首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
3.
4.
Wu X  Tu X  Joeng KS  Hilton MJ  Williams DA  Long F 《Cell》2008,133(2):340-353
Canonical Wnt signaling critically regulates cell fate and proliferation in development and disease. Nuclear localization of beta-catenin is indispensable for canonical Wnt signaling; however, the mechanisms governing beta-catenin nuclear localization are not well understood. Here we demonstrate that nuclear accumulation of beta-catenin in response to Wnt requires Rac1 activation. The role of Rac1 depends on phosphorylation of beta-catenin at Ser191 and Ser605, which is mediated by JNK2 kinase. Mutations of these residues significantly affect Wnt-induced beta-catenin nuclear accumulation. Genetic ablation of Rac1 in the mouse embryonic limb bud ectoderm disrupts canonical Wnt signaling and phenocopies deletion of beta-catenin in causing severe truncations of the limb. Finally, Rac1 interacts genetically with beta-catenin and Dkk1 in controlling limb outgrowth. Together these results uncover Rac1 activation and subsequent beta-catenin phosphorylation as a hitherto uncharacterized mechanism controlling canonical Wnt signaling and may provide additional targets for therapeutic intervention of this important pathway.  相似文献   

5.
Data indicate that estrogen-dependent and -independent pathways are involved in the teratogenic/carcinogenic syndrome that follows developmental exposure to 17beta-estradiol or diethylstilbestrol (DES), a synthetic estrogen. However, the exact role and extent to which each pathway contributes to the resulting pathology remain unknown. We employed the alphaERKO mouse, which lacks estrogen receptor-alpha (ERalpha), to discern the role of ERalpha and estrogen signaling in mediating the effects of neonatal DES exposure. The alphaERKO provides the potential to expose DES actions mediated by the second known ER, ERbeta, and those that are ER-independent. Wild-type and alphaERKO females were treated with vehicle or DES (2 microg/pup/day for Days 1-5) and terminated after 5 days and 2, 4, 8, 12, and 20 months for biochemical and histomorphological analyses. Assays for uterine expression of the genes Hoxa10, Hoxa11, and Wnt7a shortly after treatment indicated significant decreases in DES-treated wild-type but no effect in the alphaERKO. In contrast, the DES effect on uterine expression of Wnt4 and Wnt5a was preserved in both genotypes, suggesting a developmental role for ERbeta. Adult alphaERKO mice exhibited complete resistance to the chronic effects of neonatal DES exposure exhibited in treated wild-type animals, including atrophy, decreased weight, smooth muscle disorganization, and epithelial squamous metaplasia in the uterus; proliferative lesions of the oviduct; and persistent vaginal cornification. Therefore, the lack of DES effects on gene expression and tissue differentiation in the alphaERKO provides unequivocal evidence of an obligatory role for ERalpha in mediating the detrimental actions of neonatal DES exposure in the murine reproductive tract.  相似文献   

6.
7.
8.
In most cases, advanced stages of melanoma are practically incurable due to high metastatic potential of tumor cells. Multiple observations support the idea that aberrations in Wnt signaling pathway play a significant role in melanoma development and progression. Canonical Wnt signaling activation results in stabilization and accumulation of the major effector molecule called beta-catenin. Mutations promoting beta-catenin stabilization and, thereby, activation of canonical Wnt signaling pathway are frequently found in different cancers, but rarely observed in melanomas. Nevertheless, beta-catenin nuclear and cytoplasmic accumulation is the feature of many human melanoma cell lines and original tumors. That is why, the aim of the investigation was to elucidate the relation between beta-catenin intracellular localization and activity status of Wnt signaling pathway in human melanoma cell lines. Ten human melanoma cell lines were characterized on the basis of the following parameters: canonical Wnt ligand expression, intracellular beta-catenin localization, and activity status of canonical Wnt signaling pathway. Here, it has been demonstrated that nuclear localization of beta-catenin does not always correspond to active status canonical Wnt signaling pathway. Moreover, in the majority of cell lines with nuclear beta-catenin canonical Wnt signaling can't be activated by exogenous expression of an appropriate ligand. Human melanoma cell lines differ in activity of canonical Wnt signaling pathway as well as in mechanisms of its regulation. Therefore, the pathway-targeted potential antineoplastic therapy requires the formation of a "molecular pattern of cancer" for localization of the defect in Wnt signaling cascade in the each case.  相似文献   

9.
Precise cell fate decisions during differentiation of uterine tissues from the embryonic Müllerian duct are critical for normal fertility. Wnt-7a, a member of the Wnt family of secreted signaling molecules that can signal through a canonical beta-catenin pathway, is necessary for the correct differentiation of both anterior/posterior and radial axes of the uterus. In order to investigate the role of beta-catenin directly in mouse uterine development, we have generated mice that are deficient in beta-catenin expression in the embryonic Müllerian duct. We have found that conditional deletion of beta-catenin in the Müllerian duct mesenchyme before postnatal differentiation of the uterine layers results in a phenotype that is distinct from the phenotype observed by deletion of Wnt-7a. Shortly after birth, the uteri of the conditional mutants appear smaller and less organized. The uteri of adult conditional beta-catenin mutants are grossly deficient in smooth muscle of the myometrium, which has been replaced by adipose, a phenotype resembling human lipoleiomyoma. We also show that the adipocytes in the uteri of mice conditionally deleted for beta-catenin are derived from Müllerian inhibiting substance type II receptor-expressing cells suggesting that they share a common origin with the uterine smooth muscle cells. These results describe the first molecular evidence linking disruption of beta-catenin expression in mesenchymal cells with a switch from myogenesis to adipogenesis in vivo.  相似文献   

10.
11.
In Xenopus, an asymmetric distribution of Wnt activity that follows cortical rotation in the fertilized egg leads to the dorsal-ventral (DV) axis establishment. However, how a clear DV polarity develops from the initial difference in Wnt activity still remains elusive. We report here that the Teashirt-class Zn-finger factor XTsh3 plays an essential role in dorsal determination by enhancing canonical Wnt signaling. Knockdown of the XTsh3 function causes ventralization in the Xenopus embryo. Both in vivo and in vitro studies show that XTsh3 substantially enhances Wnt signaling activity in a beta-catenin-dependent manner. XTsh3 cooperatively promotes the formation of a secondary axis on the ventral side when combined with weak Wnt activity, whereas XTsh3 alone has little axis-inducing ability. Furthermore, Wnt1 requires XTsh3 for its dorsalizing activity in vivo. Immunostaining and protein analyses indicate that XTsh3 is a nuclear protein that physically associates with beta-catenin and efficiently increases the level of beta-catenin in the nucleus. We discuss the role of XTsh3 as an essential amplifying factor of canonical Wnt signaling in embryonic dorsal determination.  相似文献   

12.
13.
14.
During vertebrate embryogenesis, secreted Wnt molecules regulate cell fates by signaling through the canonical pathway mediated by beta-catenin, and regulate planar cell polarity (PCP) and convergent extension movements through alternative pathways. The phosphoprotein Dishevelled (Dsh/Dvl) is a Wnt signal transducer thought to function in all Wnt signaling pathways. A recently identified member of the Formin family, Daam (Dishevelled--associated activator of morphogenesis), regulates the morphogenetic movements of vertebrate gastrulation in a Wnt-dependent manner through direct interactions with Dsh/Dvl and RhoA. We describe two mouse Daam cDNAs, mDaam1 and mDaam2, which encode proteins characterized by highly conserved formin homology domains and which are expressed in complementary patterns during mouse development. Cross-species comparisons indicate that the expression domains of Xenopus Daam1 (XDaam1) mirror mDaam1 expression. Our results demonstrate that Daams are expressed in tissues known to require Wnts and are consistent with Daams being effectors of Wnt signaling during vertebrate development.  相似文献   

15.

Background  

Wnt signaling is mediated through 1) the beta-catenin dependent canonical pathway and, 2) the beta-catenin independent pathways. Multiple receptors, including Fzds, Lrps, Ror2 and Ryk, are involved in Wnt signaling. Ror2 is a single-span transmembrane receptor-tyrosine kinase (RTK). The functions of Ror2 in mediating the non-canonical Wnt signaling have been well established. The role of Ror2 in canonical Wnt signaling is not fully understood.  相似文献   

16.
Wnt signaling controls a wide range of developmental processes and its aberrant regulation can lead to disease. To better understand the regulation of this pathway, we identified zebrafish homologues of Naked Cuticle (Nkd), Nkd1 and Nkd2, which have previously been shown to inhibit canonical Wnt/beta-catenin signaling. Zebrafish nkd1 expression increases substantially after the mid-blastula transition in a pattern mirroring that of activated canonical Wnt/beta-catenin signaling, being expressed in both the ventrolateral blastoderm margin and also in the axial mesendoderm. In contrast, zebrafish nkd2 is maternally and ubiquitously expressed. Overexpression of Nkd1 or Nkd2a suppressed canonical Wnt/beta-catenin signaling at multiple stages of early zebrafish development and also exacerbated the cyclopia and axial mesendoderm convergence and extension (C&E) defect in the non-canonical Wnt/PCP mutant silberblick (slb/wnt11). Thus, Nkds are sufficient to antagonize both canonical and non-canonical Wnt signaling. Reducing Nkd function using antisense morpholino oligonucleotides resulted in increased expression of canonical Wnt/beta-catenin target genes. Finally, reducing Nkd1 function in slb mutants suppressed the axial mesendoderm C&E defect. These data indicate that zebrafish Nkd1 and Nkd2 function to limit both canonical and non-canonical Wnt signaling.  相似文献   

17.
18.
19.
Wnt glycoproteins play essential roles in the development of metazoan organisms. Many Wnt proteins, such as Wnt1, activate the well-conserved canonical Wnt signaling pathway, which results in accumulation of beta-catenin in the cytosol and nucleus. Other Wnts, such as Wnt5a, activate signaling mechanisms which do not involve beta-catenin and are less well characterized. Dishevelled (Dvl) is a key component of Wnt/beta-catenin signaling and becomes phosphorylated upon activation of this pathway. In addition to Wnt1, we show that several Wnt proteins, including Wnt5a, trigger phosphorylation of mammalian Dvl proteins and that this occurs within 20 to 30 min. Unlike the effects of Wnt1, phosphorylation of Dvl in response to Wnt5a is not concomitant with beta-catenin stabilization, indicating that Dvl phosphorylation is not sufficient to activate canonical Wnt/beta-catenin signaling. Moreover, neither Dickkopf1, which inhibits Wnt/beta-catenin signaling by binding the Wnt coreceptors LRP5 and -6, nor dominant-negative LRP5/6 constructs could block Wnt-mediated Dvl phosphorylation. We conclude that Wnt-induced phosphorylation of Dvl is independent of LRP5/6 receptors and that canonical Wnts can elicit both LRP-dependent (to beta-catenin) and LRP-independent (to Dvl) signals. Our data also present Dvl phosphorylation as a general biochemical assay for Wnt protein function, including those Wnts that do not activate the Wnt/beta-catenin pathway.  相似文献   

20.
Nuclear translocation of beta-catenin is a hallmark of Wnt signaling and is associated with various cancers. In addition to the canonical Wnt pathway activated by Wnt ligands, growth factors such as epidermal growth factor (EGF) also induce beta-catenin dissociation from the adherens junction complex, translocation into the nucleus, and activation of target genes such as c-myc. Here we report that EGF-induced beta-catenin nuclear localization and activation of c-myc are dependent on the deacetylase HDAC6. We show that EGF induces HDAC6 translocation to the caveolae membrane and association with beta-catenin. HDAC6 deacetylates beta-catenin at lysine 49, a site frequently mutated in anaplastic thyroid cancer, and inhibits beta-catenin phosphorylation at serine 45. HDAC6 inactivation blocks EGF-induced beta-catenin nuclear localization and decreases c-Myc expression, leading to inhibition of tumor cell proliferation. These results suggest that EGF-induced nuclear localization of beta-catenin is regulated by HDAC6-dependent deacetylation and provide a new mechanism by which HDAC inhibitors prevent tumor growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号