首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new toxin, Lqh alpha IT, which caused a unique mode of paralysis of blowfly larvae, was purified from the venom of the scorpion Leiurus quinquestriatus hebraeus, and its structural and pharmacological properties were compared to those of three other groups of neurotoxins found in Buthinae scorpion venoms. Like the excitatory and depressant insect-selective neurotoxins, Lqh alpha IT was highly toxic to insects, but it differed from these toxins in two important characteristics: (a) Lqh alpha IT lacked strict selectivity for insects; it was highly toxic to crustaceans and had a measurable but low toxicity to mice. (b) It did not displace an excitatory insect toxin, 125I-AaIT, from its binding sites in the insect neuronal membrane; this indicates that the binding sites for Lqh alpha IT are different from those shared by the excitatory and depressant toxins. However, in its primary structure and its effect on excitable tissues, Lqh alpha IT strongly resembled the well-characterized alpha scorpion toxins, which affect mammals. The amino acid sequence was identical with alpha toxin sequences in 55%-75% of positions. This degree of similarity is comparable to that seen among the alpha toxins themselves. Voltage- and current-clamp studies showed that Lqh alpha IT caused an extreme prolongation of the action potential in both cockroach giant axon and rat skeletal muscle preparations as a result of the slowing and incomplete inactivation of the sodium currents. These observations indicate that Lqh alpha IT is an alpha toxin which acts on insect sodium channels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Two insect selective toxins were purified by gel-permeation and ion-exchange chromatographies from the venom of the scorpion, Leiurus quinquestriatus quinquestriatus, and their chemical and pharmacological properties were studied. The first toxin (LqqIT1) induces a fast excitatory contraction paralysis of fly larvae and is about 40 times more toxic than the crude venom. It is a polypeptide composed of 71 amino acids, including 8 half-cystines and devoid of methionine and tryptophan, with an estimated molecular weight of 8189 and a pI value of 8.5. The second toxin (LqqIT2) induces a slow depressant, flaccid paralysis of fly larvae. It is composed of 72 amino acids, including 8 half-cystines, is devoid of proline methionine and histidine, and has an estimated molecular weight of 7990 and a pI value of 8.3. The contrasting symptomatology of these toxins is interpreted in terms of their effects on an isolated axonal preparation of the cockroach in current and voltage clamp conditions. LqqIT1 (0.5-4 microM) induced repetitive firing of the axon which was attributable to two changes in the sodium conductance, a small increase in the peak conductance and a slowing of its turning off. LqqIT2 (1-8 microM) caused a blockage of the evoked action potentials, attributable to both a strong depolarization of the axonal membrane and a progressive suppression of the sodium current. Neither toxin affected potassium conductance. The two toxins differ mainly in their opposite effects on the activatable sodium permeability. In binding assays to a preparation of insect synaptosomal membrane vesicles, the two toxins were shown to competitively displace the radioiodinated excitatory insect toxin derived from the venom of the scorpion, Androctonus australis [( 125I]AaIT), which strongly resembles, in its chemistry and action, the LqqIT1 toxin. The present two toxins have demonstrated a strong affinity closely resembling the AaIT, with KD values of 0.4, 1.9, and 1.0 nM for LqqIT1, LqqIT2, and AaIT, respectively. These data suggest the possibility that the excitatory and depressant insect toxins share a common binding site associated with sodium channels in insect neuronal membranes.  相似文献   

3.
We report a preliminary high-resolution proton nuclear magnetic resonance characterization of the variant-3 toxin from the scorpion Centruroides sculpturatus Ewing (range Southwestern USA). This toxin assumes a well defined folded conformation in aqueous solutions at room temperature and undergoes reversible thermal denaturation. A number of amide hydrogens exhibit exchange life times varying from several minutes to several hours. A few tentative assignments of the low field aromatic CH resonances has been made on the basis of 2D-COSY and NOE experiments. The upfield shifts exhibited by Trp-47 suggest a unique microenvironment for this residue. The NMR data suggest that there is some degree of correlation between the solution structure of the variant-3 toxin and its crystallographic structure. Our studies provide a basis for a detailed elucidation of the structure-function relationships of these interesting scorpion toxins which bind to the sodium channels of excitable membranes and delay sodium current inactivation.  相似文献   

4.
The membrane effects of 4 sea anemone and 6 scorpion toxins have been studied under current clamp and voltage clamp conditions. Micromolar concentrations of the purified toxins were applied externally on single giant axons of the american cockroach. Periplaneta americana in a double oil-gap arrangement and the effects on the resting potential, action potential and underlying currents analysed. The 4 sea anemone toxins (Condylactis toxin, Anemonia toxin 2, Anthopleurin toxin A and Parasicyonis toxin) were found to considerably prolong the action potential. This effect is frequency dependent and long plateau spikes (100-500 ms in duration) are consistently seen for frequencies lower than 0.2 Hz. This effect is due to a considerable delay in the turning-off of the sodium current during square membrane depolarizations associated, for large concentrations, with a decrease in the potassium conductance. Toxin effects on the sodium current are not prevented by pretreatment with STX. From the 4 purified toxins extracted from the venom of the scorpion, Androctonus australis Hector, 3 (Mammal toxins 1 and 2 and crustacean toxin) were found to have sea anemone toxin like effects and to induce long duration plateau action potentials. As for sea anemone toxins, this effect is due to a lengthening of the falling phase of the sodium current associated with a small decrease in the potassium conductance. The 4th toxin (insect toxin or ITAaH) depolarizes the membrane and induces repetitive firing of short action potentials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The Leiurus quinquestriatus quinquestriatus receptor site of the voltage-dependent sodium channel has been characterized using several fluorescent scorpion toxins. The derivatives show fluorescence enhancements upon binding to the receptor site on the channel together with blue shifts. The fluorescence properties of the bound probes indicate a conformationally flexible, hydrophobic site. Binding of tetrodotoxin has no effect on the fluorescence spectra of the bound derivatives, whereas binding of the allosteric activator batrachotoxin enhances the fluorescence about 2-fold and causes a red shift in the emission spectra, suggesting a batrachotoxin-induced conformational change in the scorpion toxin receptor. The distance between the tetrodotoxin receptor and the Leiurus scorpion toxin receptor on the channel was measured by fluorescence resonance energy transfer. Five different chromophoric scorpion toxin derivatives were used as energy transfer acceptors or donors with anthraniloyltetrodotoxin or N-methylanthraniloylglycine-tetrodotoxin as the energy donor or acceptor. Because of the presence of three tetrodotoxin receptors for each Leiurus receptor, the positions of the donors and acceptors were exchanged. Efficiencies of transfer were measured by both donor quenching and sensitized emission. The average distance of separation between these sites is 35 A. Upon batrachotoxin addition, this distance changes to 42 A indicating a conformational change in one subunit of the channel or a change in the interaction between two subunits coupled to the batrachotoxin-binding site. On the basis of these studies, we present a model suggesting that tetrodotoxin binds to a subunit/site which is extracellularly placed and is 35 A from the Leiurus subunit/site which is located in a protein cleft of the channel which extends partly into the membrane, and undergoes a neurotoxin and voltage-dependent conformational change.  相似文献   

6.
Fluorescent derivatives of scorpion toxin V from Leiurus quinquestriatus quinquestriatus have been prepared so that the topographical, dynamic, and cellular properties of the neurotoxin receptor site on the voltage-dependent sodium channel could be studied. Four different modification strategies have been pursued in which acylated, amidinylated, thio-amidinylated, and reductively alkylated scorpion toxins were prepared. Acylation induces a loss of net positive charge on the toxin and these derivatives are purified by preparative isoelectric focusing and ion-exchange chromatography. Amidinylation and reductive alkylation preserve the protonation state of the toxin and maintain the native tertiary structure of the toxin. Because the native toxin does not contain cysteine, we have introduced new sulfhydryls through modification with the cyclic imidoester 2-iminothiolane which also preserves the net charge on the toxin. Novel purification methods with small amounts of toxin by immunoprecipitation using antibodies directed against the chromophores or through covalent thiol-disulfide exchange chromatography have been utilized. The biological activities, equilibrium binding, and spectroscopic properties indicate that these derivatives retain high affinity for the sodium channel and are as active or only 2-3 times less active than L. quinquestriatus V toxin itself. The spectroscopic properties of these fluorescent derivatives cover the absorption range from 290 to 470 nm, and fluorescence emissions range from 360 to 550 nm where suitable filters and spectral overlap with previously synthesized fluorescent tetrodotoxin can be found. The fluorescent properties in particular show excellent environmental sensitivity and are suitable for probing the molecular dynamics of the toxin receptor and for topographic mapping of the sodium channel by fluorescence resonance energy transfer measurements.  相似文献   

7.
Purified scorpion toxin (Leiurus quinquestriatus) slows inactivation of sodium channels in frog muscle at concentrations in the range of 17-170 nM. Mono[125I]iodo scorpion toxin binds to a single class of sites in frog sartorius muscle with a dissociation constant of 14 nM and a binding capacity of 13 fmol/mg wet weight. Specific binding is inhibited more than 90% by 3 microM sea anemone toxin II and by depolarization with 165 mM K+. Half-maximal inhibition of binding is observed on depolarization to -41 mV. The voltage dependence of scorpion toxin binding is correlated with the voltage dependence of activation of sodium channels. Removal of calcium from the bathing medium shifts both activation and inhibition of scorpion toxin binding to more negative membrane potentials. The results are considered in terms of the hypothesis that activation of sodium channels causes a conformational change in the scorpion toxin receptor site resulting in reduced affinity for scorpion toxin.  相似文献   

8.
Recent progress in biochemical, structural and physiological studies has revealed several interesting properties of the toxins from the American scorpion, Centruroides sculpturatus. These toxins, together with similar toxins from other species of scorpions, comprise a unique family of homologous proteins with phylogenetically related structural differences. There is now evidence from both binding and electrophysiological studies that two distinct classes of toxins are present in the venom of C. sculpturatus. One class of toxins markedly slows inactivation of the sodium permeability but has no demonstrable effect on activation, whereas the second class induces a transient shift in the voltage-dependence of activation. Both groups make inactivation incomplete.  相似文献   

9.
Depressant insect-selective neurotoxins derived from scorpion venoms (a) induce in blowfly larvae a short, transient phase of contraction similar to that induced by excitatory neurotoxins followed by a prolonged flaccid paralysis and (b) displace excitatory toxins from their binding sites on insect neuronal membranes. The present study was undertaken in order to examine the basis of these similarities by comparing the primary structures and neuromuscular effects of depressant and excitatory toxins. A new depressant toxin (LqhIT2) was purified from the venom of the Israeli yellow scorpion. The effects of this toxin on a prepupal housefly neuromuscular preparation mimic the effects on the intact animal; i.e., a brief period of repetitive bursts of junction potentials is followed by suppression of their amplitude and finally by a block of neuromuscular transmission. Loose patch clamp recordings indicate that the repetitive activity has a presynaptic origin in the motor nerve and closely resembles the effect of the excitatory toxin AaIT. The final synaptic block is attributed to neuronal membrane depolarization, which results in an increase in spontaneous transmitter release; this effect is not induced by excitatory toxin. The amino acid sequences of three depressant toxins were determined by automatic Edman degradation. The depressant toxins comprise a well-defined family of polypeptides with a high degree of sequence conservation. This group differs considerably in primary structure from the excitatory toxin, with which it shares identical or related binding sites, and from the two groups of scorpion toxins that affect sodium conductance in mammals. The two opposing pharmacological effects of depressant toxins are discussed in light of the above data.  相似文献   

10.
Developmental changes in functions of myocardial sodium channels were examined from inotropic effects of several neurotoxins in ventricular muscle preparations obtained from prenatal (20-22 day gestation) or adult (3-4 months old) rat hearts. Tetrodotoxin caused a negative inotropic effect in low concentrations and a loss of muscle responsiveness to electrical stimulation in high concentrations in preparations obtained from either prenatal or adult rat heart. The tetrodotoxin concentration that caused a 50% decrease in developed tension was higher in prenatal rats. Anemonia sulcata toxin, Androctonus australis toxin, veratridine, and Centruroides sculpturatus toxin all produced positive inotropic effects in adult rat heart. The effects were largest with A. sulcata and A. australis toxins, intermediate with veratridine, and smallest with C. sculpturatus toxin. Prenatal heart required higher concentrations of either veratridine, or A. sulcata or A. australis toxins to produce comparable positive inotropic effects. With C. sculpturatus toxin, no significant positive inotropic effect was observed in prenatal heart muscle preparations. These results indicate that cardiac sodium channels undergo significant functional changes during development and that negative and positive inotropic effects of neurotoxins resulting from inhibition and enhancement of fast Na+ channels reflect developmental changes in the cardiac sodium channels.  相似文献   

11.
Abstract

We report a preliminary high-resolution proton nuclear magnetic resonance characterization of the variant-3 toxin from the scorpion Centruroides sculpturatus Ewing (range Southwestern USA). This toxin assumes a well defined folded conformation in aqueous solutions at room temperature and undergoes reversible thermal denaturation. A number of amide hydrogens exhibit exchange life times varying from several minutes to several hours. A few tentative assignments of the low field aromatic CH resonances has been made on the basis of 2D-COSY and NOE experiments. The upfield shifts exhibited by Trp-47 suggest a unique microenvironment for this residue. The NMR data suggest that there is some degree of correlation between the solution structure of the variant-3 toxin and its crystallographic structure. Our studies provide a basis for a detailed elucidation of the structure-function relationships of these interesting scorpion toxins which bind to the sodium channels of excitable membranes and delay sodium current inactivation.  相似文献   

12.
A potent toxin has been purified from the venom of the scorpion Centruroides sculpturatus Ewing using the ion-exchange resin CM-Sepharose CL-6B at basic pH. The toxin, designated CsE M1, comprised 65 amino acid residues and its primary structure was established as: Lys-Glu-Gly-Tyr-Leu-Val-Asn-Ser-Tyr-Thr10-Gly-Cys-Lys-Tyr-Glu-Cys- Leu-Lys-Leu- Gly20-Asp-Asn-Asp-Tyr-Cys-Leu-Arg-Glu-Cys-Arg30-Gln-Gln-Tyr- Gly-Lys-Ser-Gly-Gly - Tyr-Cys40-Tyr-Ala-Phe-Ala-Cys-Trp-Cys-Thr-His-Leu50-Tyr-Glu- Gln-Ala-Val-Val-Trp - Pro-Leu-Pro60-Asn-Lys-Thr-Cys-Asn. CsE M1 is the most lethal protein to be identified in C. sculpturatus venom and the LD50 of the toxin, determined by subcutaneous injection into Swiss mice, is 87 micrograms/kg. CsE M1 shows strong structural similarity (92% positional identity) to the most potent beta-toxin, Css II, from the Mexican scorpion, Centruroides suffusus suffusus but is quite dissimilar to the previously characterized toxins with low potency isolated from C. sculpturatus Ewing.  相似文献   

13.
The binding of 125I-labeled derivatives of scorpion toxin and sea anemone toxin to tetrodotoxin-insensitive sodium channels in cultured rat muscle cells has been studied. Specific binding of 125I-labeled scorpion toxin and 125I-labeled sea anemone toxin was each blocked by either native scorpion toxin or native sea anemone toxin. K0.5 for block of binding by several polypeptide toxins was closely correlated with K0.5 for enhancement of sodium channel activation in rat muscle cells. These results directly demonstrate binding of sea anemone toxin and scorpion toxin to a common receptor site on the sodium channel. Binding of both 125I-labeled toxin derivatives is enhanced by the alkaloids aconitine and batrachotoxin due to a decrease in KD for polypeptide toxin. Enhancement of polypeptide toxin binding by aconitine and batrachotoxin is precisely correlated with persistent activation of sodium channels by the alkaloid toxins consistent with the conclusion that there is allosteric coupling between receptor sites for alkaloid and polypeptide toxins on the sodium channel. The binding of both 125I-labeled scorpion toxin and 125I-labeled sea anemone toxin is reduced by depolarization due to a voltage-dependent increase in KD. Scorpion toxin binding is more voltage-sensitive than sea anemone toxin binding. Our results directly demonstrate voltage-dependent binding of both scorpion toxin and sea anemone toxin to a common receptor site on the sodium channel and introduce the 125I-labeled polypeptide toxin derivatives as specific binding probes of tetrodotoxin-insensitive sodium channels in cultured muscle cells.  相似文献   

14.
A 7- dimethylaminocoumarin -4-acetate fluorescent derivative of toxin II from the venom of the scorpion Centruroides suffusus suffusus (Css II) has been prepared to study the structural, conformational, and cellular properties of the beta-neurotoxin receptor site on the voltage-dependent sodium channel. The derivative retains high affinity for its receptor site on the synaptosomal sodium channel with a KD of 7 nM and site capacity of 1.5 pmol/mg of synaptosomal protein. The fluorescent toxin is very environmentally sensitive and the fluorescence emission upon binding indicates that the Css II receptor is largely hydrophobic. Binding of tetrodotoxin or batrachotoxin does not alter the spectroscopic properties of bound Css II, whereas toxin V from Leiurus quinquestriatus effects a 10-nm blue shift to a more hydrophobic environment. This is the first direct indication of conformational coupling between these separate neurotoxin receptor sites. The distance between the tetrodotoxin and Css II scorpion toxin receptors on the sodium channel was measured by fluorescence resonance energy transfer. Efficiencies were measured by both donor quenching and acceptor-sensitized emission. The distance between these two neurotoxin sites is about 34 A. The implications of these receptor locations together with other known molecular distances are discussed in terms of a molecular structure of the voltage-dependent sodium channel.  相似文献   

15.
The effects of a neurotoxin, purified from the venom of the scorpion Leiurus quinquestriatus, on the ionic currents of toad single myelinated fibers were studied under voltage-clamp conditions. Unlike previous investigations using crude scorpion venom, purified Leiurus toxin II alpha at high concentrations (200-400 nM) did not affect the K currents, nor did it reduce the peak Na current in the early stages of treatment. The activation of the Na channel was unaffected by the toxin, the activation time course remained unchanged, and the peak Na current vs. voltage relationship was not altered. In contrast, Na channel inactivation was considerably slowed and became incomplete. As a result, a steady state Na current was maintained during prolonged depolarizations of several seconds. These steady state Na currents had a different voltage dependence from peak Na currents and appeared to result from the opening of previously inactivated Na channels. The opening kinetics of the steady state current were exponential and had rates approximately 100-fold slower than the normal activation processes described for transitions from the resting state to the open state. In addition, the dependence of the peak Na current on the potential of preceding conditioning pulses was also dramatically altered by toxin treatment; this parameter reached a minimal value near a membrane potential of -50 mV and then increased continuously to a "plateau" value at potentials greater than +50 mV. The amplitude of this plateau was dependent on toxin concentration, reaching a maximum value equal to approximately 50% of the peak current; voltage-dependent reversal of the toxin's action limits the amplitude of the plateauing effect. The measured plateau effect was half-maximum at a toxin concentration of 12 nM, a value quite similar to the concentration producing half of the maximum slowing of Na channel inactivation. The results of Hill plots for these actions suggest that one toxin molecule binds to one Na channel. Thus, the binding of a single toxin molecule probably both produces the steady state currents and slows the Na channel inactivation. We propose that Leiurus toxin inhibits the conversion of the open state to inactivated states in a voltage-dependent manner, and thereby permits a fraction of the total Na permeability to remain at membrane potentials where inactivation is normally complete.  相似文献   

16.
The amino acid sequences of insect-selective scorpion toxins, purified from the venom of Leiurus quinquestriatus quinquestriatus, have been determined by automatic phenyl isothiocyanate degradation of the S-carboxymethylated proteins and derived proteolytic peptides. The excitatory toxin Lqq IT1 and Lqq IT1' (70 residues) show the shift of one half-cystine from an external position, which is characteristic of anti-mammal toxins, to an internal sequence position. Lqq IT2 (61 residues) displays the half-cystine residue in position 12, common to the sequence of all known anti-mammal toxins; it induces flaccid paralysis on insects but is non-toxic for the mouse. Lqq IT2 structurally defines a new type of anti-insect toxins from scorpion venoms. CD spectra and immunological data are in agreement with this finding.  相似文献   

17.
Dendrotoxin I (DpI) from black mamba venom (Dendroaspis polylepis) has high affinity binding sites on rat brain synaptic membranes. Native DpI displaced [125I]-DpI binding with a Ki of 1 x 10(-10) M, and over 90% of specific binding was displaceable. Charybdotoxin isolated from the Israeli scorpion venom (Leiurus quinquestriatus hebraeus), also displaced [125I]-DpI binding, with a Ki of approximately 3 x 10(-9) M, although the displacement curve was shallower than with native DpI. Both toxins are thought to be high affinity blockers of specific K+ currents. Charybdotoxin selectively blocks some types of Ca2+-activated K+ channels, whereas dendrotoxins only block certain voltage-dependent K+ channels. The interaction between the two types of toxin at the DpI binding site is unexpected and may suggest the presence of related binding sites on different K+ channel proteins.  相似文献   

18.
The voltage-dependent action of several scorpion alpha-toxins on Na channels was studied in toad myelinated nerve under voltage clamp. These toxins slow the declining phase of macroscopic Na current, apparently by inhibiting an irreversible channel inactivation step and thus permitting channels to reopen from a closed state in depolarized membranes. In this article, we describe the rapid reversal of alpha-toxin action by membrane depolarizations more positive than +20 mV, an effect not achieved by extensive washing. Depolarizations that were increasingly positive and of longer duration caused the toxin to dissociate faster and more completely, but only up to a limiting extent. Repetitive pulses had a cumulative effect equal to that of a single pulse lasting as long as their combined duration. When the membrane of a nonperfused fiber was repolarized, the effects of the toxin returned completely, but if the fiber was perfused during the conditioning procedure, recovery was incomplete and occurred more slowly, as it did at lower applied toxin concentrations. Other alpha-type toxins, from the scorpion Centruroides sculpturatus (IVa) and the sea anemone Anemonia sulcata (ATXII), exhibited similar voltage-dependent binding, though each had its own voltage range and dissociation rate. We suggest that the dissociation of the toxin molecule from the Na channel is coupled to the inactivation process. An equivalent valence for inactivation gating, of less than 1 e per channel, is calculated from the voltage-dependent change in toxin affinity.  相似文献   

19.
A variety of scorpion venoms and purified toxins were tested for effects on ion channels in human T lymphocytes, a human T leukemia cell line (Jurkat), and murine thymocytes, using the whole-cell patch-clamp method. Nanomolar concentrations of charbdotoxin (CTX), a purified peptide component of Leiurus quinquestriatus venom known to block Ca2+-activated K+ channels from muscle, blocked "type n" voltage-gated K+ channels in human T lymphoid cells. The Na+ channels occasionally expressed in these cells were unaffected by the toxin. From the time course of development and removal of K+ channel block we determined the rates of CTX binding and unbinding. CTX blocks K+ channels in Jurkat cells with a Kd value between 0.5 and 1.5 nM. Of the three types of voltage-gated K+ channels present in murine thymocytes, types n and n' are blocked by CTX at nanomolar concentrations. The third variety of K+ channels, "type l," is unaffected by CTX. Noxiustoxin (NTX), a purified toxin from Centruroides noxius known to block Ca2+-activated K+ channels, also blocked type n K+ channels with a high degree of potency (Kd = 0.2 nM). In addition, several types of crude scorpion venoms from the genera Androctonus, Buthus, Centruroides, and Pandinus blocked type n channels. We conclude that CTX and NTX are not specific for Ca2+ activated K+ channels and that purified scorpion toxins will provide useful probes of voltage-gated K+ channels in T lymphocytes. The existence of high-affinity sites for scorpion toxin binding may help to classify structurally related K+ channels and provide a useful tool for their biochemical purification.  相似文献   

20.
Scorpion toxins that affect sodium channel (NaCh) gating in excitable cells are divided into alpha- and beta-classes. Whereas alpha-toxins have been found in scorpions throughout the world, anti-mammalian beta-toxins have been assigned, thus far, to 'New World' scorpions while anti-insect selective beta-toxins (depressant and excitatory) have been described only in the 'Old World'. This distribution suggested that diversification of beta-toxins into distinct pharmacological groups occurred after the separation of the continents, 150 million years ago. We have characterized a unique toxin, Lqhbeta1, from the 'Old World' scorpion, Leiurus quinquestriatus hebraeus, that resembles in sequence and activity both 'New World'beta-toxins as well as 'Old World' depressant toxins. Lqhbeta1 competes, with apparent high affinity, with anti-insect and anti-mammalian beta-toxins for binding to cockroach and rat brain synaptosomes, respectively. Surprisingly, Lqhbeta1 also competes with an anti-mammalian alpha-toxin on binding to rat brain NaChs. Analysis of Lqhbeta1 effects on rat brain and Drosophila Para NaChs expressed in Xenopus oocytes revealed a shift in the voltage-dependence of activation to more negative membrane potentials and a reduction in sodium peak currents in a manner typifying beta-toxin activity. Moreover, Lqhbeta1 resembles beta-toxins by having a weak effect on cardiac NaChs and a marked effect on rat brain and skeletal muscle NaChs. These multifaceted features suggest that Lqhbeta1 may represent an ancestral beta-toxin group in 'Old World' scorpions that gave rise, after the separation of the continents, to depressant toxins in 'Old World' scorpions and to various beta-toxin subgroups in 'New World' scorpions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号