首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Two Salmonella hybrid strains, SL5313 (Salmonella typhimurium with a D.rfb+ gene cluster) and SL5396 (S. enteritidis with a B.rfb+ gene cluster), each expressing both O-antigen 4 (of serogroup B) and O-antigen 9 (of serogroup D) were studied by immunofluorescence using a mixture of O4-specific mouse monoclonal and O9-specific rabbit polyclonal antibodies. Bound antibodies, detected by anti-mouse antibody labelled with fluorescein isothiocyanate and anti-rabbit antibody labelled with tetramethylrhodamine isothiocyanate showed that more than 98% of the bacteria expressed both the O4 and O9 epitopes. Phenol-water-extracted lipopolysaccharide from batch-grown cultures subjected to sugar and methylation analyses by gas-liquid chromatography and mass spectrometry were shown to contain abequose (of the O4 epitope) and tyvelose (of the O9 epitope) in ratios of 1:1.5 and 1:2.5 for SL5313 and SL5396, respectively. Isolated polysaccharide chains, obtained by weak-acid hydrolysis of the lipopolysaccharides, were found to contain both O4 and O9 specificities in the same molecule, since polysaccharide bound to O4 antibody attached to a solid-phase-adsorbed O9-specific antibody and vice versa. This demonstrates that in strains SL5313 and SL5396 O chains containing both O4 repeating units (from S. typhimurium) and O9 units (from S. enteritidis) are present.  相似文献   

2.
The rfb (O antigen) gene cluster of a group C1 Salmonella enterica strain was sequenced; it comprised seven open reading frames which precisely replaced the 16 open reading frames of a group B strain. Two genes of the mannose biosynthetic pathway were present: rfbK (phosphomannomutase) had a G+C content of 0.61 and had only 40% identity to rfbK of group B but was very similar to cpsG of the capsular polysaccharide pathway with 96% identity, whereas rfbM [guanosine diphosphomannose (GDP-Man) pyrophosphorylase] had a G+C content of 0.39. Other genes had G+C contents ranging from 0.24 to 0.28. rfbM(C1) and rfbM(B) had 60% identity, which is much less than expected within a species, but nonetheless indicates a much more recent common ancestor than for rfbK. The other genes showed much lower or no similarity to rfb genes of other S. enterica strains. It appears that the gene cluster evolved outside of Salmonella in a species with low G+C content: the rfbM gene presumably derives from that period whereas the rfbK gene appears to have arisen after transfer of the cluster to S. enterica by duplication of the S. enterica cpsG gene, presumably replacing an rfbK gene of low G+C content.  相似文献   

3.
The Salmonella enterica group C1 O antigen structure has a Man-Man-Man-Man-GlcNAc backbone with a glucose branch, which differs from the S. enterica group B O antigen structure which has a Man-Rha-Gal backbone with abequose as side-chain. We have cloned the group C1 rfb (O antigen) gene cluster from serovar montevideo strain M40, using a low-copy-number cosmid vector. The restriction map of the group C1 (M40) rfb gene cluster was compared with that of group B strain LT2 by Southern hybridization and restriction enzyme analysis. The results indicate that the flanking genes are very similar in the two strains, but there is no detectable similarity in the rfb regions. We localized the mannose pathway genes rfbM and rfbK and one of the genes, rfbK, shows considerably similarity to cpsG of strain LT2, suggesting that part of the mannose pathway in the group C1 rfb cluster is derived from a gene of the M antigen (cps) cluster. The M antigen, which forms a capsule, is comprised of four sugars, including fucose. The biosynthetic pathway of GDP-fucose has steps in common with the GDP-mannose pathway, and the cps cluster has isogenes of rfbK and rfbM, presumably as part of a fucose pathway. We discuss the structure and possible evolution of the group C1 rfb gene cluster.  相似文献   

4.
The O antigens of Salmonella serogroups A, B, and D differ structurally in their side chain sugar residues. The genes encoding O-antigen biosynthesis are clustered in the rfb operon. The gene rfbJ in strain LT2 (serovar typhimurium, group B) and the genes rfbS and rfbE in strain Ty2 (serovar typhi, group D) account for the known differences in the rfb gene clusters used for determination of group specificity. In this paper, we report the nucleotide sequence of 2.9 kb of DNA from the rfb gene cluster of strain Ty2 and the finding of two open reading frames which have limited similarity with the corresponding open reading frames of strain LT2. These two genes complete the sequence of the rfb region of group D strain Ty2 if we use strain LT2 sequence where restriction site data show it to be extremely similar to the strain Ty2 sequence. The restriction map of the rfb gene cluster in group A strain IMVS1316 (serovar paratyphi) is identical to that of the cluster in strain Ty2 except for a frameshift mutation in rfbE and a triplicated region. The rfb gene clusters of these three strains are compared, and the evolutionary origin of these genes is discussed.  相似文献   

5.
Biosynthesis of the Salmonella typhimurium LT2 O antigen is encoded by genes which map in the rfb cluster. The cloning and restriction enzyme analysis of part of this cluster have been described previously (H. N. Brahmbhatt, N. B. Quigley, and P. R. Reeves, Mol. Gen. Genet. 203:172-176, 1986). The entire rfb gene cluster has now been cloned, and a detailed restriction enzyme map has been constructed which has enabled us to map the approximate positions of individual rfb genes.  相似文献   

6.
L. Wang  L. K. Romana    P. R. Reeves 《Genetics》1992,130(3):429-443
Salmonella enterica is highly polymorphic for the O antigen, a surface polysaccharide that is subject to intense selection by the host immune system. This polymorphism is used for serotyping Salmonella isolates. The genes encoding O antigen biosynthesis are located in the rfb gene cluster. We report here the cloning and sequence of the 19-kb rfb region from strain M32 (serovar anatum, group E1) and compare it with that of strain LT2 (serovar typhimurium, group B). Genes for biosynthetic pathways common to both strains are conserved and have very similar sequences. In contrast, the five genes for CDP-abequose synthesis, present in strain LT2, are absent in strain M32; three open reading frames (ORFs) of strain LT2, thought to include genes for transferases, are not present in strain M32 but are replaced by three different ORFs with little or low level of similarity. Both rfb gene clusters are low in G + C content, indicating that they were transferred from a common ancestral species with low G + C content to S. enterica relatively recently (in the evolutionary sense). We discuss the recombination and lateral transfer events which may have been involved in the evolution of the polymorphism.  相似文献   

7.
To investigate the effect of chromosomal mutation on the synthesis of rfe-dependent Escherichia coli O9 lipopolysaccharide (LPS), the cloned E. coli O9 rfb gene was introduced into Salmonella typhimurium strains defective in various genes involved in the synthesis of LPS. When E. coli O9 rfb was introduced into S. typhimurium strains possessing defects in rfb or rfc, they synthesized E. coli O9 LPS on their cell surfaces. The rfe-defective mutant of S. typhimurium synthesized only very small amounts of E. coli O9 LPS after the introduction of E. coli O9 rfb. These results confirmed the widely accepted idea that the biosynthesis of E. coli O9-specific polysaccharide does not require rfc but requires rfe. By using an rfbT mutant of the E. coli O9 rfb gene, the mechanism of transfer of the synthesized E. coli O9-specific polysaccharide from antigen carrier lipid to the R-core of S. typhimurium was investigated. The rfbT mutant of the E. coli O9 rfb gene failed to direct the synthesis of E. coli O9 LPS in the rfc mutant strain of S. typhimurium, in which rfaL and rfbT functions are intact, but directed the synthesis of the precursor. Because the intact E. coli O9 rfb gene directed the synthesis of E. coli O9 LPS in the same strain, it was suggested that the rfaL product of S. typhimurium and rfbT product of E. coli O9 cooperate to synthesize E. coli O9 LPS in S. typhimurium.  相似文献   

8.
Escherichia coli K-12 has long been known not to produce an O antigen. We recently identified two independent mutations in different lineages of K-12 which had led to loss of O antigen synthesis (D. Liu and P. R. Reeves, Microbiology 140:49-57, 1994) and constructed a strain with all rfb (O antigen) genes intact which synthesized a variant of O antigen O16, giving cross-reaction with anti-O17 antibody. We determined the structure of this O antigen to be -->2)-beta-D-Galf-(1-->6)-alpha-D-Glcp- (1-->3)-alpha-L-Rhap-(1-->3)-alpha-D-GlcpNAc-(1-->, with an O-acetyl group on C-2 of the rhamnose and a side chain alpha-D-Glcp on C-6 of GlcNAc. O antigen synthesis is rfe dependent, and D-GlcpNAc is the first sugar of the biological repeat unit. We sequenced the rfb (O antigen) gene cluster and found 11 open reading frames. Four rhamnose pathway genes are identified by similarity to those of other strains, the rhamnose transferase gene is identified by assay of its product, and the identities of other genes are predicted with various degrees of confidence. We interpret earlier observations on interaction between the rfb region of Escherichia coli K-12 and those of E. coli O4 and E. coli Flexneri. All K-12 rfb genes were of low G+C content for E. coli. The rhamnose pathway genes were similar in sequence to those of (Shigella) Dysenteriae 1 and Flexneri, but the other genes showed distant or no similarity. We suggest that the K-12 gene cluster is a member of a family of rfb gene clusters, including those of Dysenteriae 1 and Flexneri, which evolved outside E. coli and was acquired by lateral gene transfer.  相似文献   

9.
The O antigen of Escherichia coli O111 is identical in structure to that of Salmonella enterica serovar adelaide. Another O-antigen structure, similar to that of E. coli O111 and S. enterica serovar adelaide is found in both E. coli O55 and S. enterica serovar greenside. Both O-antigen structures contain colitose, a 3,6 dideoxyhexose found only rarely in the Enterobacteriaceae. The O-antigen structure is determined by genes generally located in the rfb gene cluster. We cloned the rfb gene cluster from an E. coli O111 strain (M92), and the clone expressed O antigen in both E. coli K-12 and a K-12 strain deleted for rfb. Lipopolysaccharide analysis showed that the O antigen produced by strains containing the cloned DNA is polymerized. The chain length of O antigen was affected by a region outside of rfb but linked to it and present on some of the plasmids containing rfb. The rfb region of M92 was analysed and compared, by DNA hybridization, with that of strains with related O antigens. The possible evolution of the rfb genes in these O antigen groups is discussed.  相似文献   

10.
The rfb gene cluster of Salmonella LT2 has been cloned and sequenced. The genes rfbA, rfbB, rfbD, rfbF, rfbG, rfbK, rfbM and rfbP were located individually and the gene rfbL was located outside the cluster. Approximately 16 open reading frames were found in the region which is essential for the expression of O antigen. The gene products of rfbB and rfbG were found to have homology with the group of dehydrogenase and related enzymes described previously. Analysis of the G + C ratio of the rfb cluster extended the area of low-G + C composition previously found in the sequence of rfbJ to the whole rfb gene cluster. Three to five segments with discrete G + C contents and codon adaptation indices are present in the rfb region, indicating a heterogeneous origin of these segments. Potential promoters were found near the start of the rfb region, supporting the possibility that the rfb gene cluster is an operon.  相似文献   

11.
Escherichia coli K-12 varkappa971 was crossed with a smooth Salmonella typhimurium donor, HfrK6, which transfers early the ilv-linked rfa region determining lipopolysaccharide (LPS) core structure. Two ilv(+) hybrids differing in their response to the LPS-specific phages FO and C21 were then crossed with S. typhimurium HfrK9, which transfers early the rfb gene cluster determining O repeat unit structure. Most recombinants selected for his(+) (near rfb) were agglutinated by Salmonella factor 4 antiserum. Transfer of an F' factor (FS400) carrying the rfb-his region of S. typhimurium to the same two ilv(+) hybrids gave similar results. LPS extracted from two ilv(+),his(+), factor 4-positive hybrids contained abequose, the immunodominant sugar for factor 4 specificity. By contrast, his(+) hybrids obtained from varkappa971 itself by similar HfrK9 and F'FS400 crosses were not agglutinated by factor 4 antiserum, indicating that the parental E. coli varkappa971 does not have the capacity to attach Salmonella O repeat units to its LPS core. It is concluded that the Salmonella rfb genes are expressed only in E. coli varkappa971 hybrids which have also acquired ilv-linked genes (presumably rfa genes affecting core structure or O-translocase ability, or both) from a S. typhimurium donor. When E. coli varkappa971 was crossed with a smooth E. coli donor, Hfr59, of serotype O8, which transfers his early, most his(+) recombinants were agglutinated by E. coli O8 antiserum and lysed by the O8-specific phage, Omega8. This suggests that, although the parental E. coli K-12 strain varkappa971 cannot attach Salmonella-specific repeat units to its LPS core, it does have the capacity to attach E. coli O8-specific repeat units.  相似文献   

12.
The Kauffmann-White scheme for serotyping Salmonella recognizes 46 somatic (O) antigen groups, which together with detection of the flagellar (H) antigens form the basis for serotype identification. Although serotyping has become an invaluable typing method for epidemiological investigations of Salmonella, it does have some practical limitations. We have been characterizing the genes required for O and H antigen biosynthesis with the goal of developing a DNA-based system for the determination of serotype in Salmonella. The majority of the enzymes involved in O antigen biosynthesis are encoded by the rfb gene cluster. We report the sequencing of the rfb region from S. enterica serotype Sundsvall (serogroup O:6,14). The S. enterica serotype Sundsvall rfb region is 8.4 kb in length and comprises six open reading frames. When compared with other previously characterized rfb regions, the serogroup O:6,14 sequence is most related to serogroup C(1). On the basis of DNA sequence similarity, we identified two genes from the mannose biosynthetic pathway, two mannosyl transferase genes, the O unit flippase gene and, possibly, the O antigen polymerase. The whole cluster is derived from a low-G+C-content organism. Comparative sequencing of an additional serogroup O:6,14 isolate (S. enterica serotype Carrau) revealed a highly homologous sequence, suggesting that O antigen factors O:24 and O:25 (additional O factors associated with serogroup O:6,14) are encoded outside the rfb gene cluster. We developed a serogroup O:6,14-specific PCR assay based on a region of the putative wzx (O antigen flippase) gene. This provides the basis for a sensitive and specific test for the rapid identification of Salmonella serogroup O:6,14.  相似文献   

13.
In group C1 salmonellae, rfe and rff genes linked to the ilv locus specify the synthesis of a glycolipid called the enterobacterial common antigen. In contrast, in group B salmonellae the synthesis requires in addition some of the genes in the rfb cluster, the main genetic determinant of the O side chains of lipopolysaccharide. In an effort to define the biochemical functions of these rfb genes, we looked in Salmonella typhimurium LT2 (group B) for rfb mutants in which the synthesis of both enterobacterial common antigen and the O side chains would be blocked in a manner suppressible by the wild-type rfe cluster of S. montevideo, of group C1. We found one mutant with these characteristics. This rfb mutation affected the activity of dTDPglucose pyrophosphorylase (glucose-1-phosphate thymidylyltransferase, EC 2.7.7.24). Whereas the rfe cluster of S. montevideo contained a gene producing this enzyme activity, there was no evidence for the presence of such a gene in the rfe cluster of group B strains. These results also showed that the synthesis of dTDP-glucose is necessary for the biosynthesis of enterobacterial common antigen; this conclusion fits with the recent demonstration of 4-acetamido-4,6-dideoxy-D-galactose as a component of enterobacterial common antigen (Lugowski et al., Carbohydr. Res. 118:173-181, 1983), because the biosynthesis of the donor of this sugar, dTDP-4-acetamido-4,6-dideoxy-D-galactose, requires dTDPglucose pyrophosphorylase.  相似文献   

14.
S H Xiang  M Hobbs    P R Reeves 《Journal of bacteriology》1994,176(14):4357-4365
The Salmonella enterica O antigen is a highly variable surface polysaccharide composed of a repeated oligosaccharide (the O unit). The O unit produced by serogroup D2 has structural features in common with those of groups D1 and E1, and hybridization studies had previously suggested that the D2 rfb gene cluster responsible for O-unit biosynthesis is indeed a hybrid of the two. In this study, the rfb gene cluster was cloned from a group D2 strain of S. enterica sv. Strasbourg. Mapping, hybridization, and DNA sequencing showed that the organization of the D2 rfb genes is similar to that of group D1, with the alpha-mannosyl transferase gene rfbU replaced by rfbO, the E1-specific beta-mannosyl transferase gene. The E1-specific polymerase gene (rfc) has also been acquired. Interestingly, the D1-like and E1-like rfb regions are separated by an additional sequence closely related to an element (Hinc repeat [H-rpt]) associated with the Rhs loci of Escherichia coli. The H-rpt resembles an insertion sequence and possibly mediated the intraspecific recombination events which produced the group D2 rfb gene organization.  相似文献   

15.
The rfb (O antigen) gene cluster of group C2 Salmonella differs from that of group B in a central region of 12.4 kb: we report the sequencing of this region of strain M67 (group C2) and a subsequent comparison with the central region of strain LT2 (group B). We find a block of seven open reading frames unique to group C2 which encode the O antigen polymerase (rfc) and the transferases responsible for assembly of the group C2 O antigen. The remaining rfb genes are common to strains M67 and LT2, but rfbJ (CDP-abequose synthase) and rfbM and rfbK (GDP-mannose synthesis), which are immediately adjacent to the central region, are highly divergent. All these genes have a low G+C content and appear to have been recent additions to Salmonella enterica. We discuss the evolutionary significance of the arrangement and divergence of the genes in the polymorphism of the rfb cluster.  相似文献   

16.
We report sequencing of the O antigen encoded by the rfb gene cluster of Salmonella enterica serotype Jangwani (O17) and Salmonella serotype Cerro (O18). We developed serogroup O17- and O18-specific PCR assays based on rfb gene targets and found them to be sensitive and specific for rapid identification of Salmonella serogroups O17 and O18.  相似文献   

17.
To investigate the complexity of the antigenic determinants presented on the surface of Salmonella typhimurium, a panel of murine monoclonal antibodies was generated and characterized. Hybridomas specific for S. typhimurium (strain TML, O antigens 1, 4, 12) were produced by immunization with acetone-killed and dried bacteria and standard fusion procedures. In this report, 15 such monoclonal antibodies, all of which bind lipopolysaccharide (LPS) extracted from S. typhimurium, are described. The fine specificity of these antibodies was assessed by examining the differential binding of each antibody to a panel of Salmonella strains, which selectively express different O antigenic determinants. This analysis defined several distinct categories of monoclonal antibodies of varying isotypes. Four anti-O:4-specific antibodies were identified. Two were specific for O:1. One antibody appears to react with the core polysaccharide of S. typhimurium LPS. Several of the monoclonal antibodies recognized LPS determinants that are presumably created by a combination of O antigens. For instance, one bound only to Salmonella strains that expressed both O:1 and O:12, whereas another bound only to those strains which expressed both O:4 and O:12. A group of three antibodies bound to any strain that simultaneously expressed O:1, O:4, and O:12. A distinct group of three monoclonal antibodies also bound strains that expressed O:1, O:4, and O:12, but only when the O:5 antigenic determinant was not present. The latter are, in that respect, S. typhimurium strain TML LPS-specific. The results of this analysis suggest that the epitopes of the S. typhimurium LPS molecule that are recognized by the host are considerably more complex than has been previously indicated by classical serology.  相似文献   

18.
Defined regions of the rfb gene cluster of Group E1 Salmonella enterica serovar Anatum were introduced into a mutated derivative of this strain that lacks O-polysaccharide polymerase activity. Three different kinds of assays performed on the various transformants all indicate that two functional wzy (rfc) genes reside within the Group E1 Salmonella rfb gene cluster. The product of ORF9.6, positioned near the center of the rfb gene cluster, joins O-polysaccharide repeat units together by alpha-glycosidic linkages to produce antigen O10, the major serological determinant of Group E1 S. enterica. The product of ORF17.4, positioned at the downstream end of the rfb gene cluster, can join repeat units together by beta-glycosidic linkages to produce antigen O15, the major serological determinant of Group E2 S. enterica.  相似文献   

19.
We report the cloning and mapping of the entire rfb gene cluster of a group C2 Salmonella strain. Comparison with the rfb region of group B strain LT2 and group D strain Ty2 reveals an 11.8 kb central region of limited similarity flanked by regions of high similarity. The genes from the central region confer a group C2 O-antigen structure on a Salmonella LT2 partial delete strain. The significance of this region in relation to function and evolutionary origin is discussed. We also report evidence for the existence of an O-antigen chain-length determinant in Escherichia coli K12 and propose a model for a possible mechanism by which a preferred chain length is determined.  相似文献   

20.
We recently reported a novel genetic locus located in the sbcB-his region of the chromosomal map of Escherichia coli K-12 which directs the expression of group 6-positive phenotype in Shigella flexneri lipopolysaccharide, presumably due to the transfer of O-acetyl groups onto rhamnose residues of the S. flexneri O-specific polysaccharide (Z. Yao, H. Liu, and M. A. Valvano, J. Bacteriol. 174:7500-7508, 1992). In this study, we identified the genetic region encoding group 6 specificity as part of the rfb gene cluster of E. coli K-12 strain W3110 and established the DNA sequence of most of this cluster. The rfbBDACX block of genes, located in the upstream region of the rfb cluster, was found to be strongly conserved in comparison with the corresponding region in Shigella dysenteriae type 1 and Salmonella enterica. Six other genes, four of which were shown to be essential for the expression of group 6 reactivity in S. flexneri serotypes Y and 4a, were identified downstream of rfbX. One of the remaining two genes showed similarities with rfc (O-antigen polymerase) of S. enterica serovar typhimurium, whereas the other, located in the downstream end of the cluster next to gnd (gluconate-6-phosphate dehydrogenase), had an IS5 insertion. Recently, it has been reported that the IS5 insertion mutation (rfb-50) can be complemented, resulting in the formation of O16-specific polysaccharide by E. coli K-12 (D. Liu and P. R. Reeves, Microbiology 140:49-57, 1994). We present immunochemical evidence suggesting that S. flexneri rfb genes also complement the rfb-50 mutation; in the presence of rfb genes of E. coli K-12, S. flexneri isolates express O16-specific polysaccharide which is also acetylated in its rhamnose residues, thereby eliciting group 6 specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号