首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular Characterization of a Maize B Chromosome Centric Sequence   总被引:28,自引:0,他引:28       下载免费PDF全文
Supernumerary chromosomes are widespread in the plant kingdom but little is known of their molecular nature or mechanism of origin. We report here the initial cloning of sequences from the maize B chromosome. Our analysis suggests that many sequences are highly repetitive and shared with the normal A chromosomes. However, all clones selected for B-specificity contain at least one copy of a particular repeat. Cytological mapping using B chromosome derivatives and in situ hybridization show that the B specific repeats are derived from the centric region of the chromosome. Sequence analysis of this repeat shows homology to motifs mapped to various plant and animal centromeres and to the maize neocentromere. A precise localization of these sequences among breakpoints within the B centromere and an homology to a facultative centromere, suggest a role for this sequence in centromere function.  相似文献   

2.
The molecular characterization of maize B chromosome specific AFLPs   总被引:9,自引:0,他引:9  
Qi ZX  Zeng H  Li XL  Chen CB  Song WQ  Chen RY 《Cell research》2002,12(1):63-68
INTRODUCTIONB chromosomes (Bs) are also called supernumer-ary chromosomes, accessory chromosomes or extrachromosomes. They are supernumerary to the stan-dard chromosome (A chromosomes) set, which arefound in hundreds of plants and animals. They areoften morphologicaIly distinct from A chromosomes,being sma1ler and more highly heterochromatic inmost cases. B chromosomes are inherited in a non-Mendelian wap They dO not pair with A chromo-somes, and exhibite meiotic and mitotic instabiIit…  相似文献   

3.
The occurrence and nature of repeated DNA sequences has been analysed within an 850 kb YAC contig on Arabidopsis thaliana chromosome 4. Hybridization analysis with seven RFLP markers, six cosmid contigs, 29 YAC end probes and eight YAC clones showed that a least 585 kb of the 850 kb contained only low-copy sequences. One YAC end probe, EG15C8LE, hybridized to multiple genomic fragments and contained a sequence with predicted protein homology to cytochrome P450 monooxygenases. Another one, EG11B7RE, was found to be non-contiguous with the other YAC clones and contained a dispersed repetitive sequence associated with centromeric regions  相似文献   

4.
Peng SF  Lin YP  Lin BY 《Genetics》2005,169(1):375-388
Maize B chromosome sequences have been previously cloned by microdissection, and all are proven to be highly repetitive, to be homologous to the normal complement, and to show no similarity to any published gene other than mobile elements. In this study, we isolated sequences from defined B regions. The strategy involved identification and then mapping of AFLP-derived B fragments before cloning. Of 14 B AFLPs, 13 were mapped by 12 B-10L translocations: 3 around the centromeric knob region, 3 in the proximal euchromatic, 1 around the border of proximal euchromatic and distal heterochromatic, and 6 in the distal heterochromatic region of the B long arm. The AFLP fragments were cloned and sequenced. Analogous to the microdissected sequences, all sequences were repetitive, and all but two were highly homologous to the A chromosomes. FISH signals of all but three clones appeared in pachytene B as well as in somatic A and B chromosomes. None of these clones exhibits identity to any published gene. Six clones displayed homology to two centromeric BACs, four to sequences of chromosomes 3, 4, 7, and 10, four to retrotransposons, and three to no sequence deposited in GenBank. Furthermore, flanking regions of two highly B-specific clones were characterized, showing extension of a B-exclusive nature. The possibility of the presence of novel B repeat(s) is discussed.  相似文献   

5.
Page BT  Wanous MK  Birchler JA 《Genetics》2001,159(1):291-302
Previous work has identified sequences specific to the B chromosome that are a major component of the B centromere. To address the issue of the origin of the B and the evolution of centromere-localized sequences, DNA prepared from plants without B chromosomes was probed to seek evidence for related sequences. Clones were isolated from maize line B73 without B chromosomes by screening DNA at reduced stringency with a B centromeric probe. These clones were localized to maize centromere 4 using fluorescence in situ hybridization. They showed homology to a maize centromere-mapped sequence, to maize B chromosome centromere sequences, and to a portion of the unit repeat of knobs, which act as neocentromeres in maize. A representative copy was used to screen a BAC library to obtain these sequences in a larger context. Each of the six positive BACs obtained was analyzed to determine the nature of centromere 4-specific sequences present. Fifteen subclones of one BAC were sequenced and the organization of this chromosome 4-specific repeat was examined.  相似文献   

6.
Supernumerary chromosomes (B chromosomes) occur in approximately 15% of eukaryote species. Although these chromosomes have been extensively studied, knowledge concerning their specific molecular composition is lacking in most cases. The accumulation of repetitive DNAs is one remarkable characteristic of B chromosomes, and the occurrence of distinct types of multigene families, satellite DNAs and some transposable elements have been reported. Here, we describe the organization of repetitive DNAs in the A complement and B chromosome system in the grasshopper species Abracris flavolineata using classical cytogenetic techniques and FISH analysis using probes for five multigene families, telomeric repeats and repetitive C0t-1 DNA fractions. The 18S rRNA and H3 histone multigene families are highly variable and well distributed in A. flavolineata chromosomes, which contrasts with the conservation of U snRNA genes and less variable distribution of 5S rDNA sequences. The H3 histone gene was an extensively distributed with clusters occurring in all chromosomes. Repetitive DNAs were concentrated in C-positive regions, including the pericentromeric region and small chromosomal arms, with some occurrence in C-negative regions, but abundance was low in the B chromosome. Finally, the first demonstration of the U2 snRNA gene in B chromosomes in A. flavolineata may shed light on its possible origin. These results provide new information regarding chromosomal variability for repetitive DNAs in grasshoppers and the specific molecular composition of B chromosomes.  相似文献   

7.
The unicellular green alga Chlorella vulgaris (strain C-169) has a small genome (38.8 Mb) consisting of 16 chromosomes, which can be easily separated by CHEF gel electrophoresis. We have isolated and characterized the smallest chromosome (chromosome 1, 980 kb) to elucidate the fundamental molecular organization of a plant-type chromosome. Restriction mapping and sequence analyses revealed that the telomeres of this chromosome consist of 5′-TTTAGGG repeats running from the centromere towards the termini; this sequence is identical to those reported for several higher plants. This sequence is reiterated approximately 70 times at both termini, although individual clones exhibited microheterogeneity in both sequence and copy number of the repeats. Subtelomeric sequences proximal to the termini were totally different from each other: on the left arm, unique sequence elements (14–20 bp) which were specific to chromosome I, form a repeat array of 1.7 kb, whereas a 1.0 kb sequence on the right arm contained a poly(A)-associated element immediately next to the telomeric repeats. This element is repeated several times on chromosome I and many times on all the other chromosomes of this organism.  相似文献   

8.
Isolation of repetitive DNA sequences from human chromosome 21.   总被引:4,自引:2,他引:2  
We have developed a method for the isolation of phage from the human genomic library that carry repetitive DNA sequences highly represented on specific human chromosomes. We have used this technique to select recombinants carrying inserts concentrated on chromosome 21. Five clones, representing two families of sequences, have been characterized. Members of each family show cross-homology, but the two families show no homology with each other. In all but one case, the clones do not contain members of the human Alu repeat family. Single chromosome-concentrated repetitive sequences should prove to be useful in studies of the origin, evolution, and function of repetitive DNA and in regional chromosome mapping.  相似文献   

9.
We have isolated and sequenced a yeast gene encoding a protein (Mr 24,875) very rich in serine (SRP) and alanine residues that accounted for 25% and 20% of the total amino acids, respectively. The SRP1 gene is highly expressed in culture conditions leading to glucose repression (Marguet & Lauquin, 1986), the amount of SRP1 mRNA representing about 1 to 2% of total poly(A)+ RNA. A repetitive structure of eight direct tandem repeats 36-base long, also reflected in the amino acid sequence, was found in the second half of the open reading frame. The consensus amino acid sequence of the repeat was Ser-Ser-Ser-Ala-Ala-Pro-Ser-Ser-Ser-Glu-Ala-Lys. Replacing the genomic copy of the cloned gene with a disrupted SRP1 gene indicated that the SRP1 gene was not essential for viability in yeast, but several SRP1-homologous sequences were found within the yeast genome, raising the possibility that the disrupted SRP1 gene is rescued by one of the other SRP-homologous sequences. Complete separation of yeast chromosomes by contour-clamped homogeneous field electrophoresis indicated that, apart from chromosome V, which carries the SRP1 gene, 12 chromosomes have SRP-related sequences with various degrees of homology. These sequences were located on chromosomes XV, VII and XI under stringent conditions of hybridization (tm -20 degrees C), and observed on chromosomes I, II, III, IV, VI, VIII, X, XI and XII, only under low-stringency conditions (tm -40 degrees C). Northern blot analysis of both the wild type and SRP1-disrupted strains indicated that along with SRP1 at least one more member of the SRP family was transcribed to a 0.7 kb (1 kb = 10(3) bases) polyadenylated RNA species clearly distinct from the SRP1-specific mRNA (1 kb long). Analyses of the SRP1 repeat domain suggested a model for the divergent evolution of the repeats in the SRP1 sequence.  相似文献   

10.
We have characterized at the molecular level seven chromosome-specific libraries constructed in phage lambda Charon 21A from flow-sorted human chromosomes. The purity of libraries prepared from chromosomes sorted from hamster X human cells was estimated by species-specific hybridization and ranged from 48% to 83% of clones containing human inserts. Among libraries of chromosomes from human cells, mass screenings were made for repetitive sequences and 20 clones from the #18 and #20 libraries were analyzed in detail. Ten to fifteen percent of all clones contain sequences which can be mapped; 80-100% of these derive from the intended chromosome of origin, demonstrating very high purity and a 35 X enrichment of chromosome-specific sequences over a total genomic library. The two libraries contain a high, though dissimilar, percent of repeat-containing clones; the #18 library has 55% repetitive clones and the #20 library 85%. This dissimilarity may be due to a difference in insert size distribution, since the #18 library has smaller inserts than the #20. This could be caused by variation in extent of digestion of insert DNA and/or differences in sequence organization between the two chromosomes. A method more sensitive than conventional plaque-lift screening was used to detect repetitive inserts; in this way nearly all repetitive clones could be eliminated before purification of their DNAs.  相似文献   

11.
Understanding the evolution of the maize B chromosome requires insight into the molecular organization of a large number of B clones, which can be potentially obtained by microdissection of the chromosome. Yet, the microdissection protocols currently available are ineffective for a large-scale isolation. In an attempt to improve its efficiency, a protocol was adopted to screen a microdissected B library with probes prepared from the degenerate oligonucleotide primed-PCR product of genomic DNA. This protocol resulted in 59 new B clones, most of which were highly repetitive sequences located in various B regions but mostly in the heterochromatic blocks of the long arm. They also appeared in A chromosomes. Twenty-four of these were retrotransposons, ten knob, 18 noncoding sequences, and seven unknown sequences. The implication of the new B sequences on the B evolution is discussed.  相似文献   

12.
Cheng YM  Lin BY 《Genetics》2003,164(1):299-310
Isolation of sequences from the maize B chromosome is always hampered by its high homology with the normal complements. In this study, this handicap was overcome by cloning the sequences from the pachytene B chromosomes dissected out of a slide by a micromanipulator followed by degenerate oligonucleotide-primed PCR. The isolated sequences were found to hybridize with genomic DNA in a B-dosage-dependent manner and with the pachytene B chromosome by fluorescence in situ hybridization (FISH), corroborating their B origin. A total of 19 B sequences were isolated, all of which are repetitive and, with one exception, are homologous to the A chromosome(s). Three sequences have strong homology to maize sequences that include two knob repeats and one zein gene (noncoding region), and 10 others are homologous to the noncoding region of Adh1, Bz1, Gag, Zein, and B centromere to a lesser degree. Six sequences have no homology to any gene. In addition to FISH, the B-specific sequence and a partially B-specific one were also mapped, by seven newly characterized TB-10L translocations, to a similar location on the central portion of the distal heterochromatic region, spreading over a region of about one-third of the B chromosome.  相似文献   

13.
Two recombinant DNA clones that are localized to single human chromosomes were isolated from a human repetitive DNA library. Clone pHuR 98, a variant satellite 3 sequence, specifically hybridizes to chromosome position 9qh. Clone pHuR 195, a variant satellite 2 sequence, specifically hybridizes to chromosome position 16qh. These locations were determined by fluorescent in situ hybridization to metaphase chromosomes, and confirmed by DNA hybridizations to human chromosomes sorted by flow cytometry. Pulsed field gel electrophoresis analysis indicated that both sequences exist in the genome as large DNA blocks. In situ hybridization to intact interphase nuclei showed a well-defined, localized organization for both DNA sequences. The ability to tag specific human autosomal chromosomes, both at metaphase and in interphase nuclei, allows novel molecular cytogenetic analyses in numerous basic research and clinical studies.  相似文献   

14.
Summary Several clones containing clusters of repetitive elements were isolated from a human chromosome 22 specific library. An EcoRI-XhoI fragment of 860bp was subcloned and was shown to belong to a family of tandemly repeated DNA linked to the Y-specific 3.4 kb HaeIII band. This probe hybridizes to several sets of sequences or subfamilies. The most abundant subfamily is a 1.8kb long sequence containing one EcoRV site, and in most repeats, one AvaII and one KpnI site. Using human-rodent somatic cell hybrid DNA, we have shown that this cluster is present on human chromosome 9 although presence on chromosome 15 is not excluded. Another subfamily, 6.1 kb long, appears to be exclusive of chromosome 16. By in situ hybridization with metaphasic chromosomes, these sets of repeats were mapped to the constitutive heterochromatin of a few chromosomes. Coexistence in one genome of long tandem repeats of distinct organization but similar length may represent the outcome of a continuous process of fixation of variant sequences. Homologous repeats are also abundant in four higher primate genomes (Orangutan, gorilla, chimpanzee, and man) but absent in other primates (African green monkey, rhesus monkey, baboon, and mouse lemur).  相似文献   

15.
Integration of the FISH pachytene and genetic maps of Medicago truncatula   总被引:6,自引:0,他引:6  
A molecular cytogenetic map of Medicago truncatula (2n = 2x = 16) was constructed on the basis of a pachytene DAPI karyogram. Chromosomes at this meiotic prophase stage are 20 times longer than at mitotic metaphase, and display a well differentiated pattern of brightly fluorescing heterochromatin segments. We describe here a pachytene karyogram in which all chromosomes can be identified based on chromosome length, centromere position, heterochromatin patterns, and the positions of three repetitive sequences (5S rDNA, 45S rDNA and the MtR1 tandem repeat), visualized by fluorescence in situ hybridization (FISH). We determined the correlation between genetic linkage groups and chromosomes by FISH mapping of bacterial artificial chromosome (BAC) clones, with two to five BACs per linkage group. In the cytogenetic map, chromosomes were numbered according to their corresponding linkage groups. We determined the relative positions of the 20 BACs and three repetitive sequences on the pachytene chromosomes, and compared the genetic and cytological distances between markers. The mapping resolution was determined in a euchromatic part of chromosome 5 by comparing the cytological distances between FISH signals of clones of a BAC contig with their corresponding physical distance, and showed that resolution in this region is about 60 kb. The establishment of this FISH pachytene karyotype, with a far better mapping resolution and detection sensitivity compared to those in the highly condensed mitotic metaphase complements, has created the basis for the integration of molecular, genetic and cytogenetic maps in M. truncatula.  相似文献   

16.
A bacterial artificial chromosome (BAC) library of banana (Musa acuminata) was used to select BAC clones that carry low amounts of repetitive DNA sequences and could be suitable as probes for fluorescence in situ hybridization (FISH) on mitotic metaphase chromosomes. Out of eighty randomly selected BAC clones, only one clone gave a single-locus signal on chromosomes of M. acuminata cv. Calcutta 4. The clone localized on a chromosome pair that carries a cluster of 5S rRNA genes. The remaining BAC clones gave dispersed FISH signals throughout the genome and/or failed to produce any signal. In order to avoid the excessive hybridization of repetitive DNA sequences, we subcloned nineteen BAC clones and selected their ‘low-copy’ subclones. Out of them, one subclone gave specific signal in secondary constriction on one chromosome pair; three subclones were localized into centromeric and peri-centromeric regions of all chromosomes. Other subclones were either localized throughout the banana genome or their use did not result in visible FISH signals. The nucleotide sequence analysis revealed that subclones, which localized on different regions of all chromosomes, contained short fragments of various repetitive DNA sequences. The chromosome-specific BAC clone identified in this work increases the number of useful cytogenetic markers for Musa.  相似文献   

17.
The unicellular green alga Chlorella vulgaris (strain C-169) has a small genome (38.8 Mb) consisting of 16 chromosomes, which can be easily separated by CHEF gel electrophoresis. We have isolated and characterized the smallest chromosome (chromosome 1, 980 kb) to elucidate the fundamental molecular organization of a plant-type chromosome. Restriction mapping and sequence analyses revealed that the telomeres of this chromosome consist of 5-TTTAGGG repeats running from the centromere towards the termini; this sequence is identical to those reported for several higher plants. This sequence is reiterated approximately 70 times at both termini, although individual clones exhibited microheterogeneity in both sequence and copy number of the repeats. Subtelomeric sequences proximal to the termini were totally different from each other: on the left arm, unique sequence elements (14–20 bp) which were specific to chromosome I, form a repeat array of 1.7 kb, whereas a 1.0 kb sequence on the right arm contained a poly(A)-associated element immediately next to the telomeric repeats. This element is repeated several times on chromosome I and many times on all the other chromosomes of this organism.  相似文献   

18.
An alphoid-like human repetitive DNA of the Sau3A family is present extrachromosomally and in the chromosomes. In the chromosomes, the DNA is located on chromosome 11 but related sequences are present in chromosome 17. We characterized the nature of the recombination involved in the excision of the extrachromosomal DNA from chromosome 11. The results show that the recombination occurs both between the homologous subunits and between the heterologous subunits with only a 70 to 80% sequence homology among them, suggesting that a DNA structure other than a sequence homology mediates the recombination process. The same type of recombination is responsible for the rearrangement of the related sequences in chromosome 17.  相似文献   

19.
We sought for cloned sequences of middle repetitive (MR) complexity that mark obligatory heterochromatic regions. Total genome probes were employed in a differential screening procedure to recover X-specific, Y-specific and autosomal specific heterochromatic sequences. X- and Y-linked sequences were recovered in the same experiment. (Y-linked clones will be described elsewhere). All nine independent, non-identical X-specific clones were found to be partially homologous to one another and to type I rDNA insertion. No other X-specific Bam HI or HindIII clones were found. In situ hybridization to normal and inverted chromosomes revealed extensive homology in the heterochromatin spanning the nucleolus organizer (NOR) and the eu-heterochromatin junction. Eleven clones which are underrepresented in polytene chromosomes were selected in another differential screening. None was autosome-specific. Five were of nucleolar origin. Among them a presumptive type II 28SrDNA insertion sequence was clearly localized within the X-chromosome proximal heterochromatin in addition to the known localization of the X and Y nucleolar organizers. We mapped three clones to major sites on the Y chromosome and to secondary autosomal sites. The results are discussed with regard to the complexity of heterochromatin organization.  相似文献   

20.
Most higher plants have complex genomes containing large quantities of repetitive DNA interspersed with low-copy-number sequences. Many of these repetitive DNAs are mobile and have homology to RNAs in various cell types. This can make it difficult to identify the genes in a long chromosomal continuum. It was decided to use genic sequence conservation and grass genome co-linearity as tools for gene identification. A bacterial artificial chromosome (BAC) clone containing sorghum genomic DNA was selected using a maize Adh1 probe. The 165 kb sorghum BAC was tested for hybridization to a set of clones representing the contiguous 280 kb of DNA flanking maize Adh1. None of the repetitive maize DNAs hybridized, but most of the low-copy-number sequences did. A low-copy-number sequence that did cross-hybridize was found to be a gene, while one that did not was found to be a low-copy-number retrotransposon that was named Reina. Regions of cross-hybridization were co-linear between the two genomes, but closer together in the smaller sorghum genome. These results indicate that local genomic cross-referencing by hybridization of orthologous clones can be an efficient and rapid technique for gene identification and studies of genome organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号