
We previously reported that excretory/secretory products from plerocercoids of Spirometra erinaceieuropaei suppress gene expression and production of tumour necrosis factor-alpha in murine macrophages stimulated with lipopolysaccharide. The present study investigated the suppressive mechanisms of tumour necrosis factor-alpha mRNA by excretory/secretory products in lipopolysaccharide-stimulated murine macrophages. Electrophoretic mobility shift assay and supershift assay revealed that neither nuclear translocation of nuclear factor-kappa B nor conformation of the p50/p65 nuclear factor-kappa B subunits was affected by the treatment of excretory/secretory products in lipopolysaccharide-stimulated macrophages. Inhibition of extracellular signal-regulated protein kinase 1/2 with PD98059 or p38 mitogen-activated protein kinase with SB203580 partially reduced tumour necrosis factor-alpha mRNA expression, and a combination of the two inhibitors additionally suppressed the level of tumour necrosis factor-alpha mRNA, revealing that both pathways are crucial for full induction of the gene. Northern blot analysis showed that excretory/secretory products additionally suppressed tumour necrosis factor-alpha mRNA expression in cells treated with PD98059 or SB208530 and, in turn, we found that excretory/secretory products reduced phosphorylation of extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinase in lipopolysaccharide-stimulated macrophages by Western blot analysis. This is the first report demonstrating that excretory/secretory products from parasites suppress tumour necrosis factor-alpha mRNA expression by reducing phosphorylation of extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinase without any effect on nuclear factor-kappa B activity in macrophages stimulated with lipopolysaccharide. We hypothesise that excretory/secretory products may enable this parasite to survive within the host.  相似文献   

10.
Whereas the p38 MAP kinase has largely been associated with anti-proliferative functions, several observations have indicated that it may also have positive effects on proliferation. In hepatocytes, we have found that p38 has opposing effects on DNA synthesis when activated by EGF and HGF. Here we have studied the function of p38 in EGF- and HGF-induced DNA synthesis in the two pancreatic carcinoma cell lines AsPC-1 and Panc-1. In Panc-1 cells, the MEK inhibitor PD98059 reduced EGF- and HGF-induced DNA synthesis, while the p38 inhibitor SB203580 strongly increased the basal DNA synthesis and reduced expression of the cyclin-dependent kinase inhibitor (CDKI) p21. In contrast, in AsPC-1 cells, EGF- and HGF-induced DNA synthesis was not significantly reduced by PD98059 but was inhibited by SB203580. Treatment with SB203580 amplified the sustained ERK phosphorylation induced by these growth factors and caused a marked upregulation of the expression of p21, which could be blocked by PD98059. These results suggest that while DNA synthesis in Panc-1 cells is enhanced by ERK and strongly suppressed by p38, in AsPC-1 cells, p38 exerts a pro-mitogenic effect through MEK/ERK-dependent downregulation of p21. Thus, p38 may have suppressive or stimulatory effects on proliferation depending on the cell type, due to differential cross-talk between the p38 and MEK/ERK pathways.  相似文献   

11.
Protein kinase CK2 (formerly termed "casein kinase II") is a ubiquitously in mammalian cells distributed Ser/Thr kinase, with global role in cell regulation. Although, the involvement of CK2 in cell signalling is vast-investigated, virtually nothing is known about its contribution to signal control of keratinocytes differentiation. Here we show that, in autocrine differentiating keratinocytes, inhibition of the CK2 activity induced by 4,5,6,7-tetrabromobenzotriazole (TBB) causes reciprocal changes in the activities of major signal transduction regulators of keratinocytes differentiation, i.e. ERK1/2 and p38 MAPK, without affecting their protein levels. The ERK1/2 activity is strongly suppressed, while the activity of p38 is increased. We have also found that the activity of upstream and specific for p38 MAPK kinase MEK3/6 is also stimulated by TBB. These original results clearly demonstrate the participation of CK2 in the signal transduction pathway controlling MEK3/6, p38 MAPK, and ERK1/2 in the used model system.  相似文献   

12.
The yeast gene COQ5 is differentially regulated by Mig1p,Rtg3p and Hap2p   总被引:8,自引:0,他引:8  
In vivo electroporation (EP) is gaining momentum for drug and gene delivery. In particular, DNA transfer by EP to muscle tissue can lead to highly efficient long-term gene expression. We characterized a vascular effect of in vivo EP and its consequences for drug and gene delivery. Pulses of 10-20,000 micros and 0.1-1.6 kV/cm were applied over hind- and forelimb of mice and perfusion was examined by dye injection. The role of a sympathetically mediated vasoconstrictory reflex was investigated by pretreatment with reserpine. Expression of a transferred gene (luciferase), permeabilization (determined using (51)Cr-EDTA), membrane resealing and effects on perfusion were compared to assess the significance of the vascular effects. Above the permeabilization threshold, a sympathetically mediated Raynaud-like phenomenon with perfusion delays of 1-2 min was observed. Resolution of this phase followed kinetics of membrane resealing. Above a second threshold, irreversible permeabilization led to long perfusion delays. These vascular reactions (1) affect kinetics of drug delivery, (2) predict efficient DNA transfer, which is optimal during short perfusion delays, and (3) might explain electrocardiographic ST segment depressions after defibrillation as being caused by vascular effects of EP of cardiac muscle.  相似文献   

13.
14.
15.
The CIITA is a master regulator for MHC class II expression, but the signaling events that control CIITA expression remain poorly understood. In this study, we report that both constitutive and IFN-gamma-inducible expression of CIITA in mouse bone marrow-derived dendritic cells (DC) and macrophages, respectively, are regulated by MAPK signals. In DC, the inhibitory effect of LPS on CIITA expression was prevented by MyD88 deficiency or pharmacological MAPK inhibitors specific for MEK (U0126) and p38 (SB203580), but not JNK (SP600125). In macrophages, LPS inhibited IFN-gamma-inducible CIITA and MHC class II expression without affecting expression of IFN regulatory factor-1 and MHC class I. Blocking ERK and p38 by MAPK inhibitors not only rescued LPS-mediated inhibition, but also augmented IFN-gamma induction of CIITA. Moreover, the induction of CIITA by IFN-gamma was enhanced by overexpressing MAPK phosphatase-1 that inactivates MAPK. Conversely, CIITA expression was attenuated in the absence of MAPK phosphatase-1. The down-regulation of CIITA gene expression by ERK and p38 was at least partly due to decreased histone acetylation of the CIITA promoter. Our study indicates that both MAPK and phosphatase play an important role for CIITA regulation in DC and macrophages.  相似文献   

16.
17.
18.
19.
The human cardiovascular system has adapted to function optimally in Earth''s 1G gravity, and microgravity conditions cause myocardial abnormalities, including atrophy and dysfunction. However, the underlying mechanisms linking microgravity and cardiac anomalies are incompletely understood. In this study, we investigated whether and how calpain activation promotes myocardial abnormalities under simulated microgravity conditions. Simulated microgravity was induced by tail suspension in mice with cardiomyocyte-specific deletion of Capns1, which disrupts activity and stability of calpain-1 and calpain-2, and their WT littermates. Tail suspension time-dependently reduced cardiomyocyte size, heart weight, and myocardial function in WT mice, and these changes were accompanied by calpain activation, NADPH oxidase activation, and oxidative stress in heart tissues. The effects of tail suspension were attenuated by deletion of Capns1. Notably, the protective effects of Capns1 deletion were associated with the prevention of phosphorylation of Ser-345 on p47phox and attenuation of ERK1/2 and p38 activation in hearts of tail-suspended mice. Using a rotary cell culture system, we simulated microgravity in cultured neonatal mouse cardiomyocytes and observed decreased total protein/DNA ratio and induced calpain activation, phosphorylation of Ser-345 on p47phox, and activation of ERK1/2 and p38, all of which were prevented by calpain inhibitor-III. Furthermore, inhibition of ERK1/2 or p38 attenuated phosphorylation of Ser-345 on p47phox in cardiomyocytes under simulated microgravity. This study demonstrates for the first time that calpain promotes NADPH oxidase activation and myocardial abnormalities under microgravity by facilitating p47phox phosphorylation via ERK1/2 and p38 pathways. Thus, calpain inhibition may be an effective therapeutic approach to reduce microgravity-induced myocardial abnormalities.  相似文献   

20.
In the present study, we investigated the relationship between ornithine decarboxylase, MAP kinase, and MMP-2 expression in vitro. Overexpression of ornithine decarboxylase cDNA induced MMP-2 expression both at mRNA and protein levels. Promoter analysis and gel shift assay showed that p53 and Ets-1 were involved in MMP-2 expression in ornithine decarboxylase overexpressing transfectants. Erk and p38 MAP kinase were significantly activated. Using specific inhibitors of MEK and p38, we clarified that MMP-2 expression was induced via both Erk and p38 MAP kinase signaling pathways. This is the first report showing the existence of a causal relationship between ornithine decarboxylase expression, Erk and p38 MAP kinase activation, and MMP-2 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号