首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Pullikuth AK  Gill SS 《Gene》1999,240(2):343-354
Transport between intracellular compartments requires the activity of an N-ethylmaleimide-sensitive fusion protein (NSF). NSF is a member of a growing family of ATPases regulating several membrane fusion reactions. We have cloned the NSF ortholog from the moth, Manduca sexta (MsNSF). MsNSF is highly conserved in domains critical for NSF function in vertebrates. MsNSF codes for a protein of 745 amino acids, translating to a Mr of 83 kDa in vitro. MsNSF is 72% and 61% similar in amino acid sequence to Drosophila and vertebrate NSFs, respectively. We expressed the D1 ATP domain of MsNSF toward which antibodies selective to MsNSF were generated. Affinity purified -MsNSF antibodies detect a 83 kDa protein which is highly enriched in nervous tissues. Levels of MsNSF expression are substantially lower in other tissues examined. Anti-MsNSF antibodies are capable of inhibiting vertebrate intra-Golgi transport of a cargo protein in vitro. The identification of NSF ortholog from Manduca, whose neuroendocrine system is well studied, should facilitate isolation of complexes involved in protein trafficking from insect models. Phylogenetic analysis of NSF and related proteins suggests that the members of the AAA family arose from different ancestors, since the ingroup was not monophyletic. Proteasomal subunits and p97 homologs form two distinct subfamilies, while NSF homologs branch in to the third.  相似文献   

2.
A cDNA encoding for a 68 kDa GTP-binding protein was isolated from Arabidopsis thaliana (aG68). This clone is a member of a gene family that codes for a class of large GTP-binding proteins. This includes the mammalian dynamin, yeast Vps1p and the vertebrate Mx proteins. The predicted amino acid sequence was found to have high sequence conservation in the N-terminal GTP-binding domain sharing 54% identity to yeast Vps1p, 56% amino acid identity to rat dynamin and 38% identity to the murine Mx1 protein. The northern analysis shows expression in root, leaf, stem and flower tissues, but in mature leaves at lower levels. Southern analysis indicates that it may be a member of a small gene family or the gene may contain an intron.  相似文献   

3.
Nuclei from Bactrocera oleae and Ceratitis capitata larvae contain a major protein that shares most of the characteristics of vertebrate high mobility group (HMG) proteins. Proteins are extracted from nuclei with 0.35 M NaCl, are soluble in 5% perchloric acid, are relatively small (molecular weight in the range of 10–16 kDa), and have both a high basic and a high acidic amino acid content. The amino acid constitution of these proteins is similar to that of the HMGB protein family of vertebrates. The proteins cross-react with antibodies raised against the HMGD chromosomal protein of Drosophila melanogaster. The possible relatedness of these proteins to high mobility group proteins is discussed.  相似文献   

4.
From plate cultures of Campylobacter jejuni grown in room air a particulate protein of 62 kDa was isolated by ion-exchange chromatography. The protein had a square shape from the side view but when viewed from the top it had a star-shaped structure. The molecular size of the whole particle determined by gel filtration was 850 kDa which suggested the presence of 14 subunits of 62 kDa in each particle. The N-terminal 37 amino residues showed more than 80% homology with the sequence of these heat shock protein (HSP) 60 homologs of Chlamydia trachomatis, Helicobacter pylori, and Escherichia coli (GroEL). This protein is immunologically cross-reactive with the antiserum for the 60-kDa HSP of Yersinia enterocolitica. Production of the 62-kDa protein increased under heat stress and growth in an aerobic atmospheric environment. From these observations we concluded that the 62-kDa protein is a Campylobacter stress protein (Cj62) which belongs to the HSP 60 family.  相似文献   

5.
《Gene》1998,207(1):53-60
The N-ethylmaleimide-sensitive fusion protein (NSF) is required for vesicular membrane fusion in multiple cellular functions. We have cloned a cDNA encoding the Dictyostelium discoideum homolog of the NSF protein. This cDNA hybridizes with a single fragment in Southern blots suggesting that NSF is encoded by a single gene in the amoeba. It is expressed constitutively during vegetative growth and throughout the differentiation cycle. The encoded gene product comprises 738 aa with a predicted molecular mass of 82 kDa. It shows the characteristic three-domain structure of NSF proteins. A more divergent amino-terminal part is followed by two highly conserved ATP-binding domains featuring Walker A and B signature sequences. The D. discoideum protein presents an overall aa sequence identity of 44% when compared to known NSF homologs. The monoclonal antibody 2E5 directed against Cricetellus griseus NSF recognizes a protein with a molecular weight of approx. 80 000 in a D. discoideum crude extract and the recombinant D. discoideum His6-NSF expressed in Escherichia coli.  相似文献   

6.
Heat-shock proteins of Porphyromonas gingivalis were demonstrated and two of them were purified and further characterized. The amplified de novo synthesis of two different proteins, with apparent molecular weights of 75 kDa and 68 kDa, was observed by autofluorography when a P. gingivalis culture incubated in a 14C-labeled amino acid mixture was shifted from 37°C to 44°C. Both proteins possessed ATP-binding abilities and were purified to almost homogeneity employing affinity chromatography on ATP-agarose followed by preparative SDS-PAGE. Purified 75 kDa and 68 kDa proteins had isoelectric points of 4.4 and 4.6, respectively. They were shown to be immunoreactive with commercial anti-DnaK and anti-GroEL polyclonal antibodies, respectively. Immunoblotting analysis of whole cells using antiserum raised against each purified protein from P. gingivalis, confirmed elevated synthesis of both proteins during thermal shock. A GroEL protein reacted strongly with antiserum against the 68 kDa protein. However, a DnaK protein reacted weakly with antiserum to the 75 kDa protein. Analysis of the N-terminal amino acid sequence of the DnaK-like protein (75 kDa) showed a high degree of homology with those of the HSP70 family including both prokaryotic and eukaryotic cells. The N-terminal amino acid analysis of the GroEL-like protein (68 kDa) indicated that it was identical to those of cloned GroEL homologues from P. gingivalis.  相似文献   

7.
hBRCA1 is involved in 20–45% of inherited breast cancer cases and is implicated in many mechanisms involved in response to DNA damage. To date, BRCA1 orthologs have been characterized in vertebrate genomes only. We have identified the ortholog of BRCA1 in Arabidopsis thaliana. AtBRCA1 is a 5.5 kb part of the locus At4g21070. The corresponding mRNA of 3.5 kb is composed of 14 exons and encodes a 941 amino acid protein (104 kDa). AtBRCA1, which has one N-terminal RING finger, two C-terminal BRCT and the p300/CBP interacting domain, shows a high similarity to hBRCA1 in these motifs and has the same characteristic molecular organization. We have also identified a putative ortholog in rice (OsBRCA1). With 941 and 968 amino acids, respectively, AtBRCA1 and OsBRCA1 are the shortest members of the BRCA1 family, and may represent a plant specificity. AtBRCA1 is expressed ubiquitously in plant tissues, at levels depending on organ type, with highest levels in flower buds and exponentially growing cell cultures. Increase of mRNA levels in all plant tissues 1 h after irradiation with the highest induction level of approximately 150 times for a 100 Gy dose is consistent with a putative role of AtBRCA1 in DNA repair and in cell-cycle control.  相似文献   

8.
9.
10.
A cDNA (cNPK2) that encodes a protein of 518 amino acids was isolated from a library prepared from poly(A)+ RNAs of tobacco cells in suspension culture. The N-terminal half of the predicted NPK2 protein is similar in amino acid sequence to the catalytic domains of kinases that activate mitogen-activated protein kinases (designated here MAPKKs) from various animals and to those of yeast homologs of MAPKKs. The N-terminal domain of NPK2 was produced as a fusion protein in Escherichia coli, and the purified fusion protein was found to be capable of autophosphorylation of threonine and serine residues. These results indicate that the N-terminal domain of NPK2 has activity of a serine/threonine protein kinase. Southern blot analysis showed that genomic DNAs from various plant species, including Arabidopsis thaliana and sweet potato, hybridized strongly with cNPK2, indicating that these plants also have genes that are closely related to the gene for NPK2. The structural similarity between the catalytic domain of NPK2 and those of MAPKKs and their homologs suggests that tobacco NPK2 corresponds to MAPKKs of other organisms. Given the existence of plant homologs of an MAP kinase and tobacco NPK1, which is structurally and functionally homologous to one of the activator kinases of yeast homologs of MAPKK (MAPKKKs), it seems likely that a signal transduction pathway mediated by a protein kinase cascade that is analogous to the MAP kinase cascades proposed in yeasts and animals, is also conserved in plants.  相似文献   

11.
Nine glycoproteins (gB, gC, gD, gE, gG, gH, gI, gK, and gL) have been identified in bovine herpesvirus 1 (BHV-1). gM has been identified in many other alpha-, beta-, and gammaherpesviruses, in which it appears to play a role in membrane penetration and cell-to-cell fusion. We sought to express BHV-1 open reading frame UL10, which encodes gM, and specifically identify the glycoprotein. We corrected a frameshift error in the published sequence and used the corrected sequence to design coterminal peptides from the C terminus. These were expressed as glutathione S-transferase fusion proteins in Escherichia coli. The fusion protein containing the 63 C-terminal amino acids from the corrected gM sequence engendered antibodies that immunoprecipitated a 30-kDa protein from in vitro translation reactions programmed with the UL10 gene. Proteins immunoprecipitated by this antibody from virus-infected cells ran at 36 and 43 kDa in reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 43 and 48 kDa in nonreducing SDS-PAGE. Only the larger of the pair was present in virions. A 7-kDa protein was released from gM by reducing agents. The 7-kDa protein was not recognized in Western blots probed with the anti-gM antibody but reacted specifically with antibodies prepared against BHV-1 UL49.5, previously reported to be a 9-kDa protein associated with an unidentified 39-kDa protein (X. Liang, B. Chow, C. Raggo, and L. A. Babiuk, J. Virol. 70:1448–1454, 1996). This is the first report of a small protein covalently bound to any herpesvirus gM. Similar patterns of hydrophobic domains and cysteines in all known gM and UL49.5 homologs suggest that these two proteins may be linked by disulfide bonds in all herpesviruses.  相似文献   

12.
The gene for the catalytic subunit of cellulose synthase from Acetobacter xylinum has been cloned by using an oligonucleotide probe designed from the N-terminal amino acid sequence of the catalytic subunit (an 83 kDa polypeptide) of the cellulose synthase purified from trypsin-treated membranes of A. xylinum. The gene was located on a 9.5 kb HindIII fragment of A. xylinum DNA that was cloned in the plasmid pUC18. DNA sequencing of approximately 3 kb of the HindIII fragment led to the identification of an open reading frame of 2169 base pairs coding for a polypeptide of 80 kDa. Fifteen amino acids in the N-terminal region (positions 6 to 20) of the amino acid sequence, deduced from the DNA sequence, match with the N-terminal amino acid sequence obtained for the 83 kDa polypeptide, confirming that the DNA sequence cloned codes for the catalytic subunit of cellulose synthase which transfers glucose from UDP-glucose to the growing glucan chain. Trypsin treatment of membranes during purification of the 83 kDa polypeptide cleaved the first 5 amino acids at the N-terminal end of this polypeptide as observed from the deduced amino acid sequence, and also from sequencing of the 83 kDa polypeptide purified from membranes that were not treated with trypsin. Sequence analysis suggests that the cellulose synthase catalytic subunit is an integral membrane protein with 6 transmembrane segments. There is no signal sequence and it is postulated that the protein is anchored in the membrane at the N-terminal end by a single hydrophobic helix. Two potential N-glycosylation sites are predicted from the sequence analysis, and this is in agreement with the earlier observations that the 83 kDa polypeptide is a glycoprotein [13]. The cloned gene is conserved among a number of A. xylinum strains, as determined by Southern hybridization.  相似文献   

13.
14.
Ekrem Dündar  Daniel R. Bush 《Planta》2009,229(5):1047-1056
The Arabidopsis thaliana At2g01170 gene is annotated as a putative gamma amino butyric acid (GABA) permease based on its sequence similarity to a yeast GABA transporting gene (UGA4). A cDNA of At2g01170 was expressed in yeast and analyzed for amino acid transport activity. Both direct measurement of amino acid transport and yeast growth experiments demonstrated that the At2g01170 encoded-protein exhibits transport activity for alanine, arginine, glutamate and lysine, but not for GABA or proline. Significantly, unlike other amino acid transporters described in plants to date, At2g01170 displayed both export and import activity. Based on that observation, it was named bidirectional amino acid transporter 1 (BAT1). Sequence comparisons show BAT1 is not a member of any previously defined amino acid transporter family. It does share, however, several conserved protein domains found in a variety of prokaryotic and eukaryotic amino acid transporters, suggesting membership in an ancient family of transporters. BAT1 is a single copy gene in the Arabidopsis genome, and its mRNA is ubiquitously expressed in all organs. A transposon—GUS gene-trap insert in the BAT1 gene displays GUS localization in the vascular tissues (Dundar in Ann Appl Biol, 2009) suggesting BAT1 may function in amino acid export from the phloem into sink tissues.  相似文献   

15.
The aim of the present work was to investigate the relationship between the Btl gene (Btl) and the major 39–44 kDa amyloplast membrane polypeptides which were deficient in amyloplast membranes of brittlel (btl) kernels of maize (Zea mays L.). A rapid yet gentle procedure for the isolation of amyloplasts from immature kernels is described. These amyloplasts were relatively free of contamination by other cellular components, and immunological studies showed that they contained polypeptides which reacted with antibodies to maize starch branching enzyme and ADP-Gle pyrophosphorylase. Purified membranes isolated from the amyloplast contained a poly-peptide which reacted with antibodies to the Pi-translocator from spinach chloroplasts. However, a cluster of 39–44 kDa polypeptides accounted for about 40% of the total amyloplast membrane protein from W64A kernels. These polypeptides were specifically recognized by antibodies raised against a fusion protein consisting of 56 amino acids of the carboxyl terminus of the BTI protein and glutathione S-transferase. The BT1 antibodies also reacted with the abundant polypeptides in amyloplast membranes from hybrid kernels (Doebler 66XP and Pioneer 3780), and the shrunkenl and shrunken2 mutant genotypes, but no BTl reacting polypeptides were present in amyloplast membranes from btl mutant kernels. We were unable to detect BTl by the immunoblot procedure in microsomal membranes from embryo and pericarp tissues from the kernel, from seedling roots and shoots, or in membranes from mitochondria and chloroplasts. The same BTl immunoblot pattern was obtained for proteins extracted from microsomal membranes from developing endosperm and from purified amyloplast membranes. A linear relationship between the number of copies of Btl alleles and the levels of BTl in endosperm microsomal membranes was demonstrated in a gene dosage series. BTl was not extracted from amyloplast membranes by chloroform/methanol or by alkaline buffer at pH 11.5, but was partially extracted by 0.1 M NaOH. These lines of evidence support the conclusion that Btl is the structural gene for the major 39–44 kDa amyloplast membrane polypeptides and that these polypeptides are integral proteins specific to amyloplast membranes from the endosperm.  相似文献   

16.
Zhou YX  Cao W  Luo QP  Ma YS  Wang JZ  Wei DZ 《Biotechnology letters》2005,27(10):725-730
Adenoregulin is a member of dermaseptin family which are vertebrate antibiotic peptides having lethal effects against a broad spectrum of bacteria, fungi and protozoa. The 99 bp adenoregulin gene was cloned in the expression vector pET32a and transformed into Escherichia coli BL21(DE3). In fed-batch cultivation of BL21(DE3)/pET32a-adr, an exponential feeding strategy was applied to gain 60 g dry cells l–1. The recombinant fusion protein Trx-ADR was expressed in a soluble form. The fusion protein was isolated by Ni2+-chelating chromatography, cleaved with CNBr and purified to homogeneity through reverse phase-HPLC and size exclusion-HPLC. The purified recombinant adenoregulin had antibacterial activity against Escherichia coli K12D31 with apparent Mr of 3.4 kDa, identical to the anticipated value.  相似文献   

17.
18.
19.
Summary Actin microfilaments, which are essential for cell growth and cytoplasmic streaming in pollen tubes, are closely dependent on actin-binding proteins for their organization and regulation. We have purified the plant 135 kDa actin-bundling protein (P-135-ABP) fromLilium longiflorum pollen and determined that its amino acid composition is highly similar to members of the villin-gelsolin family of proteins. We used antibodies against P-135-ABP to probe an expression cDNA library ofL. longiflorum pollen and isolated a full-length clone (ABP135) that corresponds to a 106 kDa polypeptide. The deduced amino acid sequence ofABP135 shows homology with members of the villin-gelsolin family of proteins and contains the characteristic six repeats of this family, as well as an extended carboxy-terminal domain that includes the villin headpiece preceded by a highly variable region. Using two-dimensional polyacrylamide gel electrophoresis we detected at least 5 isoforms of P-135-ABP, with isoelectric points (pI) ranging between 5.6 to 5.9. The most abundant P-135-ABP isoform has a pI of 5.8, closely approximating the pI predicted from the deducedABP135 amino acid sequence. These data, together with the partial amino acid sequence from a proteolytic peptide of the protein, indicate that P-135-ABP is a plant villin. Immuno-detection of Lilium villin in rapidly frozen pollen tubes localized it to actin bundles. Lilium villin is also ubiquitously expressed in all tissues tested. Since villins, like gelsolins, are also Ca2+-dependent severing, capping, and nucleating proteins, Lilium villin may participate in F-actin fragmentation and nucleation in the apex of the pollen tube where there is steep Ca2+ gradient.Abbreviations BMM butyl methyl-methacrylate - PPI polyphos-phoinositides - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号