首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈海滨  唐海萍 《生态学报》2014,34(19):5380-5388
自从1972年Lovelock提出盖娅假说已经过去了40年,但围绕它的争议却从未停止过。盖娅假说在反对者的批评中与支持者的证明中不断发展。当前,最极端形式的盖娅假说基本上已被摒弃,尤其是那种明显带有目的论的说法。弱盖娅提出的"有机体可以影响他们的环境,有机体与环境的反馈耦合可以塑造两者的进化"这两个观点也已经是普遍接受的事实。除此之外,盖娅假说提出的其他3个命题却饱受争议。(1)内在平衡的盖娅:生物调节反馈有助于环境的内在平衡。反对者认为,生物反馈稳定全球环境的说法,与冰芯记录和大量的气候反馈研究结果相矛盾的。支持者认为,地球生物-环境系统的内在平衡可以产生于正负反馈的混合。盖娅假说关心的是地球几十亿年的历史,盖娅假说在较短时间尺度内可证伪,并不意味着其在较长时间尺度内也可证伪。(2)最优的盖娅:生物调节环境,使环境更加适合生物的生存。关于有机体的繁荣主要是由于他们对环境的改变,还是由于他们对环境的适应,目前尚未有结论。但盖娅的支持者认为,当生物-环境系统受到干扰或崩溃时,主导过程将显现。拥有较强环境反馈的系统,将易于快速过渡到新的状态,而由适应主导的过程将改变得较为平缓。反对者同意生物通过生物调节作用影响环境条件以使自身受益,但是生物首先要适应环境条件通过自然选择才能得以繁荣发展的。地球形成这样的环境条件,很可能纯粹是一种运气。(3)自然选择的盖娅:生物调节反馈产生于达尔文式的自然选择。反对者认为,"自然选择支持促进生命效应"的说法并非普遍有效,只有当遗传特征赋予携带者繁殖优势时,自然选择才会支持它。自然选择是机制,而非原则。支持者认为自然选择并不是盖娅系统环境调节的必要条件;基于副产品的自然选择,可以解决许多进化论学者提出的物种合作中的欺骗问题;自然选择并不总是支持促进生命的效应,但在当遗传特征使携带者相对非携带者受益时,自然选择可以使特征携带者产生进化优势。虽然争议依然存在并将持续下去,但作为假说生产者,盖娅假说已经证明了它的价值。但是在人类活动对生物圈影响不断增强的背景下,盖娅假说必须与人类活动相结合,否则必然走向衰落,并被其他理论或假说所替代。在此基础上,未来盖娅假说的研究者们需要继续努力探索可以应用于生物圈的一般性原则,并坚持系统性的思考方法。在具体的方法方面,可以利用系统度量指标;建立新的模型,尤其是建立关于生物地球化学循环过程的机理模型;搞清楚不同尺度过程的成本与收益。  相似文献   

2.
Bacteria secrete a large variety of beneficial metabolites into the environment, which can be shared as public goods among producing bacteria, but also be exploited by nonproducing cheats. Here, we focus on cooperative production of iron-chelating molecules (siderophores) in the bacterium Pseudomonas aeruginosa to study how relevant ecological factors influence selection for cheating. We designed patch-structured metapopulations that allowed us introducing among-patch ecological variation. We found that cheating readily evolved in uniform iron-limited environments. This finding is explained by severe iron limitation demanding high siderophore-production efforts, which results in high metabolic costs accruing to cooperators, and thereby facilitates the spread of cheats. In contrast, we observed a significant reduction or even negation of selection for cheating in metapopulations where we introduced patches with increased iron availability and/or opportunities to recycle siderophores. These findings are compatible with the view that cheats are less likely to invade in environments that allow bacteria to reduce siderophore-production efforts, as this lowers the overall metabolic costs accruing to cooperators. Because we increased iron availability and siderophore recycling opportunities moderately, and only in some patches, our findings demonstrate that already-small local variations in ecological conditions as occurring in nature can significantly affect selection for public-goods secretion in microbes. In addition, we found that most (84.6%) of the evolved cheats were partially deficient for siderophore production and not loss-of-function mutants. Genetic considerations indicate that mutations leading to partial deficiency occur more frequent than mutations leading to loss of function, but also suggest that partially deficient mutants might often be the more competitive cheats.  相似文献   

3.
C Barlow  T Volk 《Bio Systems》1990,23(4):371-384
While energetically open, the biosphere is appreciably closed from the standpoint of matter exchange. Matter cycling and recycling is hence a necessary and emergent property of the global-scale system known as Gaia. But how can an aggregate of open-system life forms have evolved and persisted for billions of years within a planetary system that is largely closed to matter influx and outflow? The puzzling nature of a closed yet persistent biosphere draws our attention to the course of evolution of fundamental metabolic strategies and matter-capture techniques. It suggests a facet of the Gaia hypothesis, framed in terms of persistence. The oceans, atmosphere, soils and biota constitute a complex system which maintains and adjusts matter cycling and recycling within the constraints of planetary closure such that open-system forms of life can persist. This weaker version of the Gaia hypothesis may be useful because it readily lends itself to at least one form of test. What is the solution to the closed biosphere puzzle, and does it indicate that Gaia merits status as a discrete entity? We suggest several disciplines within the field of biology that might provide tools and perspectives toward reaching a solution. These disciplines include artificial closed ecosystems, prokaryote evolution, the nexus of thermodynamics and evolutionary biology, and hierarchy theory in ecosystem modeling and evolution theory.  相似文献   

4.
Cooperation can be maintained if cooperative behaviours are preferentially directed towards other cooperative individuals. Tag‐based cooperation (greenbeards) – where cooperation benefits individuals with the same tag as the actor – is one way to achieve this. Tag‐based cooperation can be exploited by individuals who maintain the specific tag but do not cooperate, and selection to escape this exploitation can result in the evolution of tag diversity. We tested key predictions crucial for the evolution of cheat‐mediated tag diversity using the production of iron‐scavenging pyoverdine by the opportunistic pathogen, Pseduomonas aeruginosa as a model system. Using two strains that produce different pyoverdine types and their respective cheats, we show that cheats outcompete their homologous pyoverdine producer, but are outcompeted by the heterologous producer in well‐mixed environments. As a consequence, co‐inoculating two types of pyoverdine producer and one type of pyoverdine cheat resulted in the pyoverdine type whose cheat was not present having a large fitness advantage. Theory suggests that in such interactions, cheats can maintain tag diversity in spatially structured environments, but that tag‐based cooperation will be lost in well‐mixed populations, regardless of tag diversity. We saw that when all pyoverdine producers and cheats were co‐inoculated in well‐mixed environments, both types of pyoverdine producers were outcompeted, whereas spatial structure (agar plates and compost microcosms), rather than maintaining diversity, resulted in the domination of one pyoverdine producer. These results suggest cheats may play a more limited role in the evolution of pyoverdine diversity than predicted.  相似文献   

5.
Resource competition within a group of cooperators is expected to decrease selection for cooperative behavior but can also result in diversifying selection for the use of different resources, which in turn could retard the breakdown of cooperation. Diverse groups are likely to be less susceptible to invasion by noncooperating social cheats: First, competition repression resulting from character displacement may provide less of a selective advantage to cheating; second, cheats may trade off the ability to exploit cooperators that specialize in one type of resource against cooperators that specialize in another ; third, diverse communities of any kind may have higher invasion resistance because there are fewer resources available for an invader to use . Furthermore, diverse groups are likely to be more productive than clonal groups if a wider range of total resources are being used . We addressed these issues by using the cooperative trait of biofilm formation in Pseudomonas fluorescens. Character displacement through resource competition evolved within biofilms; productivity increased with increasing character displacement, and diverse biofilms were less susceptible to invasion by cheats. These results demonstrate that diversification into different ecological niches can minimize selection against cooperation in the face of local resource competition.  相似文献   

6.
Cooperation peaks at intermediate disturbance   总被引:1,自引:0,他引:1  
Explaining cooperation is a challenge for evolutionary biology. Surprisingly, the role of extrinsic ecological parameters remains largely unconsidered. Disturbances are widespread in nature and have evolutionary consequences. We develop a mathematical model predicting that cooperative traits most readily evolve at intermediate disturbance. Under infrequent disturbance, cooperation breaks down through the accumulation of evolved cheats. Higher rates of disturbance prevent this because the resulting bottlenecks increase genetic structuring (relatedness) promoting kin selection for cooperation. However, cooperation cannot be sustained under very frequent disturbance if population density remains below the level required for successful cooperation. We tested these predictions by using cooperative biofilm formation by the bacterium Pseudomonas fluorescens. The proportion of biofilm-forming bacteria peaked at intermediate disturbance, in a manner consistent with model predictions. Under infrequent and intermediate disturbance, most bacteria occupied the biofilm, but the proportion of cheats was higher under less frequent disturbance. Under frequent disturbance, many bacteria did not occupy the biofilm, suggesting that biofilm dwelling was not as beneficial under frequent versus intermediate disturbance. Given the ubiquity of disturbances in nature, these results suggest that they may play a major role in the evolution of social traits in microbes.  相似文献   

7.
Fungal ecology lags behind in the use of traits (i.e. phenotypic characteristics) to understand ecological phenomena. We argue that this is a missed opportunity and that the selection and systematic collection of trait data throughout the fungal kingdom will reap major benefits in ecological and evolutionary understanding of fungi. To develop our argument, we first employ plant trait examples to show the power of trait-based approaches in understanding ecological phenomena such as identifying species allocation resources patterns, inferring community assembly and understanding diversity–ecosystem functioning relationships. Second, we discuss ecologically relevant traits in fungi that could be used to answer such ecological phenomena and can be measured on a large proportion of the fungal kingdom. Third, we identify major challenges and opportunities for widespread, coordinated collection and sharing of fungal trait data. The view that we propose has the potential to allow mycologists to contribute considerably more influential studies in the area of fungal ecology and evolution, as has been demonstrated by comparable earlier efforts by plant ecologists. This represents a change of paradigm, from community profiling efforts through massive sequencing tools, to a more mechanistic understanding of fungal ecology.  相似文献   

8.
Chemical defence is superficially easy to understand as a means for individuals to protect themselves from enemies. The evolution of chemical defence is however potentially complex because such defences may cause the generation of a public good, protecting members of the population as a whole as well as individuals that deploy toxins defensively. If a public good of protection exists, it may be exploited and degraded by “cheats” that do not invest in defence. This can in turn lead to complex frequency (and density) dependent effects in toxin evolution. To investigate this we used ecologically relevant predators (Great tits, Parus major) and examined how individual and public benefits vary depending on the frequency of non-defended “cheating” prey and their spatial distribution. We found that the public benefit, of reduced attack probability, increased with increasing frequency of defended individuals. In contrast the individual benefit of chemical defence, measured as increased chance of rejection during an attack before injury, did not vary with the frequency of defended forms. Hence the selective dynamics of these two levels of benefits responded differently to the frequency of defended forms. Surprisingly, given the strong associations of chemical defences and grouping in animals, large aggregations did not help individuals in the group regardless of their defence status. The explanation for the result, may be that in our experiment birds did not have information about other potential aggregations (i.e. set up was sequential) and thus their giving up density was lower compared to the situations where set ups were simultaneous. We use behavioural data of our predators to construct a simple model of toxin evolution which can make quantitative predictions about the frequencies to which defence cheats evolve. We use this model to discuss how toxin evolution can be investigated in the wild and in laboratory settings.  相似文献   

9.
Deceptive signals are a challenge to explain because on average, signals should be reliable. When being deceived is costly to the receiver, a coevolutionary struggle between senders and receivers can ensue. Recent work by Macías Garcia and Ramirez raises the intriguing possibility that through such a coevolutionary process, cheats can become honest.  相似文献   

10.
Mechanistic Approaches to Community Ecology: A New Reductionism   总被引:2,自引:0,他引:2  
Mechanistic approaches to community ecology are those whichemploy individual— ecological concepts—those ofbehavioral ecology, physiological ecology, and ecomorphology—as theoretical bases for understanding community patterns. Suchapproaches, which began explicitly about a decade ago, are justnow coming into prominence. They stand in contrast to more traditionalapproaches, such as MacArthur and Levins (1967),which interpretcommunity ecology almost strictly in terms of "megaparameters.". Mechanistic approaches can be divided into those which use populationdynamics as a major component of the theory and those whichdo not; examples of the two are about equally common. The firstapproach sacrifices a highly detailed representation of individual—ecological processes; the second sacrifices an explicit representationof the abundance and persistence of populations. Three subdisciplines of ecology—individual, populationand community ecology—form a "perfect" hierarchy in Beckner's(1974) sense. Two other subdisciplines—ecosystem ecologyand evolutionary ecology—lie somewhat laterally to thishierarchy. The modelling of community phenomena using sets ofpopulation-dynamical equations is argued as an attempt at explanationvia the reduction of community to population ecology. Much ofthe debate involving Florida State ecologists is over whetheror not such a relationship is additive (or conjunctive), a verystrong form of reduction. I argue that reduction of communityto individual ecology is plausible via a reduction of populationecology to individual ecology. Approaches that derive the population-dynamicalequations used in population and community ecology from individual-ecologicalconsiderations, and which provide a decomposition of megaparametersinto behavioral and physiological parameters, are cited as illustratinghow the reduction might be done. I argue that "sufficient parameters"generally will not enhance theoretical understanding in communityecology. A major advantage of the mechanistic approach is that variationin population and community patterns can be understood as variationin individual-ecological conditions. In addition to enrichingthe theory, this allows the best functional form to be chosenfor modeling higher-level phenomena, where "best" is definedas biologically most appropriate rather than mathematicallymost convenient. Disadvantages of the mechanistic approach arethat it may portend an overly complex, massive and special theory,and that it naturally tends to avoid many-species phenomenasuch as indirect effects. The paper ends with a scenario fora mechanistic-ecological utopia.  相似文献   

11.
Many species defend themselves against enemies using repellent chemicals. An important but unanswered question is why investment in chemical defence is often variable within prey populations. One explanation is that some prey benefit by cheating, paying no costs of defence, but gaining a reduced attack rate because of the presence of defended conspecifics. Two important assumptions about predator behaviour must be met to explain cheating as a stable strategy: first, predators increase attack rates as cheats increase in frequency; second, defended prey survive attacks better than non‐defended conspecifics. We lack data from wild predators that evaluate these hypotheses. Here, we examine how changes in the frequency of non‐defended ‘cheats’ affect predation by wild birds on a group of otherwise defended prey. We presented mealworm larvae that were either edible (‘cheats’) or unpalatable (bitter tasting), and varied the proportion of cheats from 0 to 1 by increments of 0.25. We found strong frequency‐dependent effects on the birds' foraging behaviour, with the proportion of prey attacked increasing nonlinearly with the frequency of cheats. We did not, however, observe that birds taste‐rejected defended prey at the site of capture. One explanation is that wild birds may not assess prey palatability at the site of capture, but do this elsewhere. If so, defended and undefended prey may pay high costs of initial attack and relocation away from ecologically favourable locations. Alternatively, defended prey may not be taste‐rejected because with acute time constraints, wild birds do not have time to make fine‐grained decisions during feeding. We discuss the data in relation to the evolutionary ecology of prey defences.  相似文献   

12.
A major empirical approach in community ecology is to describe the dynamics of a community by examining small subsets of species. Unfortunately, interaction modifications, which cause pair-wise interaction coefficients to depend on the presence or absence of additional species, can make it difficult to predict the overall dynamics of species within a community from experiments with pairs of species. In a similar fashion, one of the major approaches in evolutionary ecology has been to describe the likely evolutionary dynamics of a single species by focusing on the selection imposed by a limited number of other species within the community. However, recent work on diffuse coevolution indicates that selection pressures due to one species can change in the presence of other species. The magnitude of the difficulty that interaction modifications and diffuse coevolution present for predicting ecological and evolutionary dynamics is an unresolved question. Here we outline the similarities and differences between the two topics, discuss experimental and statistical approaches to studying them, and make predictions about when ecological interaction modifications are likely to cause diffuse coevolution. Since the currencies for interaction modifications are usually fitness components such as growth, fecundity, or survival, is it likely that these will translate into corresponding differences in the relative fitness of individuals or genotypes, and thus in general these two phenomena will occur together. We argue that community ecologists and evolutionary ecologists will both benefit from experiments that test for the effects of interaction modifications, and that studies of the mechanisms driving interaction modifications and diffuse coevolution (e.g., changes in behavior, nonlinear effects on shared resources, genetic covariances) will aid our progress in understanding the ecological and evolutionary dynamics of communities.  相似文献   

13.
Cooperation underlies diverse phenomena including the origins of multicellular life, human behaviour in economic markets and the mechanisms by which pathogenic bacteria cause disease. Experiments with microorganisms have advanced our understanding of how, when and why cooperation evolves, but the extent to which microbial cooperation can recapitulate aspects of animal behaviour is debated. For instance, understanding the evolution of behavioural response rules (how should one individual respond to another's decision to cooperate or defect?) is a key part of social evolution theory, but the possible existence of such rules in social microbes has not been explored. In one specific context (biparental care in animals), cooperation is maintained if individuals respond to a partner's defection by increasing their own investment into cooperation, but not so much that this fully compensates for the defector's lack of investment. This is termed ‘partial compensation’. Here, I show that partial compensation for the presence of noncooperating ‘cheats’ is also observed in a microbial social behaviour: the cooperative production of iron‐scavenging siderophores by the bacterium Pseudomonas aeruginosa. A period of evolution in the presence of cheats maintains this response, whereas evolution in the absence of cheats leads to a loss of compensatory behaviour. These results demonstrate (i) the remarkable flexibility of bacterial social behaviour, (ii) the potential generality of partial compensation as a social response rule and (iii) the need for mathematical models to explore the evolution of response rules in multi‐player social interactions.  相似文献   

14.
Interferons are naturally occurring proteins that are currently under evaluation as potential antiviral and antitumor agents. Currently all human interferons can in principle be produced in adequate amounts by recombinant DNA technology. Human interferons produce side effects, but because they are species-specific the toxicity cannot be tested in lower mammals. The chimpanzee is the only species in which the side effects of human interferon can be reproduced, and only in this species the toxicity of human interferons can be screened.  相似文献   

15.
Mutation rate and cooperation have important ecological and evolutionary consequences and, moreover, can affect pathogen virulence. While hypermutability accelerates adaptation to novel environments, hypermutable lineages ('mutators') are selected against in well-adapted populations. Using the model organism Pseudomonas aeruginosa, we previously demonstrated a further potential disadvantage to hypermutability, namely, that it can accelerate the breakdown of cooperation. We now investigate how this property of mutators can affect their persistence in metapopulations. Mutator and wild-type bacteria were competed for 250 generations in globally competing metapopulations, imposing conditions of high or low intra-deme relatedness. High relatedness favours cooperating groups, so we predicted that mutators should achieve lower equilibrium frequencies under high relatedness than under low relatedness. This was observed in our study. Consistent with our hypothesis, there was a positive correlation between mean mutator and cheat frequencies. We conclude that when dense population growth requires cooperation, and when cooperation is favoured (high relatedness), demes containing high frequencies of mutators are likely to be selected against because they also contain high frequencies of non-cooperating cheats. We have also identified conditions where mutator lineages are likely to dominate metapopulations; namely, when low relatedness reduces kin selection for cooperation. These results may help to explain clinical distributions of mutator bacteria.  相似文献   

16.
In many circumstances organisms invest in cooperative activities to increase their mutual fitness but are susceptible to cheats that obtain the benefits of cooperation without investment. Natural selection may favor cooperators that resist cheats, and cheats that avoid such resistance; in theory the coevolutionary interaction may be sustained and dynamic. Here, we report evidence of antagonistic coevolution between cooperators and cheats involved in biofilm formation by Pseudomonas fluorescens bacteria. Two distinct phenotypes occur in static culture tubes: one that can form a biofilm at the air–broth interface and thus obtain improved access to oxygen, and one that colonizes the broth phase but which can also invade, and weaken, the biofilm produced by the other type. Over serial passage, biofilm producers (considered here as cooperators) evolve to become better at resisting invasion, and biofilm nonproducers (cheats) evolve to be more efficient invaders. Each type has higher performance (resistance in the case of cooperators and biofilm invasion for cheats) in competition with isolates of the other type from their past compared to that from their future, indicating a dynamic coevolutionary interaction. Such coevolution may have important consequences for the maintenance of cooperation.  相似文献   

17.
The production of beneficial public goods is common in the microbial world, and so is cheating – the exploitation of public goods by nonproducing mutants. Here, we examine co‐evolutionary dynamics between cooperators and cheats and ask whether cooperators can evolve strategies to reduce the burden of exploitation, and whether cheats in turn can improve their exploitation abilities. We evolved cooperators of the bacterium Pseudomonas aeruginosa, producing the shareable iron‐scavenging siderophore pyoverdine, together with cheats, defective in pyoverdine production but proficient in uptake. We found that cooperators managed to co‐exist with cheats in 56% of all replicates over approximately 150 generations of experimental evolution. Growth and competition assays revealed that co‐existence was fostered by a combination of general adaptions to the media and specific adaptions to the co‐evolving opponent. Phenotypic screening and whole‐genome resequencing of evolved clones confirmed this pattern, and suggest that cooperators became less exploitable by cheats because they significantly reduced their pyoverdine investment. Cheats, meanwhile, improved exploitation efficiency through mutations blocking the costly pyoverdine‐signalling pathway. Moreover, cooperators and cheats evolved reduced motility, a pattern that likely represents adaptation to laboratory conditions, but at the same time also affects social interactions by reducing strain mixing and pyoverdine sharing. Overall, we observed parallel evolution, where co‐existence of cooperators and cheats was enabled by a combination of adaptations to the abiotic and social environment and their interactions.  相似文献   

18.
Bridging the gap between early, sensitive responses to stress at the infra-organismal levels and long-term, ecologically relevant responses at the supra-organismal levels is a challenge. Behavioral ecotoxicology provides an approach that clearly links disturbances at the biochemical level (e.g., altered neurotransmitters and thyroid hormones) to effects at the population level. These effects may be direct, such as impairment of the search for a sexual partner, care of juveniles, and avoidance of predators or pollutants. Indirect effects may be alteration of reproduction success due to impairment of feeding and thus, energy metabolism. The sensitivity of behavioral responses can be useful in ecological risk assessment. A major difficulty is extrapolation of observed responses with test species to other species. Thus it is recommended to use behavioral biomarkers, associated with biochemical and physiological markers (neurotoxicity, hormones, energy metabolism) in carefully selected species. These sentinels must be key-species in the structure and functioning of ecosystems because impairments of their responses used as biomarkers will reveal a risk of cascading deleterious effects at the community and ecosystem levels.  相似文献   

19.
关于我国林业行业性空间管理框架的思考   总被引:1,自引:0,他引:1  
谢剑斌  陈芬 《生态学杂志》2003,22(5):137-141
评析了中国林业生产上传统的三种行业性空间管理框架的特点与问题,认为这些空间管理框架虽然都具有各自的独特功能,但普遍缺乏生态内涵,不足以有效指导中国今后以“生态利用”为中心的森林可持续经营管理活动以及各项林业生态环境建设工作。有必要从土地景观分类的途径提出一些新的、具有更明确生态学依据和内涵的行业性空间管理框架。对我国的林业发展来说,这虽然要付出一笔高昂的固定成本,但是一个科学的空间管理框架将大大降低未来生态林业行业性运行的边际成本。  相似文献   

20.
Cross-scale resilience theory predicts that the combination of functional diversity within scales and functional redundancy across scales is an important attribute of ecosystems because it helps these systems resist minor ecological disruptions and regenerate after major disturbances such as hurricanes and fire. Using the vertebrate fauna of south Florida, we quantified how the loss of native species and invasion by nonnatives may alter functional group richness within and across scales. We found that despite large changes in species composition due to potential extinctions and successful invasions by nonnative species, functional group richness will not change significantly within scales, there will not be any significant loss of overall redundancy of ecology function across scales, and overall body mass pattern will not undergo substantial change. However, the types of functions performed will change, and this change may have profound effects on not only the Everglades ecosystem but on the entire landscape of south Florida. Received 14 November 2000; accepted 20 December 2001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号