首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Synopsis The objective was to determine the effects of acid and aluminum in acidified hard and soft water on the histology and morphometry of rainbow trout gills, and to determine relevant toxicity indicators within the gill tissue. Acid and aluminum promoted measurable primary epithelial hyperplasia which proved to be a reliable biological indicator of acid and aluminum contamination and possibly of some predictive value. Low levels of aluminum and acid resulted in hypertrophied chloride cells, suggesting a role in adapting to the contaminants. High concentrations of aluminum (>10 molI-1) caused chloride cell necrosis and consequently a decline in cell numbers over time. Aluminum precipitates accumulating within the chloride cell cytoplasm probably lead to impaired function prior to cell degeneration. The morphological alterations resulted in a decrease in water space between secondary lamellae (up to 40% within 14 d) which may reduce the efficiency of gas exchange. Twice the aluminum was required in hard water to elicit a similar soft water tissue response. Pathological changes were more severe with aluminum at pH 5.2 than at pH 4.7; results of aluminum speciation suggest that both labile and non-labile fractions are responsible for the induction of gill lesions. Low levels of aluminum may protect fish from the effects of high hydrogen ion concentration.  相似文献   

2.
A thick, elaborate glycocalyx was associated with α and β chloride cells of rainbow trout gills, a less elaborate one with surface epithelial cells and a scanty and inconspicuous one with mucous cells. The dense glycocalyx of the chloride cells may have significant function in ion regulation and metabolism of the gill.  相似文献   

3.
The role of gill chloride cells (CCs) and pavement cells (PVCs) in acid-base regulation was evaluated in brown bullhead catfish (Ictalurus nebulosus) subjected to acute hypercapnia (water Pco2=15 torr). Chronic (10 day) cortisol treatment was used as a tool to cause CC proliferation to permit a comparison of the regulatory capacities in groups of fish with widely different gill CC populations. Cortisol (4mg kg?1 day?1) caused a pronounced increase (170%) in the surface area of CCs exposed to the water based on scanning and transmission electron microscope analysis. The density of PVC apical membrane microvilli was significantly increased (20%) by cortisol treatment. Exposure of either group of fish to hypercapnia caused similar changes in gill epithelial morphology including: (i) a marked reduction in the surface area of exposed CCs (52 and 78% reduction in the control and cortisol-treated fish, respectively); and (ii) pronounced increases in PVC apical membrane microvilli density (21 and 27% in the control and cortisol-treated fish, respectively). The rates of Cl? uptake (Jincl?) and Na+ uptake (JinNa+) were elevated (150 and 262%, respectively) in the cortisol-treated fish. Regardless of treatment, Jincl? was markedly reduced to approximately the same levels after 6 h of hypercapnia, JinNa+ was stimulated in the control group and reduced in the cortisol-treated group and thus, after 6 h of hypercapnia, JinNa+ was equal in each group. The similar morphological responses in fish possessing different initial populations suggests that the predominant mechanism of acid-base regulation during hypercapnia, reduction of C1?/HCO3? exchange, is accomplished by removal of the CC-associated C1-/HCO3? exchange sites from the water. The increase in PVC microvilli density during hypercapnia suggests a role for the PVC in acid-base regulation.  相似文献   

4.
The existence of a layer of mucus covering the gill lamellae of healthy rainbow trout (Oncorhynchus mykiss) was investigated. Using cryo-scanning electron microscopy, a smooth, undulating, thin layer was observed which completely covered gill filaments and lamellae, thereby obscuring epithelial microridges. After processing cryopreserved gill arches in glutaraldehyde for conventional scanning electron microscopy, the layer was no longer present and epithelial microridges were clearly visible. The identity of this layer was investigated using cryopreserved gills which were treated in one of two ways. First, gills were incubated with a rabbit antiserum to gill mucus, with normal rabbit serum, or with phosphate-buffered saline. Following fixation in glutaraldehyde and processing, only the gill tissue incubated with the mucus-specific antiserum was still covered with the smooth layer. The layer was also retained on the gills of fish anesthetized in a solution containing mucusspecific antiserum and then processes in glutaraldehyde for conventional scanning electron microscopy. The tenacious nature of the mucous layer was demonstrated by its stability following exposure to formalin and a cationic detergent. Second, the presence of this layer was confirmed on gill tissue which was cryopreserved, followed by freeze-substitution and vapor fixation, and then examined by transmission electron microscopy.  相似文献   

5.
Rainbow trout (Salmo gairdneri) were exposed to pH 5.0-5.1, 6.6 and/or calcium-enriched freshwater for 14 days. Hematocrit, gill Ca2+-ATPase enzyme activities, gill osmotic water inflow, plasma calcium and osmolarity were measured. No significant changes in plasma calcium ion levels were found. The typical increase in hematocrit usually associated with exposure of fish to acidified water was not found in the present study and is discussed. Plasma osmolarity decreased in fish exposed to calcium-enriched freshwater (60 mg Ca2+ X 1(-1) ) in comparison to fish exposed to control freshwater conditions (2 mg Ca2+ X 1(1) ), irrespective of the pH level. Gill Ca2+-ATPase enzyme activities were measured for both low affinity (3 mM Ca2+) and high affinity (100 microM) activity. Exposure of rainbow trout to low pH (pH 5.0-5.1) did not affect the specific activity of Ca2+-ATPase enzyme. However, low affinity Ca2+-ATPase activity in fish exposed to calcium-enriched freshwater did show a significant reduction. The increase in gill osmotic water permeability in fish exposed to calcium-enriched freshwater is interpreted as a result of the increase in osmolarity of the ambient media.  相似文献   

6.
Cultured epidermal cells from explants of skin of rainbow trout were used to study the cytological and functional changes following sublethal exposure to cadmium stress. The aim was to develop diagnostic markers for ecotoxicology. Cultures were exposed to the pollutant for 48 h. Cell structural and cytological changes were established by light and electron microscopy. Metabolic alterations were detected by immunohistochemistry. The relation between the initiation of cellular alterations and cadmium concentrations was compared in cultures exposed in commercially-available serum-free and serum-containing medium. The expression of stress proteins (metallothionein and heat shock protein) was also studied. Rainbow trout epithelial cells exposed to cadmium showed typical morphological changes indicative of cell death by apoptosis. Sublethal exposure also resulted in cellular metabolic disturbances with increased deposits of glycogen. Increased melanization was also observed. These changes appeared at lower concentrations of cadmium when cells were exposed in serum-free media than in serum-containing media. Cadmium induced the expression of heat shock proteins but not of metallothioneins. The results broadly confirm in vivo findings for cadmium toxicity and suggest that this in vitro technique may have applications in aquatic toxicology. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
To evaluate the role of the gill chloride cells in regulating metabolic alkalosis in rainbow trout (Oncorhynchus mykiss), the surface area of branchial chloride cells was altered experimentally using combined cortisol/ovine growth hormone injections. Long-term (10-day) treatment of fish with cortisol/ovine growth hormone caused an increase in the two-dimensional chloride cell fractional surface area when compared to uninjected fish (from 8.4 to 29.7%). This was the combined result of an increase in the size of individual cells (from 34.6 to 59.2 m2) and increased numbers of cells (from 2368 to 5006 cells · mm-2). Metabolic alkalosis was induced by intra-arterial infusion of 140 mmol · l-1 NaHCO3; control fish were infused with 140 mmol · l-1 NaCl. Blood pH and plasma [HCO3 -] increased in both the untreated and the cortisol/ovine growth hormone-treated fish. However, the increases in pH (from 8.05 to 8.53) and [HCO3 -] (from 5.9 to 22.2 mmol · l-1) in the untreated fish were significantly greater than in the cortisol/ovine growth hormone-treated fish (pH increased from 7.78 to 8.11; [HCO3 -] increased from 5.5 to 13.9 mmol · l-1). In all fish, NaHCO3 infusion elicited an increase in the rate of branchial basic equivalent excretion (acidic equivalent uptake) which, in turn, was caused by decreases and increases in branchial Na+ uptake and Cl- uptake, respectively. In the untreated fish, there was a pronounced increase (75%) in chloride cell surface area during NaHCO3 infusion. The attenuation of the metabolic alkalosis during HCO3 - infusion in the cortical/ovine growth hormone-treated fish was caused, at least in part, by an enhancement of branchial basic equivalent excretion. In these fish that already displayed a proliferation of chloride cells, there was no further increase in chloride cell surface area. The changes in Na+ influx and Cl- influx were quantitatively similar during NaHCO3 infusion in both groups. This suggests that the greater rate of base excretion in the cortisol/ovine growth hormone-treated fish was caused by a greater percentage of Cl- uptake being coupled to HCO3 - excretion and less to Cl- excretion (Cl- exchange diffusion).Abbreviations Amm total ammonia - bw body weight - CC chloride cell - CCFA chloride cell fractional area - cort/oGH cortisol/ovine growth hormone - dpm disintegrations per minute - J Amm net flux of total ammonia - J in unidirectional influx - J inCl- chloride ion uptake - J inNa+ sodium ion uptake - J netH+ net acidic equivalent flux - J TA net flux of titrable alkalinity - MS 222 ethyl-m-aminobenzoate - oGH ovine growth hormone - PVC pavement cell - SEM scanning electron microscope - TA titrable alkalinity  相似文献   

8.
To test the hypothesis that internal ion imbalances at high pH are caused by altered branchial ion transporting capacity and permeability, radiotracers (24Na+ and 36Cl-) were used to measure ion movements across the gills of intact rainbow trout (Oncorhynchus mykiss) during 3 d exposure to pH 9.5. At control pH (pH 8.0), the trout were in net ion balance, but by 8 h at high pH, 60%-70% reductions in Cl- influx (JClin) and Na+ influx (JNain) led to net Cl- and Na+ losses of -200 micromol kg-1 h-1. Outflux (diffusive efflux plus renal ion losses) was not initially altered. By 72 h, net Cl- balance was reestablished because of a restoration of JClin. Although JNain remained 50% lower at this time, counterbalancing reductions in Na+ outflux restored net Na+ balance. One-substrate ion-uptake kinetics analyses indicated that reduced ion influx after 8 h at pH 9.5 was caused by 50% decreases in Cl- and Na+ maximal transport rates (JClmax, JNamax), likely reflecting decreased numbers of functional transport sites. Two-substrate kinetic analyses indicated that reduced internal HCO-3 and H+ supply for respective branchial Cl-/base and Na+/acid transport systems also contributed to lower JClin and, to a lesser extent, lower JNain at pH 9.5. Recovery of JClmax after 3 d accounted for restoration of Cl- balance and likely reflected increased numbers of transport sites. In contrast, JNamax remained 33% lower after 3 d, but a lower affinity of the gills for Na+ (fourfold greater KNam) accounted for the chronic reduction in Na+ influx at pH 9.5. Thus, reestablishment of Cl- uptake capacity and counterbalancing reductions in Na+ outflux allows rainbow trout to reestablish net ion balance in alkaline waters.  相似文献   

9.
10.
Abstract. Slightly vacuolated cells, i.e. microalgae and meristematic cells of vascular plants, maintain low Cl? and Na+ concentrations even when exposed to a highly saline environment. The factors regulating the internal ion concentration are the relative rate of volume expansion, the membrane permeability to ions, the electrical potential, and the active ion fluxes. For ion species which are not actively transported, a formula is developed which relates the internal concentration to the rate of expansion of cell volume, the permeability of membranes to that ion, and the electrical potential. For example, when the external concentration of Cl? is high, and Cl? influx is probably mainly passive, the formula predicts that rapid growth keeps the internal Cl? concentration lower than that in a non-growing cell with the same electrical potential; this effect is substantial if the plasmalemma has a low permeability to Cl?. For ion species which are actively transported, the rate of pumping must be considered. For instance Na+ concentrations are kept low mainly by an efficient Na+ extrusion pump which works against the electric field across the membrane. The requirement for Na+ extrusion is related to the external Na+ concentration, the rate of expansion of cell volume, the membrane permeability, and the electrical potential. It is possible that microalgae have a more positive electrical potential than many other plant cells; if so, requirements for high rates of active Na+ extrusion will be lower. The required rates of Na+ extrusion are lower during rapid growth, provided that the permeability of the plasmalemma to Na+ is low. The energy required for the regulation of Cl? and Na+ concentrations is low, especially in rapidly expanding cells where Na+ extrusion requires only 1–2% of the energy normally produced in respiration. The exclusion of these ions, however, must be accompanied by the synthesis of enough organic compounds to provide adequate osmotic solutes for the increases in volume accompanying growth. This process reduces the substrates available for respiration and synthesis of cell constituents, but the reduction is not prohibitively large—even for cells growing in 750 mol m?3 NaCl, the carbohydrate accumulated as osmotic solute is only 10% of that consumed in respiration.  相似文献   

11.
Protein synthesis, degradation and growth of the liver and gills were determined in juvenile rainbow trout (Oncorhynchus mykiss) fed a limited ration and exposed for 90 days to normal or elevated summer temperatures (+2 degrees above ambient) and either low pH (5.2) in softwater or 70 microM total ammonia in hardwater. The limited ration resulted in low rates of growth (< 0.80% per day) and protein synthesis in all fish. In softwater, whole-body growth was significantly inhibited by elevated temperature but stimulated by low pH, although tissue protein metabolism was generally unaffected by these treatments. There was no significant difference in final size between the groups of fish in hardwater, but liver protein synthesis and degradation were significantly lower at +2 degrees C, the reduction in synthesis being due to an inhibition of both the capacity for protein synthesis, Cs and the RNA translational efficiency, kRNA. Gill protein metabolism was unaffected by the experimental treatments in trout in hardwater. The authors conclude that a global warming scenario would be detrimental to protein synthesis and growth in freshwater fish under conditions of food limitation in summer, and when late summer temperatures approached the upper thermal limit of the species, regardless of food availability.  相似文献   

12.
Summary An extracorporeal circulation of rainbow trout (Oncorhynchus mykiss) was utilized to continuously monitor the rapid and progressive effects of endogenous or exogenous catecholamines on blood respiratory/acid-base status, and to provide in vivo evidence for adrenergic retention of carbon dioxide (CO2) in fish blood (cf. Wood and Perry 1985). Exposure of fish to severe aquatic hypoxia (final P wO2=40–60 torr; reached within 10–20 min) elicited an initial respiratory alkalosis resulting from hypoxia-induced hyperventilation. However, at a critical arterial oxygen tension (P aO2) between 15 and 25 torr, fish became agitated for approximately 5 s and a marked (0.2–0.4 pH unit) but transient arterial blood acidosis ensued. This response is characteristic of abrupt catecholamine mobilization into the circulation and subsequent adrenergic activation of red blood cell (RBC) Na+/H+ exchange (Fievet et al. 1987). Within approximately 1–2 min after the activation of RBC Na+/H+ exchange by endogenous catecholamines, there was a significant rise in arterial PCO2 (P aCO2) whereas arterial PO2 was unaltered; the elevation of P aCO2 could not be explained by changes in gill ventilation. Pre-treatment of fish with the -adrenoceptor antagonist phentolamine did not prevent the apparent catecholamine-mediated increase of P aCO2. Conversely, pre-treatment with the -adrenoceptor antagonist sotalol abolished both the activation of the RBC Na+/H+ antiporter and the associated rise in P aCO2, suggesting a causal relationship between the stimulation of RBC Na+/H+ exchange and the elevation of P aCO2. To more clearly establish that elevation of plasma catecholamine levels during severe hypoxia was indeed responsible for causing the elevation of P aCO2, fish were exposed to moderate hypoxia (final P wO2=60–80 torr) and then injected intraarterially with a bolus of adrenaline to elicit an estimated circulating level of 400 nmol·l-1 immediately after the injection. This protocol activated RBC Na+/H+ exchange as indicated by abrupt changes in arterial pH (pHa). In all fish examined, P aCO2 increased after injection of exogenous adrenaline. The effects on P aO2 were inconsistent, although a reduction in this variable was the most frequent response. Gill ventilation frequency and amplitude were unaffected by exogenous adrenaline. Therefore, it is unlikely that ventilatory changes contributed to the consistently observed rise in P aCO2. Pretreatment of fish with sotalol did not alter the ventilatory response to adrenaline injection but did prevent the stimulation of RBC Na+/H+ exchange and the accompanying increases and decreases in P aCO2 and P aO2, respectively. These results suggest that adrenergic elevation of P aCO2, in addition to the frequently observed reduction of P aO2 are linked to activation of RBC Na+/H+ exchange. The physiological significance and the potential mechanisms underlying the changes in blood respiratory status after addition of endogenous or exogenous catecholamines to the circulation of hypoxic rainbow trout are discussed.Abbreviations P aCO2 arterial carbon dioxide tension - P aO2 arterial oxygen tension - P da dorsal aortic pressure - pHa arterial pH - P wO2 water oxygen tension - RBC red blood cell - V f breathing frequency  相似文献   

13.
To investigate the mechanisms by which low intracellular pH influences calcium signaling, I have injected HCl, and in some experiments CaCl(2), into snail neurons while recording intracellular pH (pH(i)) and calcium concentration ([Ca(2+)](i)) with ion-sensitive microelectrodes. Unlike fluorescent indicators, these do not increase buffering. Slow injections of HCl (changing pH(i) by 0.1-0.2 pH units min(-1)) first decreased [Ca(2+)](i) while pH(i) was still close to normal, but then increased [Ca(2+)](i) when pH(i) fell below 6.8-7. As pH(i) recovered after such an injection, [Ca(2+)](i) started to fall but then increased transiently before returning to its preinjection level. Both the acid-induced decrease and the recovery-induced increase in [Ca(2+)](i) were abolished by cyclopiazonic acid, which empties calcium stores. Caffeine with or without ryanodine lowered [Ca(2+)](i) and converted the acid-induced fall in [Ca(2+)](i) to an increase. Injection of ortho-vanadate increased steady-state [Ca(2+)](i) and its response to acidification, which was again blocked by CPA. The normal initial response to 10 mM caffeine, a transient increase in [Ca(2+)](i), did not occur with pH(i) below 7.1. When HCl was injected during a series of short CaCl(2) injections, the [Ca(2+)](i) transients (recorded as changes in the potential (V(Ca)) of the Ca(2+)-sensitive microelectrode), were reduced by only 20% for a 1 pH unit acidification, as was the rate of recovery after each injection. Calcium transients induced by brief depolarizations, however, were reduced by 60% by a similar acidification. These results suggest that low pH(i) has little effect on the plasma membrane calcium pump (PMCA) but important effects on the calcium stores, including blocking their response to caffeine. Acidosis inhibits spontaneous calcium release via the RYR, and leads to increased store content which is unloaded when pH(i) returns to normal. Spontaneous release is enhanced by the rise in [Ca(2+)](i) caused by inhibiting the PMCA.  相似文献   

14.
Gill structure of rainbow trout and Atlantic salmon was investigated using cell disaggregation and dry fracture techniques for scanning electron microscopy (SEM), allowing new interpreta-tions of the structure of the secondary lamella. The basement membrane underlying the lamellar epithelium (secondary epithelium) was shown to be a tough sheet with numerous depressions corresponding to underlying pillar cells. This membrane is probably the most important structural element of the secondary lamella, capable of withstanding considerable mechanical stress. For the first time the structure of the apical surface of the secondary lamella was shown by SEM to consist of an outer microridged coat overlying a fibrous coat which appears continuous with the extracellular matrix surrounding the rest of the cell. When cells were detached they rounded up and the external microridged coat became more vesicle like, indicating the labile nature of this coat. In cell suspension preparations, epithelial, mucus and chloride cells are present as well as many blood derived cells such as erythrocytes, presumptive leucocytes and thrombocytes.  相似文献   

15.
The two most prominent genotypes of viral hemorrhagic septicemia virus (VHSV) are -I in the Northeastern Atlantic region and -IV in North America, but much more is known about the cellular pathogenesis of genotype -I than -IV. VHSV genotype -IV is divided into -IVa from the Northeast Pacific Ocean and -IVb from the Great Lakes and both of which are less virulent to rainbow trout than genotype -I. In this work, infections of VHSV-IVa and -IVb have been studied in two rainbow trout cell lines, RTgill-W1 from the gill epithelium, and RTS11 from spleen macrophages. RTgill-W1 produced infectious progeny of both VHSV-IVa and -IVb. However, VHSV-IVa was more infectious than -IVb toward RTgill-W1: -IVa caused cytopathic effect (CPE) at a lower viral titre, elicited CPE earlier, and yielded higher titres. By contrast, no CPE and no increase in viral titre were observed in RTS11 cultures infected with either genotype. Yet in RTS11 all six VHSV genes were expressed and antiviral genes, Mx2 and Mx3, were up regulated by VHSV-IVb and -IVa. However, replication appeared to terminate at the translational stage as viral N protein, presumably the most abundant of the VSHV proteins, was not detected in either infected RTS11 cultures. In RTgill-W1, Mx2 and Mx3 were up regulated to similar levels by both viral genotypes, while VHSV-IVa induced higher levels of IFN1, IFN2 and LGP2A than VHSV-IVb.  相似文献   

16.
Leptin is a key factor for the regulation of food intake and energy homeostasis in mammals, but information regarding its role in teleosts is still limited. There are large differences between mammalian and teleost leptin at both gene and protein levels, and in order to characterize the function of leptin in fish, preparation of species-specific leptin is therefore a key step. In this study, full-length cDNA coding for rainbow trout leptin was identified. In spite of low amino acid sequence similarity with other animals, leptin is highly conserved between trout and salmon (98.7%). Based on the cDNA, we produced pure recombinant trout leptin (rt-leptin) in E. coli, with a final yield of 20 mg/L culture medium. We then examined the effects of intraperitoneal (IP) injection of rt-leptin on feeding behavior and gene expression of hypothalamic NPY and POMCs (POMC A1, A2 and B) in a short-term (8 h) experiment. The rt-leptin suppressed food intake and led to transient reduction of NPY mRNA levels, while the expression of POMCs A1 and A2, was elevated compared with vehicle-injected controls. These results for rainbow trout are the first that describe a physiological role of leptin using a species-specific orthologue in teleosts, and they suggest that leptin suppresses food intake mediated by hypothalamic regulation. This anorexic effect is similar to that observed in mammals and frogs and supports that the neuroendocrine pathways that control feeding by leptin are ancient and have been conserved through evolution.  相似文献   

17.
Acclimation of crucian carp and goldfish to temperatures below 15°C causes covering of the gill lamellae by a mass of cells termed the interlamellar cell mass (ILCM). Here we explore the cues underlying gill remodeling (removal or growth of an ILCM) and specifically test the hypotheses that 1) depletion of internal O(2) stores in the absence of any change in external O(2) status can trigger the removal of the ILCM in goldfish acclimated to 7°C, 2) exposing fish acclimated to 25°C to an abundance of O(2) (hyperoxia) can reverse the gill remodeling (i.e., cause the covering of lamellae by an expansion of the ILCM), and 3) neuroepithelial cells (NECs) are involved in signaling the shedding of the ILCM. Hypoxemia induced by phenylhydrazine (anemia) or 5% CO caused a decrease in the ILCM from 80% to 23% and 35%, respectively. Hyperoxia exposure at 25°C caused an increase to 67% of total ILCM and a smaller decrease in the size of the ILCM when fish were transferred from 7 to 25°C. Daily sodium cyanide injections were used to stimulate NECs; this treatment led to a significant decrease in the ILCM. Thus, the three major conclusions of this study are 1) that gill remodeling can occur during periods of internal hypoxemia, 2) that O(2) supply and demand may be a significant driving force shaping gill remodeling in goldfish, and 3) the NECs may play a role in triggering the shedding of the ILCM during hypoxia.  相似文献   

18.
A new ruthenium(II) complex, [Ru(bpy)2(Htip)]Cl2 {where bpy = 2,2′-bipyridine and Htip = 2-(thiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline}, has been synthesized and characterized by 1H NMR spectroscopy, elemental analysis, and mass spectrometry. The pH effects on UV-Vis absorption and emission spectra of the complex have been studied, and the ground- and excited-state acidity ionization constant values have been derived. The calf thymus (ct) DNA binding properties of the complex have been investigated with UV-Vis absorption and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4−, DNA competitive binding with ethidium bromide, DNA melting experiments, and viscosity measurements. The molecular structures and electronic properties of [Ru(bpy)2(Htip)]2+ and deprotonated form [Ru(bpy)2(tip)]+ have also been investigated by means of density functional theory calculations in an effort to understand the DNA binding properties. The results suggest that the complex undergo three-step successive protonation/deprotonation reactions with one of which occurring over physiological pH region, and act as a ct-DNA intercalator with an intrinsic DNA binding constant value on 105 M−1 order of magnitude that is insensitive to pH.  相似文献   

19.
1. The perfused isolated head technique has been used to measure sodium arterial fluxes following direct transfer from fresh water to sea-water. 2. A starvation-related decrease in net sodium flux is reported. 3. Sexual maturation slackens the decrement of this net flux. 4. In starved fish, the cytological modifications of chloride cells following such a transfer are delayed. 5. This effect of starvation is discussed in terms of lamella sodium imperviousness.  相似文献   

20.
Experiments were conducted on rainbow trout to determine the impact of dietary salt on arterial blood pressure. After 4-6 wk, fish fed a salt-enriched diet exhibited a 37% elevation of dorsal aortic pressure (from 23.8 +/- 1.2 to 32.6 +/- 1.4 mmHg) and an 18% increase in ventral aortic pressure (from 33.0 +/- 1.5 to 38.9 +/- 1.3 mmHg). The hypertension presumably reflected the increase in cardiac output (from 31.0 +/- 0.8 to 36.4 +/- 2.2 ml.min(-1).kg(-1)) because systemic and branchial resistances were statistically unaltered by salt feeding. The chronic hypertension was associated with a decrease in the pressor responses of the systemic vasculature to catecholamines and hypercapnia in the salt-fed fish. The reduction in alpha-adrenergic responsiveness of the systemic vasculature is consistent with desensitization or loss of functional alpha-adrenoceptors (alpha-ARs). In support of this idea, the salt-fed fish exhibited significantly decreased levels of alpha(1D)-AR mRNA in the dorsal aorta and the afferent (ABA) and efferent branchial arteries (EBA). In contrast, however, the results obtained from norepinephrine dose-response curves for EBA and ABA vascular rings in vitro did not provide evidence for loss of function of branchial artery alpha(1)-ARs in the salt-fed fish. Indeed, the EC(50) for the EBA norepinephrine dose-response curve was significantly reduced (from 3.75 x 10(-7) to 2.12 x 10(-7) M) in the salt-fed fish, indicating an increase in the binding affinity of the alpha(1)-ARs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号