首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5beta-Cholestane-3alpha, 7alpha, 25-triol and 5beta-cholestane-3alpha, 7alpha, 25-24(14-C)-triol were synthesized from 3alpha, 7alpha-dihydroxy-5beta-cholanoic acid (chenodeoxycholic acid). Chenodeoxycholic acid was converted to the diformoxy derivative (II) using formic acid. Reaction of II with thionyl chloride yielded the acid chloride which was treated with diazomethane (CH-2-N-2 or 14-CH-2-N-2) to produce 3alpha, 7alpha-diformoxy-24-oxo-25-diazo-25-homocholane (III, A or B). 25-Homochenodeoxycholic acid (IV, A or B) was formed from III by means of the Wolff rearrangement of the Arndt-Eistert synthesis. The methyl ester of V (A or B) was treated with methyl magnesium iodidi in ether to provide the desired triol, VI (A and B). The triol was identified by mass spectrometry and elemental analysis and was characterized by thin-layer and gas-liquid chromatography. The 3alpha, 7alpha, 25-triol is of possible significance as an intermediate in the pathway of bile acid formation from cholesterol.  相似文献   

2.
B Dayal  G S Tint  G Salen 《Steroids》1979,34(5):581-588
A convenient procedure for the synthesis of 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,23-tetrol (23R and 23S) and 24-nor-5 beta-cholestane-3 alpha,7 alpha,12alpha,26-tetrol (25R and 25S) starting from 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol was developed. Dehydration of 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha, 25-tetrol with glacial acetic acid and acetic anhydride yielded a mixture of 24-nor-5 beta-cholest-23-ene-3 alpha,7 alpha,12 alpha-triol and the corresponding delta 25 compound. Hydroboration and oxidation of the mixture of unsaturated nor-triols resulted in the formation of 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,23-tetrols (23R and 23S) and 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,26-tetrols (25R and 25S). In addition, smaller amounts of 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,22 xi-tetrol and 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol were also obtained. The C26 bile alcohols epimeric at C-23 and C-25 were resolved by analytical and preparative TLC and characterized by gas-liquid chromatography and mass spectrometry. Provisional assignment of the configurations of the C-23 and C-25 hydroxyl groups were made on the basis of molecular rotation differences. These C26 alcohols will be used to test the stereospecificity of the hepatic enzymes that promote oxidation of the cholesterol side chain.  相似文献   

3.
Studies of the stereochemistry of the intermediates, 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholest-24-en-26-oic acid and 3 alpha,7 alpha,12 alpha,24-tetrahydroxy-5 beta-cholestan-26-oic acid, in the biosynthetic sequence between 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestan-26-oic acid and cholic acid have been undertaken. (25R)- or (25S)-3 alpha,7 alpha, 12 alpha-Trihydroxy-5 beta-cholestan-26-oic acid was incubated with rat liver homogenates. The reaction products were converted to p-bromophenacyl ester derivatives and the esters were analyzed by high-performance liquid chromatography. By comparison with authentic samples of two (24E)- and (24Z)-isomers of the alpha, beta-unsaturated acid and of four isomers at C-24 and C-25 of the beta-hydroxy acid, (24E)-3 alpha,7 alpha, 12 alpha-trihydroxy-5 beta-cholestan-26-oic acid and (24R,25S)-3 alpha,7 alpha,12 alpha,24-tetrahydroxy-5 beta-cholestan-26-oic acid were found to be formed from either (25R)- or (25S)-3 alpha,7 alpha, 12 alpha-trihydroxy-5 beta-cholestan-26-oic acid. No formation of the (24Z)-isomer of the trihydroxycholestenoic acid or the other three isomers of the tetrahydroxycholestanoic acid was detected. The findings are discussed in relation to the assumed pathway for side chain cleavage in cholic acid biosynthesis.  相似文献   

4.
The southern Japan's soft coral, Sarcophyton glaucum, was found to contain several polyhydroxylates steroids. One of the minor components was isolated and its structure was established as 24 xi-methylcholestane-1 beta, 3 beta, 5 alpha, 6 beta, 25-pentol 25-monoacetate from spectral evidence and from comparison with a reference compound, 5 alpha-spirostan-1 beta, 3 beta, 5 alpha, 6 beta-tetrol, which was synthesized from ruscogenin. A mixture of 1 beta, 3 beta, 5 alpha, 6 beta-tetra hydroxy C27- and C28-sterols was also isolated.  相似文献   

5.
J M Moldowan  W L Tan  C Djerassi 《Steroids》1975,26(1):107-128
24xi--Methylcholestane-3beta, 5alpha, 6beta, 12beta, 25-pentol 25-monoacetate has been isolated from an Alyconarian and its structure was established in part through extensive high resolution mass spectral and nmr studies and partly through the nonidentity of one of its degradation products with 24xi-methylcholestane-3beta, 5alpha, 6beta, 12alpha-tetrol synthesized from deoxycholic acid.  相似文献   

6.
5beta-[G-3H]Cholestane-3alpha, 7alpha, 24xi, 25-tetrol (IV) was synthesized via dehydration and peroxidation of 5beta-[G-3H]cholestane-3alpha, 7alpha, 25-triol. Following perfusion of the labeled compound in the isolated rabbit liver, the bile alcohol and bile acid metabolites secreted into the bile were identified by a combination of thin layer chromatography, gas-liquid chromatography, and gas-liquid chromatography/mass spectrometry. The following bile alcohols were tentatively identified: 5beta-cholest-23-ene-3alpha, 7alpha, 25-triol, 5beta-cholest-25-ene-3alpha, 7alpha, 12alpha, 24xi-tetrol, and 5beta-cholestane-3alpha, 7alpha, 12alpha, 24xi, 25-pentol. The amount of administered tetrol recovered unchanged ranged from 1 to 88%. Cholic acid was the major product, but limited amounts of chemodeoxycholic acid were also formed. The 24-hydroxyl group in the steroid side chain did not prevent 12alpha-hydroxylation.  相似文献   

7.
This paper describes studies dealing with the nature of the C27 pentahydroxy bile alcohols present in the bile and feces of two patients with cerebrotendinous xanthomatosis (CTX). The presence of a bile alcohol having the structure 5beta-cholestane-3alpha,7alpha,12alpha,24alpha,25-pentol was confirmed by separation of the two 24-hydroxy epimers of 5beta-cholestane-3alpha,7alpha,12alpha,24,25-pentol and characterization of the dpimers by gas-liquid chromatography and infrared and mass spectrometry. Tentative assignment of the 24alpha and 24beta configuration was made on the basis of molecular rotation differences. A second major bile alcohol excreted by the CTX subjects was 5beta-cholestane-3alpha,7alpha,12alpha,23xi,25-pentol. Its structure was determined by infrared spectrometry, proton magnetic resonance spectrometry, and mass spectrometry because a reference compound was not available.  相似文献   

8.
Three new in vivo metabolites of 1 alpha,25-dihydroxyvitamin D3 were isolated from the serum of dogs given large doses (two doses of 1.5 mg/dog) of 1 alpha,25-dihydroxyvitamin D3. The metabolites were isolated and purified by methanol-chloroform extraction and a series of chromatographic procedures. By cochromatography on a high-performance liquid chromatograph, ultraviolet absorption spectrophotometry, mass spectrometry, Fourier-transform infrared spectrophotometry, and specific chemical reactions, the metabolites were identified as 1 alpha,25-dihydroxy-24- oxovitamin D3, 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, and 1 alpha,24(S),25-trihydroxyvitamin D3. According to these procedures, the total amounts of the isolated metabolites were as follows: 1 alpha,25-dihydroxyvitamin D3, 23.6 micrograms; 1 alpha,25-dihydroxy-24- oxovitamin D3, 1.8 micrograms; 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, 9.2 micrograms; 1 alpha,24(R),25-trihydroxyvitamin D3, 15.4 micrograms; 1 alpha,24(S),25-trihydroxyvitamin D3, 1.0 microgram. With recovery corrections, the serum levels of each metabolite were approximately 49 ng/mL for 1 alpha,25-dihydroxyvitamin D3, 3.7 ng/mL for 1 alpha,25-dihydroxy-24- oxovitamin D3, 19 ng/mL for 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, 32 ng/mL for 1 alpha,24(R),25-trihydroxyvitamin D3, and 2.1 ng/mL for 1 alpha,24(S),25-trihydroxyvitamin D3.  相似文献   

9.
The synthesis of four stereoisomers at C-24 and C-25 of 3 alpha,7 alpha,12 alpha,24-tetrahydroxy-5 beta-cholestan-26-oic acid is described. Pyridium chlorochromate oxidation of 3 alpha,7 alpha,12 alpha-triacetoxy-5 beta-cholan-24-ol (II) prepared from cholic acid (I) afforded 3 alpha,7 alpha,12 alpha-triacetoxy-5 beta-cholan-24-al (III) which was converted to a mixture of the four stereoisomers (IV-VII) by a Reformatsky reaction with ethyl DL-alpha-bromopropionate followed by alkaline hydrolysis. Separation of these isomers (IV-VII) was achieved by silica gel column chromatography, and subsequent reversed-phase partition column chromatography. The configurations at C-24 were elucidated by conversion of each isomer into (24R)- or (24S)-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24-tetrol (XII or XI) by Kolbe electric coupling, the C-24 configurations of which were determined by modified Horeau's method and 13C-nuclear magnetic resonance spectroscopy. The stereochemistries at C-25 were deduced by comparison of IV-VII with the products of the hydroboration followed by oxidation with alkaline hydrogen peroxide of (24E)-3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholest-24-en-26-oic acid (XIII).  相似文献   

10.
Described herein are the stereoselective syntheses of the (24R, 24S) and (25R, 25S) isomers of 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25-pentols and 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25,26-pentols by using a modified osmium-catalyzed Sharpless asymmetric dihydroxylation process. Also presented herein are the results of lanthanide-induced CD Cotton effect measurements and 1H- and 13C-nuclear magnetic resonance studies of (24R, 24S) and (25R, 25S)-5 beta-cholestanepentols and their derivatives. These compounds were required to study the biosynthesis of cholic acid from cholesterol.  相似文献   

11.
The metabolism of 1alpha,25(OH)(2)D(3) (1alpha,3beta) and its A-ring diastereomers, 1beta,25(OH)(2)D(3) (1beta,3beta), 1alpha,25(OH)(2)-3-epi-D(3) (1alpha,3alpha), and 1beta,25(OH)(2)-3-epi-D(3) (1beta,3alpha), was examined to compare the substrate specificity and reaction specificity of CYP24A1 between humans and rats. The ratio between C-23 and C-24 oxidation pathways in human CYP24A1-dependent metabolism of (1alpha,3alpha) and (1beta,3alpha) was 1:1, although the ratio for (1alpha,3beta) and (1beta,3beta) was 1:4. These results indicate that the orientation of the hydroxyl group at the C-3 position determines the ratio between C-23 and C-24 oxidation pathways. A remarkable increase of metabolites in the C-23 oxidation pathway was also observed in rat CYP24A1-dependent metabolism. The binding affinity of human CYP24A1 for A-ring diastereomers was (1alpha,3beta)>(1alpha,3alpha)>(1beta,3beta)>(1beta,3alpha), indicating that both hydroxyl groups at C-1 and C-3 positions significantly affect substrate-binding. The information obtained in this study is quite useful for understanding substrate recognition of CYP24A1 and designing new vitamin D analogs.  相似文献   

12.
The binding of vitamin D3 analogues to the chick intestinal cytosol receptor was studied. In intestinal cytosol fraction, receptor proteins having the sedimentation constant of 2.5 S and 3.7 S to which 1 alpha,25-dihydroxyvitamin D3 binds were present, and the latter was specific for the compound. The binding of 1 alpha,24(R)-dihydroxyvitamin D3 and 1 alpha,24(S)-dihydroxyvitamin D3 to the receptor was also observed, while very weak binding was seen in the case of 24(R)25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3. The binding affinity of 1 alpha,24(R)-dihydroxyvitamin D3 to the 3.7 S receptor was 1.3 times as high as that of 1 alpha,25-dihydroxyvitamin D3, whereas those of 1 alpha,24(S)-dihydroxyvitamin D3, 1 alpha-hydroxyvitamin D3 and 25-hydroxyvitamin D3 were 10, 304 and 652 times lower than 1 alpha,25-dihydroxyvitamin D3, respectively. The dissociation constant of the receptor-1 alpha,25-dihydroxyvitamin D3 complex at 0 degrees C was 3.0 x 10(-11) M, and the dissociation constants were calculated to be 2.4 x 10(-11) M and 2.7 x 10(-10) M for the complexes with 1 alpha,24(R)-dihydroxyvitamin D3 and 1 alpha,24(S)-dihydroxyvitamin D3, respectively.  相似文献   

13.
This paper describes the chemical synthesis of 3 alpha,7 alpha,12 alpha,25-tetrahydroxy-5 beta-cholestan-24-one via selective oxidation of 5 beta-cholestane-3 alpha,7 alpha,12 alpha, 24 xi,25-pentol with silver carbonate on celite. The structure of this 24-keto bile alcohol was confirmed by gas-liquid chromatography and mass spectrometry. Synthesis of this compound via pyridinium chlorochromate oxidation of the triacetoxy derivative of 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24 xi,25-pentol followed by saponification further established its structure. 3 alpha,7 alpha,12 alpha,25-Tetrahydroxy-5 beta-cholestan-24-one was required for the in vivo and in vitro studies of side-chain oxidation and cleavage in the 25-hydroxylation pathway of cholic acid biosynthesis.  相似文献   

14.
Recently, 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) has been shown to catalyze not only hydroxylation at C-24 but also hydroxylations at C-23 and C-26 of the secosteroid hormone 1alpha, 25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). It remains to be determined whether CYP24A1 has the ability to hydroxylate vitamin D3 compounds at C-25. 1alpha,24(R)-dihydroxyvitamin D3 (1alpha,24(R)(OH)2D3) is a non-25-hydroxylated synthetic vitamin D3 analog that is presently being used as an antipsoriatic drug. In the present study, we investigated the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes in order to examine the ability of CYP24A1 to hydroxylate 1alpha,24(R)(OH)2D3 at C-25. The results indicated that keratinocytes metabolize 1alpha,24(R)(OH)2D3 into several previously known both 25-hydroxylated and non-25-hydroxylated metabolites along with two new metabolites, namely 1alpha,23,24(OH)3D3 and 1alpha,24(OH)2-23-oxo-D3. Production of the metabolites including the 25-hydroxylated ones was detectable only when CYP24A1 activity was induced in keratinocytes 1alpha,25(OH)2D3. This finding provided indirect evidence to indicate that CYP24A1 catalyzes C-25 hydroxylation of 1alpha,24(R)(OH)2D3. The final proof for this finding was obtained through our metabolism studies using highly purified recombinant rat CYP24A1 in a reconstituted system. Incubation of this system with 1alpha,24(R)(OH)2D3 resulted in the production of both 25-hydroxylated and non-25-hydroxylated metabolites. Thus, in our present study, we identified CYP24A1 as the main enzyme responsible for the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes, and provided unequivocal evidence to indicate that the multicatalytic enzyme CYP24A1 has the ability to hydroxylate 1alpha,24(R)(OH)2D3 at C-25.  相似文献   

15.
While current dogma argues that vitamin D prodrugs require side-chain activation by liver enzymes, recent data suggest that hydroxylation may also occur extrahepatically. We used keratinocytes and recombinant human enzyme to test if the 25-hydroxyvitamin D-24-hydroxylase (CYP24A1) is capable of target cell activation and inactivation of a model prodrug, 1alpha-hydroxyvitamin D2 (1alpha(OH)D2) in vitro. Mammalian cells stably transfected with CYP24A1 (V79-CYP24A1) converted 1alpha(OH)D2 to a series of metabolites similar to those observed in murine keratinocytes and the human cell line HPK1A-ras, confirming the central role of CYP24A1 in metabolism. Products of 1alpha(OH)D2 included the active metabolites 1alpha,24-dihydroxyvitamin D2 (1alpha,24(OH)2D2) and 1alpha,25-dihydroxyvitamin D2 (1alpha,25(OH)2D2); the formation of both indicating the existence of distinct activation pathways. A novel water-soluble metabolite, identified as 26-carboxy-1alpha,24(OH)2D2, was the presumed terminal degradation product of 1alpha(OH)D2 synthesized by CYP24A1 via successive 24-hydroxylation, 26-hydroxylation and further oxidation at C-26. This acid was absent in keratinocytes from Cyp24a1 null mice. Slower clearance rates of 1alpha(OH)D2 and 1alpha,24(OH)2D2 relative to 1alpha,25(OH)2D2 and 1alpha,25(OH)2D3 were noted, arguing for a role of 24-hydroxylated metabolites in the altered biological activity profile of 1alpha(OH)D2. Our findings suggest that CYP24A1 can activate and inactivate vitamin D prodrugs in skin and other target cells in vitro, offering the potential for treatment of hyperproliferative disorders such as psoriasis by topical administration of these prodrugs.  相似文献   

16.
Three protein fractions of the cytosol of the chick parathyroid glands, which had the sedimentation constants of 2.5 S, 3.7 S and 5.5 S, were found to bind with 1 alpha,25-dihydroxyvitamin D3. Among these proteins, the 3.7 S protein was assumed to be the specific receptor protein. The 3.7 S receptor protein was also capable of binding to 1 alpha,24-dihydroxyvitamin D3 but not 25-hydroxyvitamin D3. The binding affinity of 1 alpha,24(R)-dihydroxyvitamin D3 to the 3.7 S receptor protein was estimated to be 1.2 times greater than that of 1 alpha,25-dihydroxyvitamin D3, while 1 alpha,25-dihydroxyvitamin D3 bound to the receptor protein about 10 times stronger than 1 alpha,24(S)-dihydroxyvitamin D3. The dissociation constant for the receptor-1 alpha,25-dihydroxyvitamin D3 complex at 0 degrees C was 2.7 x 10(-11) M, the dissociation constants were calculated to be 2.2 x 10(-11) M and 2.6 x 10(-10) M for the complexes with 1 alpha,24(R)-dihydroxyvitamin D3 and 1 alpha,24(S)-dihydroxyvitamin D3.  相似文献   

17.
Our previous study revealed that human CYP24A1 catalyzes a remarkable metabolism consisting of both C-23 and C-24 hydroxylation pathways that used both 25(OH)D(3) and 1alpha,25(OH)(2)D(3) as substrates, while rat CYP24A1 showed extreme predominance of the C-24 over C-23 hydroxylation pathway [Sakaki, T., Sawada, N., Komai, K., Shiozawa, S., Yamada, S., Yamamoto, K., Ohyama, Y. and Inouye, K. (2000) Eur. J. Biochem. 267, 6158-6165]. In this study, by using the Escherichia coli expression system for human CYP24A1, we identified 25,26,27-trinor-23-ene-D(3) and 25,26,27-trinor-23-ene-1alpha(OH)D(3) as novel metabolites of 25(OH)D(3) and 1alpha,25(OH)(2)D(3), respectively. These metabolites appear to be closely related to the C-23 hydroxylation pathway, because human CYP24A1 produces much more of these metabolites than does rat CYP24A1. We propose that the C(24)-C(25) bond cleavage occurs by a unique reaction mechanism including radical rearrangement. Namely, after hydrogen abstraction of the C-23 position of 1alpha,25(OH)(2)D(3), part of the substrate-radical intermediate is converted into 25,26,27-trinor-23-ene-1alpha(OH)D(3), while a major part of them is converted into 1alpha,23,25(OH)(3)D(3). Because the C(24)-C(25) bond cleavage abolishes the binding affinity of 1alpha,25(OH)D(3) for the vitamin D receptor, this reaction is quite effective for inactivation of 1alpha,25(OH)D(3).  相似文献   

18.
Chemical synthesis of 3 alpha,6 beta,7 alpha,12 beta- and 3 alpha,6 beta,7 beta,12 beta-tetrahydroxy-5 beta-cholan-24-oic acids is described. 3 alpha,12 beta-Dihydroxy-5 beta-chol-6-en-24-oic acid used as the starting material in the synthesis was prepared via oxidation of 3 alpha,12 alpha-dihydroxy-5 beta-chol-6-en-24-oic acid 3-hemisuccinate at C-12 followed by reduction with potassium/tertiary amyl alcohol. alpha-Epoxidation of the ester diacetate of 3 alpha,12 beta-dihydroxy-5 beta-chol-6-en-24-oic acid with m-chloroperbenzoic acid followed by cleavage of the epoxide with acetic acid and alkaline hydrolysis yielded 3 alpha,6 beta,7 alpha,12 beta-tetrahydroxy-5 beta-cholan-24-oic acid (overall yield 25%). N-Methylmorpholine-N-oxide-catalyzed osmium tetroxide oxidation of the ester diacetate of 3 alpha,12 beta-dihydroxy-5 beta-chol-6-en-24-oic acid followed by alkaline hydrolysis yielded 3 alpha,6 beta,7 beta,12 beta-tetrahydroxy-5 beta-cholan-24-oic acid (overall yield 33%). The structures of the synthesized bile acids were confirmed from their proto nuclear magnetic resonance and mass spectral fragmentation patterns.  相似文献   

19.
The urine and feces of a patient with the rare inherited lipid storage disease, sitosterolemia and xanthomatosis, were analyzed. Substantial quantities of C26-bile alcohol, 26 (or 27)-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24S,25 xi-pentol along with 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24-tetrol, 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol, 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24R,25-pentol, and 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25,26-pentol were found. The structure of the C26-bile alcohol was confirmed by direct comparison (gas-liquid chromatography-mass spectrometry and thin-layer chromatography) with a standard sample synthesized from cholic acid. The configurational assignment at C-24 was determined by lanthanide-induced circular dichroism Cotton effect measurements. The increased excretion of these C26- and C27-bile alcohols suggests an abnormality of bile acid biosynthesis in this disease.  相似文献   

20.
The nature of the bile alcohols present in urine of an infant with neonatal cholestasis has been investigated. Urine was extracted with Sep-Pak C18 cartridges and a glucuronide fraction was isolated by ion exchange chromatography on Lipidex-DEAP. Following enzymatic hydrolysis and purification on Lipidex-DEAP, the bile alcohols were isolated by high performance liquid chromatography. Fourteen compounds were studied by a combination of microchemical reactions and capillary column gas-liquid chromatography-mass spectrometry. Both C26 and C27 bile alcohols were present. Among the former, three additional isomers of the previously identified 27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24 xi,25 xi-pentol were detected. A new C26 bile alcohol, 27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24 xi,25 xi,26 -hexol, was identified, and a 27-norcholestane-pentolone with hydroxyl groups at C-24 and C-25 and a keto group in the ring system was partially characterized. The C27 bile alcohols consisted of cholestanepentols, -tetrolones, and -pentolones. 5 beta-Cholestane-3 alpha,7 alpha,12 alpha,25,26-pentol (5 beta-bufol), one of its isomers and an isomer of cholestane-3,7,12,24,26-pentol were present. Two cholestanetetrolones and two cholestanepentolones having the keto group in the ring system were partially characterized. The hydroxyl groups in the side chain of the tetrolones were at C-24,26 and C-25,26, respectively, whereas the pentolones had hydroxyl groups at C-24,25 and C-25,26, respectively. The excretion of glucuronidated bile alcohols in urine is suggested to reflect an alternative metabolism of intermediates in the normal biosynthesis of bile acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号