首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is generally accepted that the strength and stiffness of trabecular bone is strongly affected by trabecular microstructure. It has also been hypothesized that stress induced adaptation of trabecular bone is affected by trabecular tissue level stress and/or strain. At this time, however, there is no generally accepted (or easily accomplished) technique for predicting the effect of microstructure on trabecular bone apparent stiffness and strength or estimating tissue level stress or strain. In this paper, a recently developed mechanics theory specifically designed to analyze microstructured materials, called the homogenization theory, is presented and applied to analyze trabecular bone mechanics. Using the homogenization theory it is possible to perform microstructural and continuum analyses separately and then combine them in a systematic manner. Stiffness predictions from two different microstructural models of trabecular bone show reasonable agreement with experimental results, depending on metaphyseal region, (R2 greater than 0.5 for proximal humerus specimens, R2 less than 0.5 for distal femur and proximal tibia specimens). Estimates of both microstructural strain energy density (SED) and apparent SED show that there are large differences (up to 30 times) between apparent SED (as calculated by standard continuum finite element analyses) and the maximum microstructural or tissue SED. Furthermore, a strut and spherical void microstructure gave very different estimates of maximum tissue SED for the same bone volume fraction (BV/TV). The estimates from the spherical void microstructure are between 2 and 20 times greater than the strut microstructure at 10-20% BV/TV.  相似文献   

2.
High-resolution peripheral quantitative computed tomography (HR-pQCT) derived micro-finite element (FE) modeling is used to evaluate mechanical behavior at the distal radius microstructure. However, these analyses typically simulate non-physiologic simplified platen-compression boundary conditions on a small section of the distal radius. Cortical and trabecular regions contribute uniquely to distal radius mechanical behavior, and various factors affect these regions distinctly. Generalized strength predictions from standardized platen-compression analyses may not adequately capture region specific responses in bone. Our goal was to compare load sharing within the cortical-trabecular compartments between the standardized platen-compression BC simulations, and physiologic BC simulations using a validated multiscale approach. Clinical- and high-resolution images were acquired from nine cadaveric forearm specimens using an HR-pQCT scanner. Multiscale FE models simulating physiologic BCs, and micro-FE only models simulating platen-compression BCs were created for each specimen. Cortical and trabecular loads (N) along the length of the distal radius micro-FE section were compared between BCs using correlations. Principal strain distributions were also compared quantitatively. Cortical and trabecular loads from the platen-compression BC simulations were strongly correlated to the physiologic BC simulations. However, a 30% difference in cortical loads distally, and a 53% difference in trabecular loads proximally was observed under platen BC simulations. Also, distribution of principal strains was clearly different. Our data indicated that platen-compression BC simulations alter cortical-trabecular load sharing. Therefore, results from these analyses should be interpreted in the appropriate mechanical context for clinical evaluations of normal and pathologic mechanical behavior at the distal radius.  相似文献   

3.
Cancellous bone has a dynamic 3-dimensional architecture of trabeculae, the arrangement of which is continually reorganized via bone remodeling to adapt to the mechanical environment. Osteocytes are currently believed to be the major mechanosensory cells and to regulate osteoclastic bone resorption and osteoblastic bone formation in response to mechanical stimuli. We previously developed a mathematical model of trabecular bone remodeling incorporating the possible mechanisms of cellular mechanosensing and intercellular communication in which we assumed that interstitial fluid flow activates the osteocytes to regulate bone remodeling. While the proposed model has been validated by the simulation of remodeling of a single trabecula, it remains unclear whether it can successfully represent in silico the functional adaptation of cancellous bone with its multiple trabeculae. In the present study, we demonstrated the response of cancellous bone morphology to uniaxial or bending loads using a combination of our remodeling model with the voxel finite element method. In this simulation, cancellous bone with randomly arranged trabeculae remodeled to form a well-organized architecture oriented parallel to the direction of loading, in agreement with the previous simulation results and experimental findings. These results suggested that our mathematical model for trabecular bone remodeling enables us to predict the reorganization of cancellous bone architecture from cellular activities. Furthermore, our remodeling model can represent the phenomenological law of bone transformation toward a locally uniform state of stress or strain at the trabecular level.  相似文献   

4.
Interbody fusion device subsidence has been reported clinically. An enhanced understanding of the mechanical behaviour of the surrounding bone would allow for accurate predictions of vertebral subsidence. The multiaxial inelastic behaviour of trabecular bone is investigated at a microscale and macroscale level. The post-yield behaviour of trabecular bone under hydrostatic and confined compression is investigated using microcomputed tomography-derived microstructural models, elucidating a mechanism of pressure-dependent yielding at the macroscopic level. Specifically, microstructural trabecular simulations predict a distinctive yield point in the apparent stress–strain curve under uniaxial, confined and hydrostatic compression. Such distinctive apparent stress–strain behaviour results from localised stress concentrations and material yielding in the trabecular microstructure. This phenomenon is shown to be independent of the plasticity formulation employed at a trabecular level. The distinctive response can be accurately captured by a continuum model using a crushable foam plasticity formulation in which pressure-dependent yielding occurs. Vertebral device subsidence experiments are also performed, providing measurements of the trabecular plastic zone. It is demonstrated that a pressure-dependent plasticity formulation must be used for continuum level macroscale models of trabecular bone in order to replicate the experimental observations, further supporting the microscale investigations. Using a crushable foam plasticity formulation in the simulation of vertebral subsidence, it is shown that the predicted subsidence force and plastic zone size correspond closely with the experimental measurements. In contrast, the use of von Mises, Drucker–Prager and Hill plasticity formulations for continuum trabecular bone models lead to over prediction of the subsidence force and plastic zone.  相似文献   

5.
Skeletal unloading induces trabecular bone loss in loaded bones. The tail-suspended mouse model simulates conditions associated with lack of mechanical stress such as space flight for the loaded bones. In such a model, the tail supports the body weight. The forelimbs are normally loaded and the movement of its hindlimbs is free without weight bearing. Histomorphometric analyses of the murine tibiae of the elevated hindlimbs show that trabecular bone volume rapidly diminishes within one week and stabilizes at that level in the subsequent week of tail suspension. Two-week reloading after one-week unloading completely restores trabecular bone volume, but this does not happen after two-week unloading. Unloading for one or two weeks significantly reduces bone formation rate and increases both the osteoclast surface and number compared with age-matched ground control mice. Subsequent reloading restores reduced bone formation and suppresses increased bone resorption. In bone marrow cell cultures, the numbers of alkaline phosphatase (ALP)-positive colony-forming units-fibroblastic (CFU-f) and mineralized nodules are significantly reduced, but the numbers of adherent marrow cells and total CFU-f are unaltered after tail suspension. On the other hand, subsequent reloading increases the number of adherent marrow cells. Unloading for one week significantly increases the number of tartrate-resistant acid phosphatase (TRAP)- positive multinucleated cells compared with the control level. Our data demonstrate that tail suspension in mice reduces trabecular bone formation, enhances bone resorption, and is closely associated with the formation of mineralized nodules and TRAP-positive multinucleated cells in bone marrow cultures obtained from tibiae. Two-week reloading restores bone volume reduced after one-week unloading, but does not after two-week unloading. The tail-suspended model provides a unique opportunity to evaluate the physiological and cellular mechanisms of the skeletal response to unloading and reloading.  相似文献   

6.
The balance between local remodeling and accumulation of trabecular bone microdamage is believed to play an important role in the maintenance of skeletal integrity. However, the local mechanical parameters associated with microdamage initiation are not well understood. Using histological damage labeling, micro-CT imaging, and image-based finite element analysis, regions of trabecular bone microdamage were detected and registered to estimated microstructural von Mises effective stresses and strains, maximum principal stresses and strains, and strain energy density (SED). Bovine tibial trabecular bone cores underwent a stepwise uniaxial compression routine in which specimens were micro-CT imaged following each compression step. The results indicate that the mode of trabecular failure observed by micro-CT imaging agreed well with the polarity and distribution of stresses within an individual trabecula. Analysis of on-axis subsections within specimens provided significant positive relationships between microdamage and each estimated tissue stress, strain and SED parameter. In a more localized analysis, individual microdamaged and undamaged trabeculae were extracted from specimens loaded within the elastic region and to the apparent yield point. As expected, damaged trabeculae in both groups possessed significantly higher local stresses and strains than undamaged trabeculae. The results also indicated that microdamage initiation occurred prior to apparent yield at local principal stresses in the range of 88-121 MPa for compression and 35-43 MPa for tension and local principal strains of 0.46-0.63% in compression and 0.18-0.24% in tension. These data provide an important step towards understanding factors contributing to microdamage initiation and establishing local failure criteria for normal and diseased trabecular bone.  相似文献   

7.
H Wang  B Ji  XS Liu  XE Guo  Y Huang  KC Hwang 《Journal of biomechanics》2012,45(14):2417-2425
Bone remodeling is a complex dynamic process, which modulates both bone mass and bone microstructure. In addition to bone mass, bone microstructure is an important contributor to bone quality in osteoporosis and fragility fractures. However, the quantitative knowledge of evolution of three-dimensional (3D) trabecular microstructure in adaptation to the external forces is currently limited. In this study, a new 3D simulation method of remodeling of human trabecular bone was developed to quantitatively study the dynamic evolution of bone mass and trabecular microstructure in response to different external loading conditions. The morphological features of trabecular plate and rod, such as thickness and number density in different orientations were monitored during the remodeling process using a novel imaging analysis technique, namely Individual Trabecula Segmentation (ITS). We showed that the volume fraction and microstructures of trabecular bone including, trabecular type and orientation, were determined by the applied mechanical load. Particularly, the morphological parameters of trabecular plates were more sensitive to the applied load, indicating that they played the major role in the mechanical properties of the trabecular bone. Reducing the applied load caused severe microstructural deteriorations of trabecular bone, such as trabecular plate perforation, rod breakage, and a conversion from plates to rods.  相似文献   

8.
To facilitate the investigation of bone formation, in vivo, in response to mechanical loading a caudal vertebra axial compression device (CVAD) has been developed to deliver precise mechanical loads to the fifth caudal vertebra (C5) of the C57BL/6 female mouse. A combined experimental and computational approach was used to quantify the micro-mechanical strain induced in trabecular and cortical components following static and dynamic loading using the CVAD. Cortical bone strains were recorded using micro-strain gages. Finite element (FE) models based on micro-computed tomography were constructed for all C5 vertebrae. Both theoretical and experimental cortical strains correlated extremely well (R(2)>0.96) for a Young's modulus of 14.8 GPa, thus validating the FE model. In this study, we have successfully applied mechanical loads to the C5 murine vertebrae, demonstrating the potential of this model to be used for in vivo loading studies aimed at stimulating both trabecular and cortical bone adaptation.  相似文献   

9.
Subchondral stiffening is a hallmark pathologic feature of osteoarthritis but its mechanical and temporal relationship to the initiation or the progression of osteoarthritis is not established. The mechanical effect of subchondral stiffening on the surrounding trabecular bone is poorly understood. This study employs a relatively new application of digital image correlation to measure strain in the trabecular region of the proximal medial tibia in normal specimens and in specimens with simulated subchondral bone stiffening. Coronal sections from eight normal human cadaveric proximal tibiae were loaded in static compression and high resolution contact radiographs were made. Repeat contact radiographs were collected after the subchondral bone near the jointline was stiffened using polymethylmethacrylate. Digital images, made from loaded and unloaded contact radiographs, were compared using in-house software to measure trabecular displacement and calculate trabecular bone strain. Overall strain was higher in the stiffened specimens suggesting experimental artifiact significantly affected our results. Consistent increases in median maximum shear strain, median maximum principal strain, median minimum principal strain, and peak shear strain were measured near the inner and outer edges of the stiffened segment. Our experiment provides direct experimental measurement of increases in trabecular bone strain caused by subchondral stiffening, however, the clinical and biologic importance of strain increases is unknown.  相似文献   

10.
Several mechanoregulatory tissue differentiation models have been proposed over the last decade. Corroboration of these models by comparison with experimental data is necessary to determine their predictive power. So far, models have been applied with various success rates to different experimental set-ups investigating mainly secondary fracture healing. In this study, the mechanoregulatory models are applied to simulate the implant osseointegration process in a repeated sampling in vivo bone chamber, placed in a rabbit tibia. This bone chamber provides a mechanically isolated environment to study tissue differentiation around titanium implants loaded in a controlled manner. For the purpose of this study, bone formation around loaded cylindrical and screw-shaped implants was investigated. Histologically, no differences were found between the two implant geometries for the global amount of bone formation in the entire chamber. However, a significantly larger amount of bone-to-implant contact was observed for the screw-shaped implant compared to the cylindrical implant. In the simulations, a larger amount of bone was also predicted to be in contact with the screw-shaped implant. However, other experimental observations could not be predicted. The simulation results showed a distribution of cartilage, fibrous tissue and (im)mature bone, depending on the mechanoregulatory model that was applied. In reality, no cartilage was observed. Adaptations to the differentiation models did not lead to a better correlation between experimentally observed and numerically predicted tissue distribution patterns. The hypothesis that the existing mechanoregulatory models were able to predict the patterns of tissue formation in the in vivo bone chamber could not be fully sustained.  相似文献   

11.
Digital image-based finite element modeling (DIBFEM) has become a widely utilized approach for efficiently meshing complex biological structures such as trabecular bone. While DIBFEM can provide accurate predictions of apparent mechanical properties, its application to simulate local phenomena such as tissue failure or adaptation has been limited by high local solution errors at digital model boundaries. Furthermore, refinement of digital meshes does not necessarily reduce local maximum errors. The purpose of this study was to evaluate the potential to reduce local mean and maximum solution errors in digital meshes using a post-processing filtration method. The effectiveness of a three-dimensional, boundary-specific filtering algorithm was found to be mesh size dependent. Mean absolute and maximum errors were reduced for meshes with more than five elements through the diameter of a cantilever beam considered representative of a single trabecula. Furthermore, mesh refinement consistently decreased errors for filtered solutions but not necessarily for non-filtered solutions. Models with more than five elements through the beam diameter yielded absolute mean errors of less than 15% for both Von Mises stress and maximum principal strain. When applied to a high-resolution model of trabecular bone microstructure, boundary filtering produced a more continuous solution distribution and reduced the predicted maximum stress by 30%. Boundary-specific filtering provides a simple means of improving local solution accuracy while retaining the model generation and numerical storage efficiency of the DIBFEM technique.  相似文献   

12.
A computational simulation method for three-dimensional trabecular surface remodeling was proposed, using voxel finite element models of cancellous bone, and was applied to the experimental data. In the simulation, the trabecular microstructure was modeled based on digital images, and its morphological changes due to surface movement at the trabecular level were directly expressed by removing/adding the voxel elements from/to the trabecular surface. A remodeling simulation at the single trabecular level under uniaxial compressive loading demonstrated smooth morphological changes even though the trabeculae were modeled with discrete voxel elements. Moreover, the trabecular axis rotated toward the loading direction with increasing stiffness, simulating functional adaptation to the applied load. In the remodeling simulation at the trabecular structural level, a cancellous bone cube was modeled using a digital image obtained by microcomputed tomography (microCT), and was uniaxially compressed. As a result, the apparent stiffness against the applied load increased by remodeling, in which the trabeculae reoriented to the loading direction. In addition, changes in the structural indices of the trabecular architecture coincided qualitatively with previously published experimental observations. Through these studies, it was demonstrated that the newly proposed voxel simulation technique enables us to simulate the trabecular surface remodeling and to compare the results obtained using this technique with the in vivo experimental data in the investigation of the adaptive bone remodeling phenomenon.  相似文献   

13.
Theories of mechanical adaptation of bone suggest that mechanical loading causes bone formation at discrete locations within bone microstructure experiencing the greatest mechanical stress/strain. Experimental testing of such theories requires in vivo loading experiments and high-resolution finite element models to determine the distribution of mechanical stresses. Finite element models of in vivo loading experiments typically assume idealized boundary conditions with applied load perfectly oriented on the bone, however small misalignments in load orientation during an in vivo experiment are unavoidable, and potentially confound the ability of finite element models to predict locations of bone formation at the scale of micrometers. Here we demonstrate two different three-dimensional spatial correlation methods to determine the effects of misalignment in load orientation on the locations of high mechanical stress/strain in the rodent tail loading model. We find that, in cancellous bone, the locations of tissue with high stress are maintained under reasonable misalignments in load orientation (p<0.01). In cortical bone, however, angular misalignments in the dorsal direction can alter the locations of high mechanical stress, but the locations of tissue with high stress are maintained under other misalignments (p<0.01). We conclude that, when using finite element models of the rodent tail loading model, small misalignments in loading orientation do not affect the predicted locations of high mechanical stress within cancellous bone.  相似文献   

14.
15.
Bone tissue is a complex multilevel composite which has the ability to sense ad respond to its mechanical environment. It is believed that bone cells called osteocytes within the bone matrix sense the mechanical environment and determine whether structural alterations are needed. At present it is not known, however, how loads are transferred from the whole bone level to cells. A computational procedure combining representative volume element (RVE) based homogenization theory with digital imaging is proposed to estimate strains at various levels of bone structure. Bone tissue structural organization and RVE based analysis are briefly reviewed. The digital image based computational procedure was applied to estimate strains in individual trabeculae (first-level microstructure). Homogenization analysis of an idealized model was used to estimate strains at one level of bone structure around osteocyte lacunae (second-level trabecular microstructure). The results showed that strain at one level of bone structure is amplified to a broad range at the next microstructural level. In one case, a zeor-level tensile principal strain of 495 muE engendered strains ranging between -1000 and 7000 muE in individual trabeculae (first-level microstructure). Subsequently, a first-level tensile principal strains of 1325 muE within an inidividual trabecula engendered strains ranging between 782 and 2530 muE around osteocyte lacunae. Lacunar orientation was found to influence strains around osteocyte lacunae much more than lacunar ellipticity. In conclusion, the computational procedure combining homogenization theory with digital imaging can proveide estimates of cell level strains within whole bones. Such results may be used to bridge experimental studies of bone adaptation at the whole bone and cell culture level. (c) 1994 John Wiley & Sons, Inc.  相似文献   

16.
Bisphosphonates suppress bone remodeling activity, increase bone volume, and significantly reduce fracture risk in individuals with osteoporosis and other metabolic bone diseases. The objectives of the current study were to develop a mathematical model that simulates control and 1 year experimental results following bisphosphonate treatment (alendronate or risedronate) in the canine fourth lumbar vertebral body, validate the model by comparing simulation predictions to 3 year experimental results, and then use the model to predict potential long term effects of bisphosphonates on remodeling and microdamage accumulation. To investigate the effects of bisphosphonates on bone volume and microdamage, a mechanistic biological model was modified from previous versions to simulate remodeling in a representative volume of vertebral trabecular bone in dogs treated with various doses of alendronate or risedronate, including doses equivalent to those used for treatment of post-menopausal osteoporosis in humans. Bisphosphonates were assumed to affect remodeling by suppressing basic multicellular unit activation and reducing resorption area. Model simulation results for trabecular bone volume fraction, microdamage, and activation frequency following 1 year of bisphosphonate treatment are consistent with experimental measurements. The model predicts that trabecular bone volume initially increases rapidly with 1 year of bisphosphonate treatment, and continues to slowly rise between 1 and 3 years of treatment. The model also predicts that microdamage initially increases rapidly, 0.5–1.5-fold for alendronate or risedronate during the first year of treatment, and reaches its maximum value by 2.5 years before trending downward for all dosages. The model developed in this study suggests that increasing bone volume fraction with long term bisphosphonate treatment may sufficiently reduce strain and damage formation rate so that microdamage does not accumulate above that which is initiated in the first two years of treatment.  相似文献   

17.
The mechanical fixation of endosseous implants, such as screws, in trabecular bone is challenging because of the complex porous microstructure. Development of new screw designs to improve fracture fixation, especially in high-porosity osteoporotic bone, requires a profound understanding of how the structural system implant/trabeculae interacts when it is subjected to mechanical load. In this study, pull-out tests of screw implants were performed. Screws were first inserted into the trabecular bone of rabbit femurs and then pulled out from the bone inside a computational tomography scanner. The tests were interrupted at certain load steps to acquire 3D images. The images were then analysed with a digital volume correlation technique to estimate deformation and strain fields inside the bone during the tests. The results indicate that the highest shear strains are concentrated between the inner and outer thread diameter, whereas compressive strains are found at larger distances from the screw. Tensile strains were somewhat smaller. Strain concentrations and the location of trabecular failures provide experimental information that could be used in the development of new screw designs and/or to validate numerical simulations.  相似文献   

18.
Jang IG  Kim IY 《Journal of biomechanics》2008,41(11):2353-2361
In the field of bone adaptation, it is believed that the morphology of bone is affected by its mechanical loads, and bone has self-optimizing capability; this phenomenon is well known as Wolff's law of the transformation of bone. In this paper, we simulated trabecular bone adaptation in the human proximal femur using topology optimization and quantitatively investigated the validity of Wolff's law. Topology optimization iteratively distributes material in a design domain producing optimal layout or configuration, and it has been widely and successfully used in many engineering fields. We used a two-dimensional micro-FE model with 50 microm pixel resolution to represent the full trabecular architecture in the proximal femur, and performed topology optimization to study the trabecular morphological changes under three loading cases in daily activities. The simulation results were compared to the actual trabecular architecture in previous experimental studies. We discovered that there are strong similarities in trabecular patterns between the computational results and observed data in the literature. The results showed that the strain energy distribution of the trabecular architecture became more uniform during the optimization; from the viewpoint of structural topology optimization, this bone morphology may be considered as an optimal structure. We also showed that the non-orthogonal intersections were constructed to support daily activity loadings in the sense of optimization, as opposed to Wolff's drawing.  相似文献   

19.
Trabecular bone fractures heal through intramembraneous ossification. This process differs from diaphyseal fracture healing in that the trabecular marrow provides a rich vascular supply to the healing bone, there is very little callus formation, woven bone forms directly without a cartilage intermediary, and the woven bone is remodelled to form trabecular bone. Previous studies have used numerical methods to simulate diaphyseal fracture healing or bone remodelling, however not trabecular fracture healing, which involves both tissue differentiation and trabecular formation. The objective of this study was to determine if intramembraneous bone formation and remodelling during trabecular bone fracture healing could be simulated using the same mechanobiological principles as those proposed for diaphyseal fracture healing. Using finite element analysis and the fuzzy logic for diaphyseal healing, the model simulated formation of woven bone in the fracture gap and subsequent remodelling of the bone to form trabecular bone. We also demonstrated that the trabecular structure is dependent on the applied loading conditions. A single model that can simulate bone healing and remodelling may prove to be a useful tool in predicting musculoskeletal tissue differentiation in different vascular and mechanical environments.  相似文献   

20.
During endochondral ossification, growth plate cartilage is replaced with bone. Mineralized cartilage matrix is resorbed by osteoclasts, and new bone tissue is formed by osteoblasts. As mineralized cartilage does not contain any cells, it is unclear how this process is regulated. We hypothesize that, in analogy with bone remodeling, osteoclast and osteoblast activity are regulated by osteocytes, in response to mechanical loading. Since the cartilage does not contain osteocytes, this means that cartilage turnover during endochondral ossification would be regulated by the adjacent bone tissue. We investigated this hypothesis with an established computational bone adaptation model. In this model, osteocytes stimulate osteoblastic bone formation in response to the mechanical bone tissue loading. Osteoclasts resorb bone near randomly occurring microcracks that are assumed to block osteocyte signals. We used finite element modeling to evaluate our hypothesis in a 2D-domain representing part of the growth plate and adjacent bone. Cartilage was added at a constant physiological rate to simulate growth. Simulations showed that osteocyte signals from neighboring bone were sufficient for successful cartilage turnover, since equilibrium between cartilage remodeling and growth was obtained. Furthermore, there was good agreement between simulated bone structures and rat tibia histology, and the development of the trabecular architecture resembled that of infant long bones. Additionally, prohibiting osteoclast invasion resulted in thickened mineralized cartilage, similar to observations in a knock-out mouse model. We therefore conclude that it is well possible that osteocytes regulate the turnover of mineralized growth plate cartilage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号