首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.  1. The relative importance of direct and indirect interactions in controlling organism abundance is still an unresolved question. This study investigated the role of the direct and indirect interactions involving ants, aphids, parasitoids, and the host plant Baccharis dracunculifolia (Asteraceae) on a galling herbivore Baccharopelma dracunculifoliae (Homoptera: Psyllidae).
2. The effects of these interactions on the galling herbivore's performance were evaluated by an exclusion experiment during two consecutive generations of the galling insect.
3. Ants had a direct negative effect on the performance of the galling herbivore by reducing the number of nymphs per gall. In contrast, ants had no indirect effects on gall mortality through the associated parasitoids.
4. Aphids negatively affected gall development, suggesting that galls and aphids might be partitioning photoassimilates and nutrients moving throughout host-plant tissues.
5. In addition, galls that developed during the rainy season were heavier, indicating that variation in the host plant, due to weather changes, can affect the development of B. dracunculifoliae galls. However, variation in the development of B. dracunculifoliae galls due to presence of aphids or the weather changes did not affect parasitoid attack.
6. These results suggest that direct interactions between ants and galls influenced galling insect abundance, whereas numerical indirect effects involving galling insects, ants, aphids, and host plants were less conspicuous.  相似文献   

2.
Associational resistance mediated by natural enemies   总被引:1,自引:0,他引:1  
Abstract.  1. Associational resistance theory suggests that the association of herbivore-susceptible plant species with herbivore-resistant plant species can reduce herbivore density on the susceptible plant species. Several casual mechanisms are possible but none has so far invoked natural enemies. Associational resistance mediated by natural enemies was tested for by examining densities of a gall fly, Asphondylia borrichiae (Diptera: Cecidomyiidae), and levels of parasitism on two closely related seaside plants, Borrichia frutescens and Iva frutescens , when alone and when co-occurring.
2. Both Borrichia and Iva grow alone or together on small offshore islands in Florida. Each host plant species has its own associated race of fly, but both races of fly are attacked by the same four species of parasitoids. Borrichia normally has a higher density of galls than Iva , and galls are larger on Borrichia than on Iva .
3. Gall size, gall abundance, parasitism levels, and parasitoid community composition were quantified on both Borrichia and Iva on islands where each species grew alone or together. Some islands were then manipulated by adding Borrichia to islands supporting only Iva , and by adding Iva to islands supporting only Borrichia . Subsequent gall densities and gall parasitism levels on the original native species were then examined.
4. On both natural and experimentally manipulated islands, gall densities on Iva were significantly lowered by the presence of Borrichia . This is because bigger parasitoid species that were common on Borrichia galls, which are bigger, spilled over and attacked the smaller Iva galls. Thus, parasitism rates on Iva were higher on islands where Borrichia co-occurred than on islands where Borrichia were absent. Most parasitoids from Iva were too small to successfully attack the large Borrichia galls and so gall density on Borrichia was unaffected by the presence of Iva .  相似文献   

3.
The Argentine ant, Linepithema humile, has invaded sites across Africa, Australia, Europe, and North America. In its introduced ranges it eliminates native ants and tends agricultural pests. Few studies have examined the ecology of Argentine ants in their native habitat. This study examined the effects of parasitoid flies, genus Pseudacteon, on the foraging behavior of Argentine ants in part of their native range in southern Brazil. Pseudacteon parasitoids commonly attacked Argentine ants, but not other ant species, in daylight at temperatures above 18°C. Argentine ants abandoned food resources and returned underground in the presence of parasitoids. Parasitoid attack rates diminished as Argentine ants retreated underground. Where parasitoids were present, Argentine ants were abundant at food resources only during times of day when parasitoids were inactive. Where parasitoids were absent, Argentine ants were abundant at food resources throughout the day. Overall, the presence of parasitoids explained observed variation in Argentine ant foraging far better than temperature, although temperature had some effect. The results suggest that Pseudacteon parasitoids inhibit the ability of Argentine ants to gather food resources in their native habitat in Brazil. Received: 11 December 1997 / Accepted: 12 June 1998  相似文献   

4.
Abstract.
  • 1 Rapid and substantial changes have occurred in the parasitoid and inquiline community associated with the agamic galls of Andricus quercuscalicis since it invaded Britain in the late 1950s. The number of parasitoid and inquiline species has risen from one to thirteen over a 15-year period. Although the number of species has been relatively consistent over the last 8 years, the species composition has changed considerably and in a highly characteristic way during this period.
  • 2 The parasitoid complex can be divided into two broadly distinct sets of parasitoid species; one set attacks only the gall former whereas the other set concentrates on the inquilines living in the wall of the gall.
  • 3 The most dramatic change, however, is in the abundance of inquilines which were reported to be virtually absent in earlier studies on this community in Britain. Over a period of only 5 years, between 1988 and 1993, inquiline attack rose from less than 0.01 to an average of 0.26 inquilines per gall. The intensity of inquiline attack is geographically heterogenous, with high inquiline numbers restricted to south-east England. Because of the relatively high specificity of the parasitoids, high inquiline abundance is positively correlated with parasitoid species richness in knopper galls.
  • 4 Parasitism rates, particularly on the gall former, were generally low (<10%). Over the last 5 years, however, seven parasitoid species have been consistently recorded and the mortality caused by these species has increased continuously. The species composition of the community associated with this alien gall wasp in Britain has quickly converged to the community known from its native range in continental Europe. Parasitoid species known to attack the galls of A.quercuscalisis on the continent have been recorded from it in Britain for the first time mainly in areas where inquilines have recently become abundant.
  • 5 Since rates of parasitism of the gall former are still low, parasitoids are unlikely to play a major role in the population dynamics of this invading gall wasp at present, but the rapidly increasing inquiline and parasitoid attack could be a source of increased mortality for native cynipid species which are the alternative hosts of those parasitoid species.
  相似文献   

5.
1. Ants have evolved mutualistic relationships with a diverse array of plant and animal species. Usually, the predatory/aggressive behaviour of ants near food sources can limit herbivore damage. 2. Galls of Disholcaspis edura on Quercus turbinella produce a secretion that is harvested by three species of ants (Formica neorufibarbis, Liometopium apiculatum, and Monomorium cyaneum) in the chaparral vegetation of Arizona, U.S.A. The study reported here provides evidence of a mutualistic relationship between these species of ants and the gall-forming wasp Disholcaspis edura. 3. An ant exclusion experiment showed that when ants tended galls, the rate of parasitism by Platygaster sp. on Disholcaspis edura was nearly halved in comparison to a treatment in which ants were excluded. 4. In the presence of ants, galls with the largest diameter suffered a lower mortality rate due to parasitoid attack than when ants were excluded. Thus, ant presence reduced the selective pressure imposed by Platygaster sp. on the galls with larger diameter.  相似文献   

6.
Abstract.  1. This paper explores the potential effects of host-plant fragmentation on cork oak gall wasp populations (Cynipidae, Hymenoptera) and on their predators, lethal inquilines, and parasitoids. To address this objective, galls were collected across a gradient of cork oak ( Quercus suber ) forest fragmentation in the East Pyrenees (Albera, Spain), and they were incubated to obtain the parasitism rates.
2. Two hypotheses were tested: (1) Host-plant fragmentation may induce a decline in gall wasp populations because of area and isolation effects on local extinction and dispersal; as a consequence of that, parasitoids may decline even more strongly in fragmented habitats than their prey. (2) Host-plant fragmentation may cause a decline in gall wasp parasitoid populations that, in turn, can lead to an ecological release in their prey populations.
3. Among the eight cork oak gall wasps sampled in the study area of Albera, the gall abundances of three species ( Callirhytis glandium , Callirhytis rufescens , and Andricus hispanicus ) were significantly related to forest fragmentation. The overall abundance of gall wasps was affected by a radius of ≈ 890 m surrounding landscape, presenting constant abundances with forest loss until forest cover is reduced at ≈ 40%; below that value the abundance increased rapidly. Three inquilines and 23 parasitoids species were recorded after gall incubation. In 25 cases, species of inquilines and parasitoids were newly recorded for the corresponding host in the Iberian peninsula.
4. Although the overall parasitism rate was high (1.1), it was uncorrelated with fragmentation and with overall cynipid abundance. These results indicate that host-plant fragmentation was correlated with higher abundance of gall wasps, whereas the parasitism rate could not explain this hyper-abundance in small forest fragments.  相似文献   

7.
1. At least sixteen species of parasitoid flies in the genus Pseudacteon (family Phoridae) attack fire ants in the Solenopsis saevissima subcomplex in South America. Little is known of behavioural or ecological differences among Pseudacteon parasitoids of fire ants, although their coexistence in multispecies communities would suggest that important differences exist. Seven Pseudacteon species in two separate communities were studied in south-east Brazil. The way in which hosts detect and respond to the presence of parasitoids, attack rates of the parasitoids, and host location behaviour of the parasitoids were examined.
2. Reductions in fire ant recruitment were more closely related to the number of ants attacked along a foraging trail than to the amount of time that a phorid was present.
3. Pseudacteon solenopsidis differed from other phorid species by flying backwards while pursuing ants, by attacking at lower rates than other phorids, and by spending longer around fire ant foraging trails than other phorids before departing. Fire ant recruitment to food often rebounded in the continued presence of P. solenopsidis.
4. In each of the two communities, certain Pseudacteon species appeared frequently at Solenopsis foraging trails, whereas others appeared predominantly at mound disturbances. Two distinct size classes of phorids were present in each community, and the community with the larger ant host species also had a third and larger phorid species. No phorid species from the same community had similar body sizes and similar host location behaviours, although numerous species from different communities shared both of these traits.
5. Heterogeneity in host size and in the ecological circumstances under which hosts are vulnerable to attack appears to have influenced the evolution and perhaps maintenance of diverse Pseudacteon communities.  相似文献   

8.
Studies of thermal level‐related asynchrony in a host–parasitoid relationship are necessary to understand the effects of climate change on new host–parasitoid interactions. In the Asian chestnut gall wasp Dryocosmus kuriphilus (Hymenoptera: Cynipidae) and its Chalcidoidea parasitoids, phenological synchrony is assumed to be weather‐dependent in a new area of expansion. To evaluate the effects of environmental thermal regimes on the host, a phenology model for different cynipid stages (larvae, pupae, adults, and adult emergence) and a host–parasitoid phenological estimator are developed in three chestnut fields during two successive growth seasons and subsequently validated in areas with chestnut fields at two different altitudes. Comparisons of the timings of the juvenile and adult stages with those of the parasitoid complex demonstrate that the shortest period of occurrence for cynipids within galls has negative effects on the host–parasitoid relationships at higher temperature levels, thereby increasing phenological asynchrony for some parasitoids species. Reducing the development time of pupae and adults decreases the likelihood of success for some parasitoid species at higher temperature levels. We also record the extension of the gall wasp development time (approximately 15 days) at higher altitudes (linked to a lower mean temperature of approximately 1.5 °C). These results highlight how parasitization on the new hosts is dependent on the host phenology and, in the present study, is limited by the short duration of the presence of the host in galls, which could explain the considerable differences in cynipid gall wasp parasitization recorded at different altimeters.  相似文献   

9.
Communities of insect herbivores and their natural enemies are rich and ecologically crucial components of terrestrial biodiversity. Understanding the processes that promote their origin and maintenance is thus of considerable interest. One major proposed mechanism is ecological speciation through host‐associated differentiation (HAD), the divergence of a polyphagous species first into ecological host races and eventually into more specialized daughter species. The rich chalcid parasitoid communities attacking cynipid oak gall wasp hosts are structured by multiple host traits, including food plant taxon, host gall phenology, and gall structure. Here, we ask whether the same traits structure genetic diversity within supposedly generalist parasitoid morphospecies. We use mitochondrial DNA sequences and microsatellite genotypes to quantify HAD for Megastigmus (Bootanomyia) dorsalis, a complex of two apparently generalist cryptic parasitoid species attacking oak galls. Ancient Balkan refugial populations showed phenological separation between the cryptic species, one primarily attacking spring galls, and the other mainly attacking autumn galls. The spring species also contained host races specializing on galls developing on different host‐plant lineages (sections Cerris vs. Quercus) within the oak genus Quercus. These results indicate more significant host‐associated structuring within oak gall parasitoid communities than previously thought and support ecological theory predicting the evolution of specialist lineages within generalist parasitoids. In contrast, UK populations of the autumn cryptic species associated with both native and recently invading oak gall wasps showed no evidence of population differentiation, implying rapid recruitment of native parasitoid populations onto invading hosts, and hence potential for natural biological control. This is of significance given recent rapid range expansion of the economically damaging chestnut gall wasp, Dryocosmus kuriphilus, in Europe.  相似文献   

10.
Abstract 1. Immature stages of the gall midge, Asphondylia borrichiae, are attacked by four species of parasitoids, which vary in size and relative abundance within patches of the gall midge’s primary host plant, sea oxeye daisy (Borrichia frutescens). 2. In the current study, a bagging experiment found that the smallest wasp, Galeopsomyia haemon, was most abundant in galls exposed to natural enemies early in the experiment, when gall diameter is smallest, while the wasp with the longest ovipositor, Torymus umbilicatus, dominated the parasitoid community in galls that were not exposed until the 5th and 6th weeks when gall diameter is maximal. 3. Moreover, the mean number of parasitoids captured using large artificial galls were 70% and 150% higher compared with medium and small galls respectively, while stem height of artificial galls significantly affected parasitoid distribution. Galls that were level with the top of the sea oxeye canopy captured 60% more parasitoids compared with those below the canopy and 50% more than galls higher than the plant canopy. 4. These non‐random patterns were driven primarily by the differential distribution of the largest parasitoid, T. umbilicatus, which was found significantly more often than expected on large galls and the smallest parasitoid of the guild, G. haemon, which tended to be more common on stems level with the top of the plant canopy. 5. Large Asphondylia galls, especially those located near the top of the Borrichia canopy, were more likely to be discovered by searching parasitoids. Results using artificial galls were consistent with rates of parasitism of Asphondylia galls in native patches of sea oxeye daisy. Gall diameter was 19% greater and the rate of parasitism was reduced by almost 50% on short stems; as a result, gall abundance was 24% higher on short stems compared with ones located near the top of the plant canopy. 6. These results suggest that parasitoid community composition within galls is regulated by both interspecific differences in ovipositor length and preferences for specific gall size and/or stem length classes.  相似文献   

11.
We examined seasonal patterns of gall morphology, growth, and survivorship of the agamic generation of a cynipid wasp, Aphelonyx glanduliferae, and discussed its mortality factors, especially from the point of view of refuge from parasitoid attack. Although the initiation period varied greatly among individual galls, the larvae of A. glanduliferae grew rapidly and reached their maximum size within 3 weeks before pupating in late September to early October. This growth period corresponded to the period when the gall walls became thinner. Parasitoid attack, which was the principal factor in the mortality of A. glanduliferae in the tree crown, was concentrated around the pupation period of the cynipid. Gall walls were significantly thinner in galls attacked by parasitoids than in those still containing a living cynipid. Therefore, the period available to parasitoids seems to be limited by both gall wall thickness and cynipid size. Thus, the growth pattern of A. glanduliferae larvae can have significance in that it narrows the window of vulnerability to parasitoids to a particular period. Although delaying gall initiation will also shorten the exposure period to parasitoid attacks, it was likely to increase the risk of death from gall abortion caused by seasonal degradation in the quality of host plant tissues. Although many cynipids were killed by disease in the galls that fell to the ground, the falling of mature galls to the ground may be another way to a parasitoid-free space. It is thus suggested that a trade-off among life history traits against multiple factors operates in the refuge of A. glanduliferae from parasitoid attack. Received: May 15, 2001 / Accepted: February 1, 2002  相似文献   

12.
Abstract.
  • 1 The natural history of a gall wasp including interactions with inquilines, parasites, and a mutualistic ant are examined. The stability of the system is described from the perspective of influences on gall wasp life history characteristics.
  • 2 An exclusion experiment demonstrated that the nectar-secreting gall of Disholcaspis perniciosa mediates a mutualism with the tending ant, Formica obscuripes. Survivorship increased from 0% in the absence of ants to 25.3% in their presence, largely due to the exclusion of inquilines.
  • 3 Specialized parasites, Eudecatoma spp., attacked before the ant-gall interaction began, when the developing gall was still beneath the host plant (Quercus gambellii) epidermis and ants were not in attendance. They may select for later developing gall wasps, which benefit by having fewer individuals parasitized. However, counter-selection for earlier development may result from decreased gall wasp size, decreased fecundity, and an increase in gall failures resulting from late development.
  • 4 Local persistence of the gall wasp population despite increased pressure from inquilines and parasites was attributed to gall wasp escape in time due to polymorphic emergence resulting from diapause. Most individuals emerge at the end of the summer, but approximately 15% remain in the galls as prepupae for 1–5 years.
  相似文献   

13.
Abstract 1. The Argentine ant, Linepithema humile, tends honeydew‐excreting homopterans and can disrupt the activity of their natural enemies. This mutualism is often cited for increases in homopteran densities; however, the ant’s impact on natural enemies may be only one of several effects of ant tending that alters insect densities. To test for the variable impacts of ants, mealybug and natural enemy densities were monitored on ant‐tended and ant‐excluded vines in two California vineyard regions. 2. Ant tending increased densities of the obscure mealybug, Pseudococcus viburni, and lowered densities of its encyrtid parasitoids Pseudaphycus flavidulus and Leptomastix epona. Differences in parasitoid recovery rates suggest that P. flavidulus was better able to forage on ant‐tended vines than L. epona. 3. Densities of a coccinellid predator, Cryptolaemus montrouzieri, were higher on ant‐tended vines, where there were more mealybugs. Together with behavioural observations, the results showed that this predator can forage in patches of ant‐tended mealybugs, and that it effectively mimics mealybugs to avoid disturbance by ants. 4. Ant tending increased densities of the grape mealybug, Pseudococcus maritimus, by increasing the number of surviving first‐instar mealybugs. Parasitoids were nearly absent from the vineyard infested with P. maritimus. Therefore, ants improved either mealybug habitat or fitness. 5. There was no difference in mealybug distribution or seasonal development patterns on ant‐tended and ant‐excluded vines, indicating that ants did not move mealybugs to better feeding locations or create a spatial refuge from natural enemies. 6. Results showed that while Argentine ants were clearly associated with increased mealybug densities, it is not a simple matter of disrupting natural enemies. Instead, ant tending includes benefits independent of the effect on natural enemies. Moreover, the effects on different natural enemy species varied, as some species thrive in the presence of ants.  相似文献   

14.
Abstract. 1. Eurytoma gigantea Walsh is a specialist parasitoid of the tephritid gallmaker Eurosta solidaginis (Fitch).
2. In the natural environment the incidence of parasitism by Eurytoma is greater in small galls than in large ones.
3. Laboratory experiments demonstrated that small galls are not more frequently discovered; however, oviposition attempts on small galls were more likely to be successful.
4. Eurytoma spends much time probing galls too big to penetrate; this leads to a decrease in foraging efficiency when many large galls are present.
5. The chance of successfully penetrating a gall depends on the thickness of the gall wall and the length of the parasitoid's ovipositor.
6. A simulation model was constructed which shows that a gallmak-er's chance of being parasitized depends on gall size, the number of parasitoids that discover the gall, and their ovipositor lengths.  相似文献   

15.
Summary We tested the Enemy Impact Hypothesis, which predicts that communities of one tropic level are organized by the tropic level above. In the case of gallforming insect communities, the hypothesis predicts that gall morphology will diverge, minimizing the number of parasitoids shared among species. We used the monophyletic group of gallforming cecidomyiids (Asphondylia spp.) on creosote bush (Larrea tridentata) to test this hypothesis, predicting that species with thicker gall walls should exclude species of parasitoids with shorter ovipositors and have lower levels of parasitism. Of 17 parasitoid species reared from Asphondylia galls on creosote bush, 9 accounted for over 98% of parasitism. Seven of these 9 species had ovipositors long enough to penetrate 10 of 13 gall morphs measured. There was no significant relationship between gall wall thickness and number of associated parasitoid species (r 2=0.01, P>0.05, n=13). There was no relationship between gall wall thickness and types of parasitoid species colonizing galls: parasitoids with the shortest ovipositors colonized all types of gall morphs and were dominant members of the parasitoid assemblages in galls with the thickest walls. Ultimately, there were no significant differences in percent parasitism among Asphondylia species, regardless of gall wall thickness. We found no difference in numbers of associated parasitoids or percent parasitism in galls with different textures (e.g. hairy versus smooth), different locations on the plant or different phenologies. Our results suggest that enemy impact has not influenced the diversity of this gall community. Gall wall thickness, phenology, location on the plant and surface structure do not appear to influence the distribution of parasitoid species. Other explanations are offered to account for diversity in gall morphology among these species.  相似文献   

16.
Summary The parasitoids known to attack 191 phytophagous species of gall midges (Cecidomyiidae) were used to examine factors influencing parasitoid assemblage size. The number of parasitoid species a midge species supports was tested against nine variables describing geographical, biological and ecological attributes of hosts. The apparency of midge larvae was found to have the greatest influence on parasitoid assemblage size; highly visible species support more parasitoids than less visible ones. Pupation site and midge voltinism also significantly affect associated parasitoids, at least for highly apparent hosts. Biogeographic region, host-plant architecture and the plant parts infested were found to be of secondary importance. The surface texture of infested plant parts, the number of midge larvae occupying galls and the diversity of plant tissues infested have minimal apparent effects on parasitoid richness. Parasitoid assemblage size and total parasitism rates were also found to be positively correlated for 73 galling and nongalling midge species, and gallers typically suffer higher levels of parasitism than non-gallers. Using these data to test the enemy hypothesis, which proposes that the galling habit has evolved to escape attack from parasitoids, we conclude that parasitoid pressure cannot account for the presence of galls in the Cecidomyiidae.  相似文献   

17.
Abstract. 1. Atriplex canescens (Pursh) Nuttall and A.polycarpa (Torrey) Watson (Chenopodiaceae) support twelve morphologically distinct gall types in southern California. Thirty-seven common species of parasitoids, predators and inquilines are associated with these galls. 2. The galls incited by eight members of the Asphondylia atriplicis Cockerell (Diptera: Cecidomyiidae) species complex are linked into a single, interacting community through shared hymenopterous parasitoids and inquilines. 3. Cluster analysis (UPGMA) grouped the fifteen most common species of Chalcidoidea into three host guilds of five species each: (1) specialists in tumour stem and blister leaf galls on A.canescens, (2) specialists in woolly stem galls on A.poiycarpa, and (3) generalists that attack all galls. Guild 1 dominated the galls with which it was primarily associated, while guild 3 dominated the remainder. 4. The abundances of the parasitoids of the tumour stem and blister leaf galls were negatively correlated with the abundances of two organizer species, a gall-forming inquiline, Tetrastichus cecidobroter Gordh and Hawkins, and an internal, larval—pupal parasitoid, Tetrastichus sp. B. The abundances of nine of the twelve most common chalcidoids were not correlated with the abundances of all coaccurring species in six other galls. 5. Host seasonality partly determines parasitoid population dynamics and guild structure. Parasitoid dominance increased with gall duration, suggesting that parasitoid competition depends on resource stability. The two continuously available galls were dominated by their specialist guild, while all seasonal galls were dominated by generalists. The subdominant specialists of woolly stem galls may represent competitively inferior species that utilize those galls opportunistically, because of the gall's widespread distribution and 9–10 month yearly availability. 6. Sites in the Colorado Desert and chaparral that supported several gall types showed stable relative abundances of the major parasitoid species, whereas sites in the Mojave Desert that supported only woolly stem galls had unpredictable parasitoid species assemblages. 7. The competitive success of Atriplex gall parasitoids may depend primarily on voltinism (multivoltine species dominated univoltine species) and mode of feeding (phytophagous, mixed entomophagous—phytophagous and facultatively hyperparasitic species in general dominated strict primary parasitoids).  相似文献   

18.
Interspecific competition between phytophagous insects using the same host plant occurs frequently and can strongly affect population densities of competing species. Competition between gallmakers and stemborers could be especially intense because both types of herbivore are unable to avoid competition by relocation during their immature stages. For apical meristem gallmakers the main result of competition is likely to be the interruption of resources to the gall by the stemborers' devouring of stem contents. The proximate effect of such competition could be to reduce gall size, thereby increasing the number of chambers per gall unit volume, and reducing the size and potential reproductive output of the gallformer. In addition, smaller galls may be more susceptible to attack from size‐limited parasitoids, resulting in a second indirect effect of competition. Using a community of galling and stemboring insects on the saltmarsh shrub Iva frutescens L. (Asteraceae), we measured for indirect effects of competition. We examined the primary indirect effect of competition on gall midge crowding and the secondary effects on parasitism rates and parasitoid guild composition. Results indicated that galls co‐occurring with stemborers were smaller, crowding of gall inhabitants was 22% greater, and the composition of the parasitoid guild was altered relative to galls on unbored stems. The overall parasitism rate was not different between galls on bored vs. unbored stems. These results show that competition resulting from the presence of stemborers has the potential to affect the gall midge Asphondylia borrichiae Rossi & Strong (Diptera: Cecidomyiidae) and secondarily to affect its guild of hymenopteran parasitoids.  相似文献   

19.
20.
Oak galls are spectacular extended phenotypes of gallwasp genes in host oak tissues and have evolved complex morphologies that serve, in part, to exclude parasitoid natural enemies.Parasitoids and their insect herbivore hosts have coevolved to produce diverse communities comprising about a third of all animal species. The factors structuring these communities, however, remain poorly understood. An emerging theme in community ecology is the need to consider the effects of host traits, shaped by both natural selection and phylogenetic history, on associated communities of natural enemies. Here we examine the impact of host traits and phylogenetic relatedness on 48 ecologically closed and species-rich communities of parasitoids attacking gall-inducing wasps on oaks. Gallwasps induce the development of spectacular and structurally complex galls whose species- and generation-specific morphologies are the extended phenotypes of gallwasp genes. All the associated natural enemies attack their concealed hosts through gall tissues, and several structural gall traits have been shown to enhance defence against parasitoid attack. Here we explore the significance of these and other host traits in predicting variation in parasitoid community structure across gallwasp species. In particular, we test the “Enemy Hypothesis,” which predicts that galls with similar morphology will exclude similar sets of parasitoids and therefore have similar parasitoid communities. Having controlled for phylogenetic patterning in host traits and communities, we found significant correlations between parasitoid community structure and several gall structural traits (toughness, hairiness, stickiness), supporting the Enemy Hypothesis. Parasitoid community structure was also consistently predicted by components of the hosts'' spatiotemporal niche, particularly host oak taxonomy and gall location (e.g., leaf versus bud versus seed). The combined explanatory power of structural and spatiotemporal traits on community structure can be high, reaching 62% in one analysis. The observed patterns derive mainly from partial niche specialisation of highly generalist parasitoids with broad host ranges (>20 hosts), rather than strict separation of enemies with narrower host ranges, and so may contribute to maintenance of the richness of generalist parasitoids in gallwasp communities. Though evolutionary escape from parasitoids might most effectively be achieved via changes in host oak taxon, extreme conservatism in this trait for gallwasps suggests that selection is more likely to have acted on gall morphology and location. Any escape from parasitoids associated with evolutionary shifts in these traits has probably only been transient, however, due to subsequent recruitment of parasitoid species already attacking other host galls with similar trait combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号