首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
TMCompare is an alignment and visualization tool for comparison of sequence information for membrane proteins contained in SWISS-PROT entries, with structural information contained in PDB files. The program can be used for: detection of breaks in alpha helical structure of transmembrane regions; examination of differences in coverage between PDB and SWISS-PROT files; examination of annotation differences between PDB files and associated SWISS-PROT files; examination and comparison of assigned PDB alpha helix regions and assigned SWISS-PROT transmembrane regions in linear sequence (one letter code) format; examination of these differences in 3D using the CHIME plugin, allowing; analysis of the alpha and non-alpha content of transmembrane regions. AVAILABILITY: TMCompare is available for use through selection of a query protein via the internet (http://www.membraneproteins.org/TMCompare) CONTACT: tmcompare@membraneproteins.org  相似文献   

2.
MOTIVATION: Modeling of protein interactions is often possible from known structures of related complexes. It is often time-consuming to find the most appropriate template. Hypothesized biological units (BUs) often differ from the asymmetric units and it is usually preferable to model from the BUs. RESULTS: ProtBuD is a database of BUs for all structures in the Protein Data Bank (PDB). We use both the PDBs BUs and those from the Protein Quaternary Server. ProtBuD is searchable by PDB entry, the Structural Classification of Proteins (SCOP) designation or pairs of SCOP designations. The database provides the asymmetric and BU contents of related proteins in the PDB as identified in SCOP and Position-Specific Iterated BLAST (PSI-BLAST). The asymmetric unit is different from PDB and/or Protein Quaternary Server (PQS) BUs for 52% of X-ray structures, and the PDB and PQS BUs disagree on 18% of entries. AVAILABILITY: The database is provided as a standalone program and a web server from http://dunbrack.fccc.edu/ProtBuD.php.  相似文献   

3.
The Protein Data Bank (PDB) is the single most important repository of structural data for proteins and other biologically relevant molecules. Therefore, it is critically important to keep the PDB data, as much as possible, error-free. In this study, we have analyzed PDB crystal structures possessing oligonucleotide/oligosaccharide binding (OB)-fold, one of the highly populated folds, for the presence of sequence-structure mapping errors. Using energy-based structure quality assessment coupled with sequence analyses, we have found that there are at least five OB-structures in the PDB that have regions where sequences have been incorrectly mapped onto the structure. We have demonstrated that the combination of these computation techniques is effective not only in detecting sequence-structure mapping errors, but also in providing guidance to correct them. Namely, we have used results of computational analysis to direct a revision of X-ray data for one of the PDB entries containing a fairly inconspicuous sequence-structure mapping error. The revised structure has been deposited with the PDB. We suggest use of computational energy assessment and sequence analysis techniques to facilitate structure determination when homologs having known structure are available to use as a reference. Such computational analysis may be useful in either guiding the sequence-structure assignment process or verifying the sequence mapping within poorly defined regions.  相似文献   

4.
The Protein Data Bank (PDB) is the global archive for structural information on macromolecules, and a popular resource for researchers, teachers, and students, amassing more than one million unique users each year. Crystallographic structure models in the PDB (more than 100,000 entries) are optimized against the crystal diffraction data and geometrical restraints. This process of crystallographic refinement typically ignored hydrogen bond (H‐bond) distances as a source of information. However, H‐bond restraints can improve structures at low resolution where diffraction data are limited. To improve low‐resolution structure refinement, we present methods for deriving H‐bond information either globally from well‐refined high‐resolution structures from the PDB‐REDO databank, or specifically from on‐the‐fly constructed sets of homologous high‐resolution structures. Refinement incorporating HOmology DErived Restraints (HODER), improves geometrical quality and the fit to the diffraction data for many low‐resolution structures. To make these improvements readily available to the general public, we applied our new algorithms to all crystallographic structures in the PDB: using massively parallel computing, we constructed a new instance of the PDB‐REDO databank ( https://pdb-redo.eu ). This resource is useful for researchers to gain insight on individual structures, on specific protein families (as we demonstrate with examples), and on general features of protein structure using data mining approaches on a uniformly treated dataset.  相似文献   

5.
Knowledge of the 3D structure of glycans is a prerequisite for a complete understanding of the biological processes glycoproteins are involved in. However, due to a lack of standardised nomenclature, carbohydrate compounds are difficult to locate within the Protein Data Bank (PDB). Using an algorithm that detects carbohydrate structures only requiring element types and atom coordinates, we were able to detect 1663 entries containing a total of 5647 carbohydrate chains. The majority of chains are found to be N-glycosidically bound. Noncovalently bound ligands are also frequent, while O-glycans form a minority. About 30% of all carbohydrate containing PDB entries comprise one or several errors. The automatic assignment of carbohydrate structures in PDB entries will improve the cross-linking of glycobiology resources with genomic and proteomic data collections, which will be an important issue of the upcoming glycomics projects. By aiding in detection of erroneous annotations and structures, the algorithm might also help to increase database quality.  相似文献   

6.
STING Millennium Suite (SMS) is a new web-based suite of programs and databases providing visualization and a complex analysis of molecular sequence and structure for the data deposited at the Protein Data Bank (PDB). SMS operates with a collection of both publicly available data (PDB, HSSP, Prosite) and its own data (contacts, interface contacts, surface accessibility). Biologists find SMS useful because it provides a variety of algorithms and validated data, wrapped-up in a user friendly web interface. Using SMS it is now possible to analyze sequence to structure relationships, the quality of the structure, nature and volume of atomic contacts of intra and inter chain type, relative conservation of amino acids at the specific sequence position based on multiple sequence alignment, indications of folding essential residue (FER) based on the relationship of the residue conservation to the intra-chain contacts and Calpha-Calpha and Cbeta-Cbeta distance geometry. Specific emphasis in SMS is given to interface forming residues (IFR)-amino acids that define the interactive portion of the protein surfaces. SMS may simultaneously display and analyze previously superimposed structures. PDB updates trigger SMS updates in a synchronized fashion. SMS is freely accessible for public data at http://www.cbi.cnptia.embrapa.br, http://mirrors.rcsb.org/SMS and http://trantor.bioc.columbia.edu/SMS.  相似文献   

7.
We describe the current status of the Java molecular graphics tool, MolSurfer. MolSurfer has been designed to assist the analysis of the structures and physico-chemical properties of macromolecular interfaces. MolSurfer provides a coupled display of two-dimensional (2D) maps of the interfaces generated with the ADS software and a three-dimensional (3D) view of the macromolecular structure in the Java PDB viewer, WebMol. The interfaces are analytically defined and properties such as electrostatic potential or hydrophobicity are projected on to them. MolSurfer has been applied previously to analyze a set of 39 protein-protein complexes, with structures available from the Protein Data Bank (PDB). A new application, described here, is the visualization of 75 interfaces in structures of protein-DNA and protein-RNA complexes. Another new feature is that the MolSurfer web server is now able to compute and map Poisson-Boltzmann electrostatic potentials of macromolecules onto interfaces. The MolSurfer web server is available at http://projects.villa-bosch.de/mcm/software/molsurfer.  相似文献   

8.
Protein Data Bank Japan (PDBj), a founding member of the worldwide Protein Data Bank (wwPDB) has accepted, processed and distributed experimentally determined biological macromolecular structures for 20 years. During that time, we have continuously made major improvements to our query search interface of PDBj Mine 2, the BMRBj web interface, and EM Navigator for PDB/BMRB/EMDB entries. PDBj also serves PDB‐related secondary database data, original web‐based modeling services such as Homology modeling of complex structure (HOMCOS), visualization services and utility tools, which we have continuously enhanced and expanded throughout the years. In addition, we have recently developed several unique archives, BSM‐Arc for computational structure models, and XRDa for raw X‐ray diffraction images, both of which promote open science in the structural biology community. During the COVID‐19 pandemic, PDBj has also started to provide feature pages for COVID‐19 related entries across all available archives at PDBj from raw experimental data and PDB structural data to computationally predicted models, while also providing COVID‐19 outreach content for high school students and teachers.  相似文献   

9.
SUMMARY: Voro3D is an original easy-to-use tool, which provides a brand new point of view on protein structures through the three-dimensional (3D) Voronoi tessellations. To construct the Voronoi cells associated with each amino acid by a number of different tessellation methods, Voro3D uses a protein structure file in the PDB format as an input. After calculation, different structural properties of interest like secondary structures assignment, environment accessibility and exact contact matrices can be derived without any geometrical cut-off. Voro3D provides also a visualization of these tessellations superimposed on the associated protein structure, from which it is possible to model a polygonal protein surface using a model solvent or to quantify, for instance, the contact areas between a protein and a ligand. AVAILABILITY: The software executable file for PC using Windows 98, 2000, NT, XP can be freely downloaded at http://www.lmcp.jussieu.fr/~mornon/voronoi.html CONTACT: franck.dupuis@sanofi-aventis.com; jean-paul-mornon@imcp.jussieu.fr.  相似文献   

10.
Of the roughly 20,000 canonical human protein sequences, as of January 20, 2021, 7,077 proteins have had their full or partial, medium‐ to high‐resolution structures determined by x‐ray crystallography or other methods. Which of these proteins dominate the protein data bank (the PDB) and why? In this paper, we list the 273 top human protein structures based on the number of their PDB entries. This set of proteins accounts for more than 40% of all available human PDB entries and represent past trends as well as current status for protein structural biology. We briefly discuss the relationship which some of the prominent protein structures have with protein research as a whole and mention their relevance to human diseases. The top‐10 soluble and membrane proteins are all well‐known (most of their first structures being deposited more than 30 years ago). Overall, there is no dramatic change in recent trends in the PDB. Remarkably, the number of structure depositions has grown nearly exponentially over the last 10 or more years (with a doubling time of 7 years for proteins, obtained from any organism). Growth in human protein structures is slightly faster (at 5.9 years). The information in this paper may be informative to senior scientists but also inspire researchers who are new to protein science, providing the year 2021 snap‐shot for the state of protein structural biology.  相似文献   

11.
We describe Vivaldi (VIsualization and VALidation DIsplay; http://pdbe.org/vivaldi ), a web‐based service for the analysis, visualization, and validation of NMR structures in the Protein Data Bank (PDB). Vivaldi provides access to model coordinates and several types of experimental NMR data using interactive visualization tools, augmented with structural annotations and model‐validation information. The service presents information about the modeled NMR ensemble, validation of experimental chemical shifts, residual dipolar couplings, distance and dihedral angle constraints, as well as validation scores based on empirical knowledge and databases. Vivaldi was designed for both expert NMR spectroscopists and casual non‐expert users who wish to obtain a better grasp of the information content and quality of NMR structures in the public archive. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Mapping PDB chains to UniProtKB entries   总被引:2,自引:0,他引:2  
MOTIVATION: UniProtKB/SwissProt is the main resource for detailed annotations of protein sequences. This database provides a jumping-off point to many other resources through the links it provides. Among others, these include other primary databases, secondary databases, the Gene Ontology and OMIM. While a large number of links are provided to Protein Data Bank (PDB) files, obtaining a regularly updated mapping between UniProtKB entries and PDB entries at the chain or residue level is not straightforward. In particular, there is no regularly updated resource which allows a UniProtKB/SwissProt entry to be identified for a given residue of a PDB file. RESULTS: We have created a completely automatically maintained database which maps PDB residues to residues in UniProtKB/SwissProt and UniProtKB/trEMBL entries. The protocol uses links from PDB to UniProtKB, from UniProtKB to PDB and a brute-force sequence scan to resolve PDB chains for which no annotated link is available. Finally the sequences from PDB and UniProtKB are aligned to obtain a residue-level mapping. AVAILABILITY: The resource may be queried interactively or downloaded from http://www.bioinf.org.uk/pdbsws/.  相似文献   

13.
The analysis of disulphide bond containing proteins in the Protein Data Bank (PDB) revealed that out of 27,209 protein structures analyzed, 12,832 proteins contain at least one intra-chain disulphide bond and 811 proteins contain at least one inter-chain disulphide bond. The intra-chain disulphide bond containing proteins can be grouped into 256 categories based on the number of disulphide bonds and the disulphide bond connectivity patterns (DBCPs) that were generated according to the position of half-cystine residues along the protein chain. The PDB entries corresponding to these 256 categories represent 509 unique SCOP superfamilies. A simple web-based computational tool is made freely available at the website http://www.ccmb.res.in/bioinfo/dsbcp that allows flexible queries to be made on the database in order to retrieve useful information on the disulphide bond containing proteins in the PDB. The database is useful to identify the different SCOP superfamilies associated with a particular disulphide bond connectivity pattern or vice versa. It is possible to define a query based either on a single field or a combination of the following fields, i.e., PDB code, protein name, SCOP superfamily name, number of disulphide bonds, disulphide bond connectivity pattern and the number of amino acid residues in a protein chain and retrieve information that match the criterion. Thereby, the database may be useful to select suitable protein structural templates in order to model the more distantly related protein homologs/analogs using the comparative modeling methods.  相似文献   

14.
The Metalloprotein Database and Browser (MDB; http://metallo.scripps.edu) at The Scripps Research Institute is a web-accessible resource for metalloprotein research. It offers the scientific community quantitative information on geometrical parameters of metal-binding sites in protein structures available from the Protein Data Bank (PDB). The MDB also offers analytical tools for the examination of trends or patterns in the indexed metal-binding sites. A user can perform interactive searches, metal-site structure visualization (via a Java applet), and analysis of the quantitative data by accessing the MDB through a web browser without requiring an external application or platform-dependent plugin. The MDB also has a non-interactive interface with which other web sites and network-aware applications can seamlessly incorporate data or statistical analysis results from metal-binding sites. The information contained in the MDB is periodically updated with automated algorithms that find and index metal sites from new protein structures released by the PDB.  相似文献   

15.
The web application oriented on identification and visualization of protein regions encoded by exons is presented. The Exon Visualiser can be used for visualisation on different levels of protein structure: at the primary (sequence) level and secondary structures level, as well as at the level of tertiary protein structure. The programme is suitable for processing data for all genes which have protein expressions deposited in the PDB database. The procedure steps implemented in the application: I) loading exons sequences and theirs coordinates from GenBank file as well as protein sequences: CDS from GenBank and aminoacid sequence from PDB II) consensus sequence creation (comparing amino acid sequences form PDB file with the CDS sequence from GenBank file) III) matching exon coordinates IV) visualisation in 2D and 3D protein structures. Presented web-tool among others provides the color-coded graphical display of protein sequences and chains in three dimensional protein structures which are correlated with the corresponding exons.

Availability

http://149.156.12.53/ExonVisualiser/  相似文献   

16.
Information obtained from Nuclear Magnetic Resonance (NMR) experiments is encoded as a set of constraint lists when calculating three-dimensional structures for a protein. With the amount of constraint data from the world wide Protein Data Bank (wwPDB) that is now available, it is possible to do a global, large-scale analysis using only information from the constraints, without taking the coordinate information into account. This article describes such an analysis of distance constraints from NOE data based on a set of 1834 NMR PDB entries containing 1909 protein chains. In order to best represent the quality and extent of the data that is currently deposited at the wwPDB, only the original data as deposited by the authors was used, and no attempt was made to ‘clean up’ and further interpret this information. Because the constraint lists provide a single set of data, and not an ensemble of structural solutions, they are easier to analyse and provide a reduced form of structural information that is relevant for NMR analysis only. The online resource resulting from this analysis () makes it possible to check, for example, how often a particular contact occurs when assigning NOESY spectra, or to find out whether a particular sequence fragment is likely to be difficult to assign. In this respect it formalises information that scientists with experience in spectrum analysis are aware of but cannot necessarily quantify. The analysis described here illustrates the importance of depositing constraints (and all other possible NMR derived information) along with the structure coordinates, as this type of information can greatly assist the NMR community.  相似文献   

17.
18.
A statistical analysis is reported of 1,200 of the 1,404 nuclear magnetic resonance (NMR)-derived protein and nucleic acid structures deposited in the Protein Data Bank (PDB) before 1999. Excluded from this analysis were the entries not yet fully validated by the PDB and the more than 100 entries that contained < 95% of the expected hydrogens. The aim was to assess the geometry of the hydrogens in the remaining structures and to provide a check on their nomenclature. Deviations in bond lengths, bond angles, improper dihedral angles, and planarity with respect to estimated values were checked. More than 100 entries showed anomalous protonation states for some of their amino acids. Approximately 250,000 (1.7%) atom names differed from the consensus PDB nomenclature. Most of the inconsistencies are due to swapped prochiral labeling. Large deviations from the expected geometry exist for a considerable number of entries, many of which are average structures. The most common causes for these deviations seem to be poor minimization of average structures and an improper balance between force-field constraints for experimental and holonomic data. Some specific geometric outliers are related to the refinement programs used. A number of recommendations for biomolecular databases, modeling programs, and authors submitting biomolecular structures are given.  相似文献   

19.
20.
MOTIVATION: Data on both single nucleotide polymorphisms and disease-related mutations are being collected at ever-increasing rates. To understand the structural effects of missense mutations, we consider both classes under the term single amino acid polymorphisms (SAAPs) and we wish to map these to protein structure where their effects can be analyzed. Our initial aim therefore is to create a completely automatically maintained database of SAAPs mapped to individual residues in the Protein Data Bank (PDB) updated as new mutations or structures become available. RESULTS: We present an integrated pipeline for the automated mapping of SAAP data from HGVbase to individual PDB residues. Achieving this in a completely automated and reliable manner is a complex task. Data extracted from HGVbase are mapped to EMBL entries to confirm whether the mutation occurs in an exon and, if so, where in the sequence it occurs. From there we map to Swiss-Prot entries and thence to the PDB. AVAILABILITY: The resulting database may be accessed over the web at http://www.bioinf.org.uk/saap/ or http://acrmwww.biochem.ucl.ac.uk/saap/ CONTACT: a.martin@biochem.ucl.ac.uk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号