首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholesterol (ergosterol in yeast) in conjunction with sphingolipids forms tight-packing microdomains, 'lipid rafts,' which are thought to be critical for intracellular protein sorting in eukaryotic cells. When the activity of Erg9 involved in the first step of ergosterol biogenesis, but not that of Erg6 involved in a late step, is compromised, vacuolar degradation of the tryptophan permease Tat2 is promoted. It is unknown whether this difference simply reflects the difference between the inhibition of early and late steps. Here, it is shown that the deletion in ERG2 , which encodes sterol C8–C7 isomerase (the next enzymatic step after Erg6), promotes the vacuolar degradation of Tat2. It suggests that the accumulation of specific sterol intermediates may alter lipid raft structures, promoting Tat2 degradation. The erg2 Δ-mediated Tat2 degradation required Tat2 ubiquitination. Lipid raft association of Tat2 is compromised in erg2 Δ cells. The erg2 Δ mutation showed a synthetic growth defect with the trp1 mutation, indicating that Tat2 sorting is preferentially compromised in these mutants. Consistent with this notion, the raft-associated protein Pma1 was associated with detergent-resistant membranes and sorted to the plasma membrane. This study suggests the potential for the pharmacological control of cellular nutrient uptake in humans by regulating enzymes involved in cholesterol biogenesis.  相似文献   

2.
The type 4 P-type ATPases are flippases that generate phospholipid asymmetry in membranes. In budding yeast, heteromeric flippases, including Lem3p-Dnf1p and Lem3p-Dnf2p, translocate phospholipids to the cytoplasmic leaflet of membranes. Here, we report that Lem3p-Dnf1/2p are involved in transport of the tryptophan permease Tat2p to the plasma membrane. The lem3Δ mutant exhibited a tryptophan requirement due to the mislocalization of Tat2p to intracellular membranes. Tat2p was relocalized to the plasma membrane when trans-Golgi network (TGN)-to-endosome transport was inhibited. Inhibition of ubiquitination by mutations in ubiquitination machinery also rerouted Tat2p to the plasma membrane. Lem3p-Dnf1/2p are localized to endosomal/TGN membranes in addition to the plasma membrane. Endocytosis mutants, in which Lem3p-Dnf1/2p are sequestered to the plasma membrane, also exhibited the ubiquitination-dependent missorting of Tat2p. These results suggest that Tat2p is ubiquitinated at the TGN and missorted to the vacuolar pathway in the lem3Δ mutant. The NH2-terminal cytoplasmic region of Tat2p containing ubiquitination acceptor lysines interacted with liposomes containing acidic phospholipids, including phosphatidylserine. This interaction was abrogated by alanine substitution mutations in the basic amino acids downstream of the ubiquitination sites. Interestingly, a mutant Tat2p containing these substitutions was missorted in a ubiquitination-dependent manner. We propose the following model based on these results; Tat2p is not ubiquitinated when the NH2-terminal region is bound to membrane phospholipids, but if it dissociates from the membrane due to a low level of phosphatidylserine caused by perturbation of phospholipid asymmetry in the lem3Δ mutant, Tat2p is ubiquitinated and then transported from the TGN to the vacuole.  相似文献   

3.
Sterols are major components of the plasma membrane, but their functions in this membrane are not well understood. We isolated a mutant defective in the internalization step of endocytosis in a gene (ERG2) encoding a C-8 sterol isomerase that acts in the late part of the ergosterol biosynthetic pathway. In the absence of Erg2p, yeast cells accumulate sterols structurally different from ergosterol, which is the major sterol in wild-type yeast. To investigate the structural requirements of ergosterol for endocytosis in more detail, several erg mutants (erg2Delta, erg6Delta, and erg2Deltaerg6Delta) were made. Analysis of fluid phase and receptor-mediated endocytosis indicates that changes in the sterol composition lead to a defect in the internalization step. Vesicle formation and fusion along the secretory pathway were not strongly affected in the ergDelta mutants. The severity of the endocytic defect correlates with changes in sterol structure and with the abundance of specific sterols in the ergDelta mutants. Desaturation of the B ring of the sterol molecules is important for the internalization step. A single desaturation at C-8,9 was not sufficient to support internalization at 37 degrees C whereas two double bonds, either at C-5,6 and C-7,8 or at C-5,6 and C-8,9, allowed internalization.  相似文献   

4.
In eukaryotic cells many cell surface proteins are attached to the membrane via the glycosylphosphatidylinositol (GPI) moiety. In yeast, GPI also plays important roles in the production of mannoprotein in the cell wall. We previously isolated gwt1 mutants and found that GWT1 is required for inositol acylation in the GPI biosynthetic pathway. In this study we isolated a new gwt1 mutant allele, gwt1-10, that shows not only high temperature sensitivity but also low temperature sensitivity. The gwt1-10 cells show impaired acyltransferase activity and attachment of GPI to proteins even at the permissive temperature. We identified TAT2, which encodes a high affinity tryptophan permease, as a multicopy suppressor of cold sensitivity in gwt1-10 cells. The gwt1-10 cells were also defective in the import of tryptophan, and a lack of tryptophan caused low temperature sensitivity. Microscopic observation revealed that Tat2p is not transported to the plasma membrane but is retained in the endoplasmic reticulum in gwt1-10 cells grown under tryptophan-poor conditions. We found that Tat2p was not associated with detergent-resistant membranes (DRMs), which are required for the recruitment of Tat2p to the plasma membrane. A similar result was obtained for Fur4p, a uracil permease localized in the DRMs of the plasma membrane. These results indicate that GPI-anchored proteins are required for the recruitment of membrane proteins Tat2p and Fur4p to the plasma membrane via DRMs, suggesting that some membrane proteins are redistributed in the cell in response to environmental and nutritional conditions due to an association with DRMs that is dependent on GPI-anchored proteins.  相似文献   

5.
Lanosterol C-14 demethylase Erg11p of the yeast Saccharomyces cerevisiae catalyzes the enzymatic step following formation of lanosterol by the lanosterol synthase Erg7p in lipid particles (LP). Localization experiments employing microscopic inspection and cell fractionation revealed that Erg11p in contrast to Erg7p is associated with the endoplasmic reticulum (ER). An erg11Delta mutation in erg3Delta background, which is required to circumvent lethality of the erg11 defect, did not only change the sterol pattern but also the sterol distribution within the cell. Whereas in wild type the plasma membrane was highly enriched in ergosterol and LP harbored large amounts of sterol precursors in the form of steryl esters, sterol intermediates were more or less evenly distributed among organelles of erg11Delta erg3Delta. This distribution is not result of the erg3Delta background, because in the erg3Delta strain the major intermediate formed, ergosta-7,22-dienol, is also highly enriched in the plasma membrane similar to ergosterol in wild type. These results indicate that (i) exit of lanosterol from LP occurs independently of functional Erg11p, (ii) random supply of sterol intermediates to all organelles of erg11Delta erg3Delta appears to compensate for the lack of ergosterol in this mutant, and (iii) preferential sorting of ergosterol in wild type, but also of ergosta-7,22-dienol in erg3Delta, supplies sterol to the plasma membrane.  相似文献   

6.
Yps1p is a member of the GPI-anchored aspartic proteases which reside at the plasma membrane of Saccharomyces cerevisiae. Here we show that in Δerg6 cells, where a late biosynthetic step of the membrane lipid ergosterol is blocked, part of Yps1p was targeted to the vacuole. There it overtook proteolytic functions of the Pep4p protease, resulting in processing of pro-CPY to CPY in cells lacking the PEP4 gene. Yps1p was enriched in membrane microdomains, as it could be isolated in detergent-insoluble complexes from both normal and Δerg6 cells. Vacuolar Yps1 caused degradation of a mammalian sialyltransferase ectodomain fusion protein (ST6Ne), which was directed from the Golgi to the vacuole in both normal and Δerg6 cells. Unexpectedly, ST6Ne was degraded also when arrested in the Golgi in a temperature-sensitive sec7–1 mutant. Newly synthesized Yps1p, in transit to the plasma membrane, was also involved in the Golgi-associated degradation. These data show that GPI-anchored proteases, whose biological roles are unknown, may reside and function in different subcellular locations.  相似文献   

7.
Fungal sphingolipids contain ceramide with a very-long-chain fatty acid (C26). To investigate the physiological significance of the C26-substitution on this lipid, we performed a screen for mutants that are synthetically lethal with ELO3. Elo3p is a component of the ER-associated fatty acid elongase and is required for the final elongation cycle to produce C26 from C22/C24 fatty acids. elo3delta mutant cells thus contain C22/C24- instead of the natural C26-substituted ceramide. We now report that under these conditions, an otherwise nonessential, but also fungal-specific, structural modification of the major sterol of yeast, ergosterol, becomes essential, because mutations in ELO3 are synthetically lethal with mutations in ERG6. Erg6p catalyzes the methylation of carbon atom 24 in the aliphatic side chain of sterol. The lethality of an elo3delta erg6delta double mutant is rescued by supplementation with ergosterol but not with cholesterol, indicating a vital structural requirement for the ergosterol-specific methyl group. To characterize this structural requirement in more detail, we generated a strain that is temperature sensitive for the function of Erg6p in an elo3delta mutant background. Examination of raft association of the GPI-anchored Gas1p and plasma membrane ATPase, Pma1p, in the conditional elo3delta erg6(ts) double mutant, revealed a specific defect of the mutant to maintain raft association of preexisting Pma1p. Interestingly, in an elo3delta mutant at 37 degrees C, newly synthesized Pma1p failed to enter raft domains early in the biosynthetic pathway, and upon arrival at the plasma membrane was rerouted to the vacuole for degradation. These observations indicate that the C26 fatty acid substitution on lipids is important for establishing raft association of Pma1p and stabilizing the protein at the cell surface. Analysis of raft lipids in the conditional mutant strain revealed a selective enrichment of ergosterol in detergent-resistant membrane domains, indicating that specific structural determinants on both sterols and sphingolipids are required for their association into raft domains.  相似文献   

8.
The SRO7/SOP1 encoded tumor suppressor homologue of Saccharomyces cerevisiae is required for maintenance of ion homeostasis in cells exposed to NaCl stress. Here we show that the NaCl sensitivity of the sro7Delta mutant is due to defective sorting of Ena1p, the main sodium pump in yeast. On exposure of sro7Delta mutants to NaCl stress, Ena1p fails to be targeted to the cell surface, but is instead routed to the vacuole for degradation via the multivesicular endosome pathway. SRO7-deficient mutants accumulate post-Golgi vesicles at high salinity, in agreement with a previously described role for Sro7p in late exocytosis. However, Ena1p is not sorted into these post-Golgi vesicles, in contrast to what is observed for the vesicles that accumulate when exocytosis is blocked in sec6-4 mutants at high salinity. These observations imply that Sro7p has a previously unrecognized role for sorting of specific proteins into the exocytic pathway. Screening for multicopy suppressors identified RSN1, encoding a transmembrane protein of unknown function. Overexpression of RSN1 restores NaCl tolerance of sro7Delta mutants by retargeting Ena1p to the plasma membrane. We propose a model in which blocked exocytic sorting in sro7Delta mutants, gives rise to quality control-mediated routing of Ena1p to the vacuole.  相似文献   

9.
Sterols are essential factors for endocytosis in animals and yeast. To investigate the sterol structural requirements for yeast endocytosis, we created a variety of ergDelta mutants, each accumulating a distinct set of sterols different from ergosterol. Mutant erg2Deltaerg6Delta and erg3Deltaerg6Delta cells exhibit a strong internalization defect of the alpha-factor receptor (Ste2p). Specific sterol structures are necessary for pheromone-dependent receptor hyperphosphorylation, a prerequisite for internalization. The lack of phosphorylation is not due to a defect in Ste2p localization or in ligand-receptor interaction. Contrary to most known endocytic factors, sterols seem to function in internalization independently of actin. Furthermore, sterol structures are required at a postinternalization step of endocytosis. ergDelta cells were able to take up the membrane marker FM4-64, but exhibited defects in FM4-64 movement through endosomal compartments to the vacuole. Therefore, there are at least two roles for sterols in endocytosis. Based on sterol analysis, the sterol structural requirements for these two processes were different, suggesting that sterols may have distinct functions at different places in the endocytic pathway. Interestingly, sterol structures unable to support endocytosis allowed transport of the glycosylphosphatidylinositol-anchored protein Gas1p from the endoplasmic reticulum to Golgi compartment.  相似文献   

10.
ESR investigations designed to determine membrane order parameter in sterol mutants of Saccharomyces cerevisiae were conducted using the membrane probe, 5-doxyl stearic acid. These mutants are blocked in the ergosterol biosynthetic pathway and thus do not synthesize ergosterol, the end product sterol. They do not require exogenous ergosterol for growth and, therefore, incorporate ergosterol biosynthetic intermediates in their membrane. Increasing order parameter is reflective of an increase in membrane rigidity. Single mutants involving B-ring delta 8 leads to delta 7 isomerization (erg 2) and C-24 methylation (erg 6) showed greater membrane rigidity than wild-type during exponential growth. A double mutant containing both lesions (erg 6/2) showed an even greater degree of membrane rigidity. During stationary phase the order of decreasing membrane rigidity was erg 6 greater than erg 6/2 greater than erg 2 = wild-type. The increased membrane order parameter was attributed to the presence of substituted sterols rather than increased sterol content or altered fatty acid synthesis.  相似文献   

11.
Clathrin-coated vesicles mediate the transport of the soluble vacuolar protein CPY from the TGN to the endosomal/prevacuolar compartment. Surprisingly, CPY sorting is not affected in clathrin deletion mutant cells. Here, we have investigated the clathrin-independent pathway that allows CPY transport to the vacuole. We find that CPY transport is mediated by the endosome and requires normal trafficking of its sorting receptor, Vps10p, the steady state distribution of which is not altered in chc1 cells. In contrast, Vps10p accumulates at the cell surface in a chc1/end3 double mutant, suggesting that Vps10p is rerouted to the cell surface in the absence of clathrin. We used a chimeric protein containing the first 50 amino acids of CPY fused to a green fluorescent protein (CPY-GFP) to mimic CPY transport in chc1. In the absence of clathrin, CPY-GFP resides in the lumen of the vacuole as in wild-type cells. However, in chc1/sec6 double mutants, CPY-GFP is present in internal structures, possibly endosomal membranes, that do not colocalize with the vacuole. We propose that Vps10p must be transported to and retrieved from the plasma membrane to mediate CPY sorting to the vacuole in the absence of clathrin-coated vesicles. In this circumstance, precursor CPY may be captured by retrieved Vps10p in an early or late endosome, rather than as it normally is in the trans-Golgi, and delivered to the vacuole by the normal VPS gene-dependent process. Once relieved of cargo protein, Vps10p would be recycled to the trans-Golgi and then to the cell surface for further rounds of sorting.  相似文献   

12.
The proton pumping H(+)-ATPase, Pma1p, is an abundant and very long-lived polytopic protein of the Saccharomyces cerevisiae plasma membrane. Pma1p constitutes a major cargo of the secretory pathway and thus serves as an excellent model to study plasma membrane biogenesis. We have previously shown that newly synthesized Pma1p is mistargeted to the vacuole in an elo3Delta mutant that affects the synthesis of the ceramide-bound C26 very long chain fatty acid (Eisenkolb, M., Zenzmaier, C., Leitner, E., and Schneiter, R. (2002) Mol. Biol. Cell 13, 4414-4428) and now describe a more detailed analysis of the role of lipids in Pma1p biogenesis. Remarkably, a block at various steps of sterol biosynthesis, a complete block in sterol synthesis, or the substitution of internally synthesized ergosterol by externally supplied ergosterol or even by cholesterol does not affect Pma1p biogenesis or its association with detergent-resistant membrane domains (lipid "rafts"). However, a block in sphingolipid synthesis or any perturbation in the synthesis of the ceramide-bound C26 very long chain fatty acid results in mistargeting of newly synthesized Pma1p to the vacuole. Mistargeting correlates with a lack of newly synthesized Pma1p to acquire detergent resistance, suggesting that sphingolipids with very long acyl chains affect sorting of Pma1p to the cell surface.  相似文献   

13.
Sterols are essential components of the plasma membrane in eukaryotic cells. Nystatin-resistant erg mutants were used in the present study to investigate the in vitro effects of altered sterol structure on membrane lipid composition, fluidity, and asymmetry of phospholipids. Quantitative analyses of the wild type and mutants erg2, erg3 and erg6 revealed that mutants have lower sterol (free)-to-phospholipid molar ratios than the wild type. Phosphatidylcholine content was decreased in erg2 and erg3 mutants; however, it was increased in erg6 strains as compared to normals. Phosphatidylserine content was increased in the erg6 mutant only. Fluorescence anisotropy decreased with temperature in both probes, and was lower for mutants than for the wild type, suggesting an increased freedom in rotational movement due to decreased membrane order. Investigation of changes in the aminophospholipid transbilayer distribution using two chemical probes, trinitrobenzene sulfonic acid and fluorescamine, revealed that the amounts of phosphatidylethanolamine derivatized by these probes were quite similar in both the wild type and various erg strains. The present findings suggest that adaptive responses in yeast cells with altered sterol structure are possibly manifested through changes in membrane lipid composition and fluidity, and not through transbilayer rearrangement of aminophospholipids.  相似文献   

14.
15.
Ergosterol is the yeast functional equivalent of cholesterol in mammalian cells. Deletion of the ERG6 gene, which encodes an enzyme catalyzing a late step of ergosterol biosynthesis, impedes targeting of the tryptophan permease Tat2p to the plasma membrane, but does not promote vacuolar degradation. It is unknown whether similar features appear when other steps of ergosterol biogenesis are inhibited. We show herein that the ergosterol biosynthesis inhibitor zaragozic acid (ZA) evoked massive vacuolar degradation of Tat2p, accompanied by a decrease in tryptophan uptake. ZA inhibits squalene synthetase (SQS, EC 2.5.1.21), which catalyzes the first committed step in the formation of cholesterol/ergosterol. The degradation of Tat2p was dependent on the Rsp5p-mediated ubiquitination of Tat2p and was not suppressed by deletions of VPS1, VPS27, VPS45 or PEP12. We will discuss ZA-mediated Tat2p degradation in the context of lipid rafts.  相似文献   

16.
Organization of lipids into membrane microdomains is a vital mechanism of protein processing. Here we show that overexpression of ERG6, a gene involved in ergosterol synthesis, elevates sterol levels 1.5-fold on the vacuole membrane and enhances their homotypic fusion. The mechanism of sterol-enhanced fusion is not via more efficient sorting, but instead promotes increased kinetics of fusion subreactions. We initially isolated ERG6 as a suppressor of a vrp1Delta growth defect selective for vacuole function. VRP1 encodes verprolin, an actin-binding protein that colocalizes to vacuoles. The vrp1Delta mutant has fragmented vacuoles in vivo and isolated vacuoles do not fuse in vitro, indicative of a Vrp1p requirement for membrane fusion. ERG6 overexpression rescues vrp1Delta vacuole fusion in a cytosol-dependent manner. Cytosol prepared from the vrp1Delta strain remains active; therefore, cytosol is not resupplying Vrp1p. Las17p (Vrp1p functional partner) antibodies, which inhibit wild-type vacuole fusion, do not inhibit the fusion of vacuoles from the vrp1Delta-ERG6 overexpression strain. Vacuole-associated actin turnover is decreased in the vrp1Delta strain, but recovered by ERG6 overexpression linking sterol enrichment to actin remodeling. Therefore, the Vrp1p/Las17p requirement for membrane fusion is bypassed by increased sterols, which promotes actin remodeling as part the membrane fusion mechanism.  相似文献   

17.
The high capacity general amino acid permease, Gap1p, in Saccharomyces cerevisiae is distributed between the plasma membrane and internal compartments according to availability of amino acids. When internal amino acid levels are low, Gap1p is localized to the plasma membrane where it imports available amino acids from the medium. When sufficient amino acids are imported, Gap1p at the plasma membrane is endocytosed and newly synthesized Gap1p is delivered to the vacuole; both sorting steps require Gap1p ubiquitination. Although it has been suggested that identical trans-acting factors and Gap1p ubiquitin acceptor sites are involved in both processes, we define unique requirements for each of the ubiquitin-mediated sorting steps involved in delivery of Gap1p to the vacuole upon amino acid addition. Our finding that distinct ubiquitin-mediated sorting steps employ unique trans-acting factors, ubiquitination sites on Gap1p, and types of ubiquitination demonstrates a previously unrecognized level of specificity in ubiquitin-mediated protein sorting.  相似文献   

18.
19.
Intracellular sorting of the general amino acid permease (Gap1p) in Saccharomyces cerevisiae depends on availability of amino acids such that at low amino acid concentrations Gap1p is sorted to the plasma membrane, whereas at high concentrations Gap1p is sorted to the vacuole. In a genome-wide screen for mutations that affect Gap1p sorting we identified deletions in a subset of components of the ESCRT (endosomal sorting complex required for transport) complex, which is required for formation of the multivesicular endosome (MVE). Gap1p-GFP is delivered to the vacuolar interior by the MVE pathway in wild-type cells, but when formation of the MVE is blocked by mutation, Gap1p-GFP efficiently cycles from this compartment to the plasma membrane, resulting in unusually high permease activity at the cell surface. Importantly, cycling of Gap1p-GFP to the plasma membrane is blocked by high amino acid concentrations, defining recycling from the endosome as a major step in Gap1p trafficking under physiological control. Mutations in LST4 and LST7 genes, previously identified for their role in Gap1p sorting, similarly block MVE to plasma membrane trafficking of Gap1p. However, mutations in other recycling complexes such as the retromer had no significant effect on the intracellular sorting of Gap1p, suggesting that Gap1p follows a genetically distinct pathway for recycling. We previously found that Gap1p sorting from the Golgi to the endosome requires ubiquitination of Gap1p by an Rsp5p ubiquitin ligase complex, but amino acid abundance does not appear to significantly alter the accumulation of polyubiquitinated Gap1p. Thus the role of ubiquitination appears to be a signal for delivery of Gap1p to the MVE, whereas amino acid abundance appears to control the cycling of Gap1p from the MVE to the plasma membrane.  相似文献   

20.
Ergosterol is the yeast functional equivalent of cholesterol in mammalian cells. Deletion of the ERG6 gene, which encodes an enzyme catalyzing a late step of ergosterol biosynthesis, impedes targeting of the tryptophan permease Tat2p to the plasma membrane, but does not promote vacuolar degradation. It is unknown whether similar features appear when other steps of ergosterol biogenesis are inhibited. We show herein that the ergosterol biosynthesis inhibitor zaragozic acid (ZA) evoked massive vacuolar degradation of Tat2p, accompanied by a decrease in tryptophan uptake. ZA inhibits squalene synthetase (SQS, EC 2.5.1.21), which catalyzes the first committed step in the formation of cholesterol/ergosterol. The degradation of Tat2p was dependent on the Rsp5p-mediated ubiquitination of Tat2p and was not suppressed by deletions of VPS1, VPS27, VPS45 or PEP12. We will discuss ZA-mediated Tat2p degradation in the context of lipid rafts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号