首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Messinian pre-evaporitic sedimentary succession of Gavdos Island (Metochia section) is a nearly uninterrupted succession of marine sediments, dominated by finely laminated diatomaceous marls, which are cyclically alternating with clayey diatomites and white diatomites. The qualitative and quantitative analysis of the planktonic foraminiferal fauna allowed the recognition of nine bioevents, which have been astronomically dated for the Mediterranean. The base of the diatomitic succession in Gavdos Island is dated at 6.722 Ma and the top at 6.015 Ma. The studied section contains benthic foraminiferal genera characteristic of an outer shelf to slope environment. The qualitative and quantitative analysis of this microfauna revealed three benthic foraminiferal fossil assemblages and the occurrence of allochthonous species transported into the bathyal environment by current activity. The cyclical pattern of the benthic foraminifera assemblages indicates that the studied sediments have been affected by repeated episodes of basin restriction characterized by low diversity benthic foraminifera populations, and a limited planktonic foraminifer association typified by shallow, surface-dwelling forms. This restriction was partly due to Antarctic cooling, which produced palaeo-Mediterranean sea-level oscillations during the Early Messinian, as a prelude to closure of the Atlantic connections. The relative impact of climatic versus tectonic control on sedimentation patterns within this basin is discussed.  相似文献   

2.
Integrated data of calcareous plankton and benthic foraminifers from the pre-evaporitic interval of Trave section (Central Italy) allowed the reconstruction of surface and bottom-water conditions in the Central Mediterranean during the interval from 7.61 to 6.33 Ma, preceding the Messinian Salinity Crisis.Our data point out a three-step paleoenvironmental evolution. During the first stage (7.61-7.02 Ma) benthic foraminiferal assemblages depict stable, well-oxygenated and ventilated bottom-water conditions, while the surface water records variable temperature and high nutrient conditions, probably associated with strong seasonality. The second stage (7.02-6.70 Ma) points to unfavourable bottom-water condition, triggered by deep-sea stagnation. This is witnessed by a significant decrease in oxygen concentration and biotic diversity, and by the presence of stress-tolerant taxa. A general warming of the surface water and a strongly stratified water column, characterized by an expanded mixed layer, are also recorded.From 6.70 Ma onwards (third stage), a prominent change to more restricted, low-oxygenated, hypersaline conditions at the sea floor is testified by the total disappearance of deep-dwelling planktonic foraminifers and the increasing abundance of stress-tolerant species. Calcareous plankton reflects high instability of the surface water in terms of nutrients, temperature and salinity. During this stage the environmental deterioration reaches intermediate depths in the water column.The initial change toward a step-wise isolation of the Central Mediterranean bottom-waters is probably related to a general warming, responsible for a first slowing-down of the vertical circulation, favouring stratification of surface and intermediate waters and stagnation of bottom-waters. This warming is related to the restricted connection between the Mediterranean Sea and the Atlantic Ocean, which occurred since 7.146 Ma.In the Trave section, the isolation of bottom-waters most likely occurred at the same time as in other Mediterranean sections. However, due to the presence of a hiatus it cannot be excluded that it occurred with a delay of ~ 100 kyr, probably related to the shallower paleodepth of the basin.  相似文献   

3.
Primary gypsum deposits, which accumulated in the Mediterranean Basin during the so-called Messinian salinity crisis (5.97–5.33 Ma), represent an excellent archive of microbial life. We investigated the molecular fossil inventory and the corresponding compound-specific δ13C values of bottom-grown gypsum formed during the first stage of the crisis in four marginal basins across the Mediterranean (Nijar, Spain; Vena del Gesso, Italy; Heraklion, Crete; and Psematismenos, Cyprus). All studied gypsum samples contain intricate networks of filamentous microfossils, whose phylogenetic affiliation has been debated for a long time. Petrographic analysis, molecular fossil inventories (hydrocarbons, alcohols, and carboxylic acids), and carbon stable isotope patterns suggest that the mazes of filamentous fossils represent benthic microbial assemblages dominated by chemotrophic sulfide-oxidizing bacteria; in some of the samples, the body fossils are accompanied by lipids produced by sulfate-reducing bacteria. Abundant isoprenoid alcohols including diphytanyl glycerol diethers (DGDs) and glycerol dibiphytanyl glycerol tetraethers (GDGTs), typified by highly variable carbon stable isotope composition with δ13C values spanning from ?40 to ?14‰, reveal the presence of planktic and benthic archaeal communities dwelling in Messinian paleoenvironments. The compound inventory of archaeal lipids indicates the existence of a stratified water column, with a normal marine to diluted upper water column and more saline deeper waters. This study documents the lipid biomarker inventory of microbial life preserved in ancient gypsum deposits, helping to reconstruct the widely debated conditions under which Messinian gypsum formed.  相似文献   

4.
The Cenozoic sequence of Ashtart 28 well drilled in the Gulf of Gabes (Tunisia) is the subject of a biostratigraphical study. The samples recovered in cuttings from 390 m and downwards allowed to recognize, above the Late Eocene sediments, a sedimentary series, lithologically diversified, nearly 1600 m thick. Marine Pliocene deposits, generally attesting a low bathymetry, lie unconformably above the Messinian (Oued Bel Khedim formation), which shows the usual features of the Mediterranean confinement. The underlying Messinian pre-evaporitic platform series (Melqart formation), that is over 250 m thick, is typical of a perireefal environment. The sediments assigned to the Tortonian (Somâa Sands formation) are continental and occur unconformably above the approximately 500-metres-thick Middle Miocene strata (Saouaf, Mahmoud, Aïn Grab and Salammbô pars formations). The marine Lower Miocene and Oligocene sediments (Salammbô pars and Ketatna formations), that are more than 300 m thick, lie in continuity under the Middle Miocene. The infralittoral Chattian sequence has especially supplied a diversified assemblage of larger foraminifera recovered in other west-mediterranean basins. Datings were obtained based on planktonic and larger benthic foraminifera (Miogypsinidae, Nummulitidae, Lepidocyclinidae) and by correlations obtained by means of well loggings and lithostratigraphy. Benthic foraminifera, mainly listed for the Miocene and Oligocene, are studied from a systematic, stratigraphic and paleogeographic point of view. The paleoenvironments of deposits are defined for each considered stratigraphic interval. Comparisons are sketched with other drillings of the Gulf of Gabes. Thanks to the numerous data obtained by this detailed study, the Ashtart drilling can serve as a reference for the Tertiary sequence of this part of the Mediterranean domain.  相似文献   

5.
Marly sediments of the early Messinian Abad Member of the Turre Formation from the northeastern sector of the Carboneras-Nijar Basin (southern Spain) have yielded a rich fossil assemblage, of which 60 taxa are documented herein. Besides nannoflora and microfauna, this assemblage includes the first autochthonous macrofauna described from the Abad Member. Based on the calcareous nannofossil assemblage, in particular the occurrence of the zonal index taxon Amaurolithus primus, the sediments are assigned to the Mediterranean calcareous nannofossil zone CNM17, corresponding to the latest Tortonian to earliest Messinian interval. This matches the age range generally reported for the Abad Member. Palaeoecological evidence from calcareous nannofossils (20 autochthonous taxa), planktic and benthic foraminifera (12 taxa), Porifera (3 taxa), Octocorallia (Keratoisis), Serpulidae (4 taxa), Bivalvia (5 taxa), Gastropoda (2 taxa), Brachiopoda (7 taxa), Cirripedia (Faxelepas) and Vertebrata (5 taxa) indicates an upper bathyal environment with an influx of neritic elements for the Abad Member near Carboneras. Additionally, several faunal components may represent allochthonous/parautochthonous elements from adjacent habitats, which were transported into the deep marine setting by turbiditic mass flows. Although similarities exist, the fossil assemblage from the marls is compositionally significantly different from the biota previously documented from a nearby exposed olistostrome, the ‘red breccia’. Similar fossil assemblages from the Mediterranean have so far mainly been reported from the Pliocene-Pleistocene of southern Italy and Greece. The Carboneras fauna thus adds to our knowledge of the development of these habitats and their biota prior to the Messinian salinity crisis. Beyond the novel palaeoenvironmental data, the range of the dyscoliid brachiopod Ceramisia meneghiniana, previously known only from the Pliocene of Italy, is extended to the Miocene of Spain. The cirripede crustacean Pycnolepas paronai De Alessandri, 1895 is transferred to the hitherto monospecific genus Faxelepas Gale, 2015, whereby the range of the latter (previously Maastrichtian to Danian) is extended to the late Miocene.  相似文献   

6.
A quantitative study was performed on planktonic foraminifera and calcareous nannofossils of the astronomically dated Late Miocene Pissouri section (Cyprus). Our results confirm the reliability of well-known planktonic foraminiferal events as Catapsydraxparvulus LO (Last Occurrence), sinistral coiling change of Globorotaliascitula, Globorotaliamiotumida group FRO (First Regular Occurrence), Globorotalianicolae FO (First occurrence) and LO, sinistral coiling change of Neogloboquadrinaacostaensis and also of several important calcareous nannofossil events (Amaurolithusprimus FO, Amaurolithusdelicatus FO, Reticulofenestrarotaria FO and FCO). Integrated planktonic foraminifera and calcareous nannoplankton data contribute to an enhanced time resolution of the Tortonian - early Messinian interval in the Levantine basin, and contribute to detailed correlations throughout the Eastern Mediterranean. In addition, we compare methodologies commonly used in calcareous plankton biostratigraphy, and shortly outline sources of bias that can influence the results of stratigraphic studies.  相似文献   

7.
《Marine Micropaleontology》2009,70(3-4):282-296
An assemblage of planktonic foraminifera is described from 125 samples taken from the Cercado, Gurabo, and Mao Formations in the Cibao Valley, northern Dominican Republic. The primary objectives of this study are to establish a biochronologic model for the late Neogene of the Dominican Republic and to examine sea surface conditions within the Cibao Basin during this interval. The Cercado Formation is loosely confined to Zones N17 and N18 (∼ 7.0–5.9 Ma). The Gurabo Formation spans Zones N18 and N19 (∼ 5.9–4.5 Ma). The Mao Formation is placed in Zone N19 (∼ 4.5–3.6 Ma). Changes in the relative abundances of indicator species are used to reconstruct sea surface conditions within the basin. Increasing relative abundances of Globigerinoides sacculifer and Globigerinoides ruber, in conjunction with a decreasing relative abundance of Globigerina bulloides, suggests the onset of increasing sea surface temperature and salinity in conjunction with diminishing primary productivity at ∼ 6.0 Ma. Abrupt increases in the relative abundances of G. sacculifer and G. ruber at ∼ 4.8 Ma suggest a major increase in sea surface temperature and salinity in the early Pliocene. The most likely mechanism for these changes is isolation of the Caribbean Ocean through progressive restriction of Pacific–Caribbean transfer via the Central American Seaway. Periods of high productivity associated with upwelling events are recorded in the upper Cercado Formation (∼ 6.1 Ma) and in the middle Mao Formation (∼ 4.2 Ma) by spikes in G. bulloides and Neogloboquadrina spp. respectively. The timing of major increases in sea surface salinity and temperature as well as decreasing productivity (∼ 4.8 Ma) and periods of upwelling (∼ 6.1and 4.2 Ma) in the Cibao Basin generally corroborate previously suggested Caribbean oceanographic changes related to the uplift of Panama. Changes in sea surface conditions depicted by paleobiogeographic distributions in the Cibao Basin suggest that shoaling along the Isthmus of Panama had implications in a shallow Caribbean basin as early as 6.0 Ma. Major paleobiologic changes between ∼ 4.8 and 4.2 Ma likely represent the period of final closure of the CAS and a nearly complete disconnection between Pacific and Caribbean water masses. This study illustrates the use of planktonic foraminifera in establishing some paleoceanographic conditions (salinity, temperature, productivity, and upwelling) within a shallow water basin, outlining the connection between regional and localized oceanographic changes.  相似文献   

8.
《Marine Micropaleontology》2006,60(2):157-166
Deep-sea benthic foraminifera have been quantitatively analyzed in samples (> 125 μm size fraction) from Ocean Drilling Program (ODP) Site 238, to understand paleoceanographic changes in the Central Indian Basin over the past 1.9 Myr. Factor and cluster analyses of the 25 highest-ranked species made it possible to identify five biofacies, characterizing distinct deep-sea environmental settings. The environmental interpretation of each biofacies is based on the ecology of recent deep-sea benthic foraminifera. The benthic faunal record indicates fluctuating deep-sea conditions in environmental parameters including oxygenation, surface productivity and organic food supply. These changes appear to be linked to Indian summer monsoon variability, the main climatic feature of the Indian Ocean region. The benthic assemblages show a major shift at ∼ 0.7 to 0.6 Ma, marked by major turnovers in the relative abundances of species, coinciding with an increased amplitude of glacial cycles. These cycles appear to have influenced low latitude monsoonal climate as well as deep-sea conditions in the Central Indian Ocean Basin.  相似文献   

9.
《Marine Micropaleontology》2009,72(3-4):97-112
Ninety-five species and 19 genera of cosmopolitan, deep-sea benthic foraminifera belonging to the families Pleurostomellidae, Stilostomellidae and Nodosariidae, became extinct during the Late Pliocene–Middle Pleistocene. Only 50% of these (44 species) were present in the Pliocene or Pleistocene of the deep Mediterranean Sea (ODP Sites 654, 966, 967, 975, 976), being those which had successfully migrated in via the Strait of Gibraltar from the deep Atlantic following the annihilation of the Mediterranean deep-sea fauna during the Late Miocene Messinian Crisis. Most colonisation occurred within the first 0.8 myrs (5.3–4.5 Ma) after re-establishment of the Mediterranean–Atlantic link, with possibly a second lesser period of immigration in the Late Pliocene (3.4–3.0 Ma). We infer that colonisations may have been fortuitous and few in number, as some common members of the group in the Atlantic never succeeded in establishing in the Mediterranean Sea. There is no evidence of any new immigration events during the Pleistocene, implying that the present anti-estuarine circulation may have been in place throughout this period. Our studies suggest that these deep-water, low-oxygen-tolerant foraminifera survived the many periods of deep-water sapropel formation in the Pliocene–Early Pleistocene, possibly in somewhat shallower (~ 500 m) refuges with dysoxic, rather than anoxic conditions.The Pliocene–Pleistocene stratigraphic record of this group of elongate, cylindrical benthic foraminifera with constricted and specialised apertures is similar in the west and east Mediterranean basins. The group declined in abundance (flux) and diversity in two pulses, during the Late Pliocene (3.1–2.7 Ma) and the late Early Pleistocene (1.3–1.0 Ma) in concert with global, southern-sourced, deep-water sites (AABW, CPDW) and earlier than the single decline (1.0–0.6 Ma) in global, intermediate water sites (uNADW, AAIW). All species, with one possible exception, disappeared earlier in the Mediterranean than globally. The highest occurrence of any species of this group in Mediterranean sites was 0.8–0.43 Ma, comparable with 0.7–0.2 Ma outside with the youngest survivors being in abyssal, deep-water.Thus, despite the unusual oceanographic conditions and isolation, the deep Mediterranean Sea was in this case neither the centre for the evolution of new species nor a refuge where species survived after they had disappeared elsewhere.  相似文献   

10.
The paleogeography of the Late Neogene Atlantic-Mediterranean seaway via the Betic-Rifean Domain is quite complex due to the presence of several marine corridors. The study of transitional basins in these seaways is crucial to understand the configuration and evolution of the Mediterranean-Atlantic inter-connection. A mixed skeletal-siliciclastic sandstone succession located in one of these transitional areas (Guadix Basin, Southern Spain) was studied from a comprehensive paleontological standpoint focused on the main benthic assemblages (foraminifera, brachiopods, and trace fossils), integrating the data with the study of planktic foraminifera for an accurate biostratigraphic framework. Brachiopods are mostly represented by the Aphelesia-Gryphus assemblage. Two trace fossil assemblages were observed, dominated by Ophiomorpha with Bichordites (1) and Macaronichnus (2), respectively. The benthic foraminiferal assemblage is mostly represented by Planulina and Cibicides. The data gathered from the benthic communities reveal habitats with high-energy and turbulent conditions in an outer neritic-upper bathyal bathymetric range. Brachiopods from the Alicún section show a Mediterranean paleobiogeographic affinity. They were constrained in the Late Tortonian to the restricted basins of the Betic-Rifean Seaway and after the Messinian Salinity Crisis proliferated in both Mediterranean- and Atlantic-type basins of the Betic-Rifean Domain. The Guadix Basin contributed to the Mediterranean-Atlantic faunal inter-connection through the Betic-Rifean Seaway during the Late Tortonian and facilitated the earliest Pliocene expansion of brachiopods in the Mediterranean.  相似文献   

11.
Geochemical proxy records of sea surface temperature (SST) or sea surface salinity (SSS) variability on intra- and interannual time-scales in corals from geological periods older than Pleistocene are extremely rare due to pervasive diagenetic alteration of coralline aragonite. Very recently, however, stable isotope data (δ18O, δ13C) from specimens of Porites of Late Miocene age (10 Ma) have been shown to preserve original environmental signatures. In this paper we describe new finds of the zooxanthellate corals Porites and Tarbellastraea in exceptional aragonite preservation from the island of Crete in sediments of Tortonian (~ 9 Ma) and Early Messinian (~ 7 Ma) age. Systematic, comparative stable isotope analysis of massive Tarbellastraea and Porites sampled from the same beds and localities reveal identical stable isotope fractionation patterns in both genera. Therefore, extinct Tarbellastraea represents an additional environmental archive fully compatible and mutually exchangeable with Porites. Provided that seasonal variations in δ18O reflect SST changes only, seasonal SST contrasts of 7.3 °C for the Tortonian and 4.8 °C for the Early Messinian are inferred, implying warmer summer and cooler winter SSTs during the Tortonian than during the Messinian. However, reduced δ18O seasonality (1.1‰ in the Tortonian and 0.7‰ in the Messinian) and slightly less negative mean δ18O in Messinian corals (? 2.4‰) compared to Tortonian specimens (? 2.7‰) may not necessarily indicate a long-term fall in SSTs, but changes in surface water δ18O, i.e. global ice build-up or enhanced evaporation during summer or increased precipitation/river discharge during winter and changes in insolation. On the other hand, coral communities of Tortonian and Messinian age in central Crete are identical, and compatible annual extension rates indicate similar average SSTs during the two investigated time periods. In addition, lithological and paleobotanical data from Central Crete document a change from humid to dry climatic conditions during the Late Miocene. Therefore, a likely explanation for the observed shift in coral mean δ18O and reduced δ18O seasonality from the Tortonian to the Early Messinian is a change in ambient seawater δ18O caused by a change in the hydrological balance towards high evaporation/high salinity during summer.  相似文献   

12.
Summary The Miocene and Pliocene of three ODP Leg 133 sites (812, 813, 814) record the biofacies evolution prior and during the partial drowning of the Queensland Plateau carbonate platform. Four major skeletal assemblages occur in the succession. The first, middle Miocene assemblage consists of a tropical chlorozoan association. The second assemblage, which records warm-temperate depositional conditions, lacks aragonitic skeletal elements. It is dominated by foraminifera and bryozoans. The third skeletal association (uppermost Lower Pliocene) contains green algae, foraminifera, and bryozoans. The last skeletal association is pelagic (ooze) and mainly consists of planktonic foraminifera and calcareous nannoplankton. The middle Miocene depositional geometry in the analysed transect of drill sites is that of a carbonate bank with a well-defined rim and a flank. During the late Miocene and early Pliocene carbonate ramps formed. Upper Miocene and lower Pliocene deposits in the drill holes are rich in large benthic foraminifera. Combination of micropaleontological with seismic data allows the reconstruction of a curve of relative sea level for the Tortonian and Messinian. The long term trend of relative sea level is characterised by a rise punctuated by four short term falls.Lepidocyclina (Nephrolepidina) rutteni is described from the Australian faunal province for the first time.  相似文献   

13.
The Late Tortonian-Early Messinian Abad Member in the Sorbas Basin, south-east Spain contains abundant foraminifera. Planktonic foraminifera have been used to reconstruct the environmental conditions that developed within the basin. Benthonic foraminifera reveal a detailed picture of the palaeoenvironment. After an initial deepening episode, from upper epibathyal ( c . 200 m) depths to lower epibathyal ( c . 1000 m) depths, the basin progressively shallowed to shelf depths ( c . 100 m); this palaeobathymetric reconstruction thus describes an initial rapid transgressive episode, a highstand and a regressive phase; the basin water mass became progressively warmer, and yet there was no significant increase in salinity or oxygen level in the water mass. The lack of any microfossil evidence to support an increase in the salinity levels towards the top of the Abad Member indicates a rapid environmental switch from normal marine conditions during the deposition of the Abad Member to hypersaline conditions during deposition of the overlying Yesares Member and precipitation of great thicknesses of gypsum. This research illustrates the necessity for high resolution sampling, approximate to the standard interval (10 feet: c . 3 metres) used in industrial boreholes, for Mediterranean Late Miocene stratigraphies, and indicates that all previous palaeoenvironmental studies on the Sorbas Basin have had inadequate sampling regimes which do not represent the evolving environmental conditions of the Abad Member.  相似文献   

14.
Foraminiferal assemblages in laminites cropping out at the Bric (i.e. Hill) della Muda (Nizza Monferrato, Piedmont, Northwestern Italy) document deep marine conditions during the early Messinian, spanning a time-interval approximating, or slightly wider than the stratigraphic range of Globorotalia nicolae (6.82-6.72 Ma). Fluctuations in abundance of planktonic warm-water oligotrophic taxa and cold-water eutrophic species show a cyclical pattern, very comparable to variations measured in cyclically-bedded formations of the pre-evaporitic Messinian in the Mediterranean area. A subtropical climate with cyclic warmer and cooler episodes, characterized by surface water stratification and vertical mixing in the water column, respectively, is also documented. A depositional depth close to or larger than 1000 m is inferred on the basis of planktonic assemblages yielding also the deep planktonic Hastigerinella digitata and of very high P/(P + B) ratios. Anoxic or strongly dysoxic bottom conditions are indicated by the absence or rareness of benthic foraminifers, which are represented by taxa tolerant of low-oxygen or high organic content (Bolivina pseudoplicata, Chilostomella oolina, Globobulimina affinis). A slight decrease in P/(P + B) ratios, and the presence of rare shallow-water forms in the uppermost layers suggest a mild dysoxia and a probable shallowing, when compared with coeval events in Northern Apennines and Southern Greece sections.  相似文献   

15.
The biological impact of the Messinian Salinity Crisis (MSC) and its bearing on the Pliocene Mediterranean marine molluscan fauna has been analyzed on the basis of the biogeographic and stratigraphic distributions of the taxa of 16 early Messinian outcrops. The extinction of the last paleoendemic Proto-Mediterranean taxa is historically significant but it appears to be numerically less important than the extinction of the Tortonian and Messinian neoendemic taxa. The available data suggest that the MSC caused a regional mass disappearance but only a limited number of extinctions. It is also emphasized that the Late Pliocene (Monegatti et al., 2002) extinctions were far heavier than those caused by the MSC. We suggest that the greatest Messinian extinctions were triggered, during the salinity crisis, in the Atlantic “sanctuary” by the Messinian glacial events TG22, TG20, TG14, and TG12, of Shackleton et al. (1994), dated between 5.79 and 5.55 Ma by Krijgsman et al. (2004). A comparison between the Mediterranean Messinian and the Redonian molluscan faunas was also carried out. Finally, the possible latitudinal stability of the climatic thresholds, despite the shifting of the climatic zones throughout the Neogene along the European coast, is pointed out.  相似文献   

16.
Deep-sea drilling at high latitudes of the Southern Hemispheres has provided almost the only available data to evaluate the biogeographic development of the planktonic biota in the Southern Ocean during the Cenozoic (65 m.y. to Present Day). Paleontological investigations on Deep Sea Drilling Project (DSDP) materials have shown that the development of Cenozoic planktonic biogeography of the Southern Ocean is intimately linked with the evolution of the Southern Ocean water masses themselves. During the Cenozoic, this has included the development of the Circum-Antarctic Current system as obstructing land masses moved apart, the refrigeration and later extensive glaciation of the continent, and the development of the Antarctic Convergence (Polar Front) with related oceanic upwelling.Almost all evolution of calcareous planktonic microfossils has occurred outside of the Antarctic—Subantarctic region followed by limited migration into these water masses. Virtually no endemism occurs amongst calcareous microfossil groups at these latitudes. In contrast, conspicuous and widespread evolution has occurred within the siliceous microfossil groups especially during the Neogene. Low diversity and differences in stratigraphic ranges of Antarctic calcareous microfossils makes them only broadly useful for correlation. Relatively higher diversities within the Subantarctic provide a firmer basis for more detailed correlation, although the ranges of fossils are often different than at lower latitudes because of different paleoceanographic and paleoclimatic controls. Within the Antarctic water mass south of the Antarctic Convergence, siliceous microfossilsbiostratigraphy, oxygen isotopic stratigraphy and magnetostratigraphy, provide the only firm basis for correlation with low-latitude sequences.Eocene (55-38 Ma) sediments contain abundant calcareous microfossils even closely adjacent to the continent. Antarctic calcareous planktonic microfossils of this age exhibit relative high diversity, although this is lower than assemblages of equivalent age at middle and low latitudes. Within the Subantarctic region, Eocene planktonic foraminifera exhibit strong affinities with those in the temperate regions. Biogeographic differences exist between various sectors of the Southern Ocean related to biogeographic isolation preceding the development of the Circum-Antarctic Current. Subantarctic calcareous nannofossil assemblages of Paleocene and Eocene age exhibit higher diversity than Oligocene and Neogene assemblages. Siliceous microfossils are poorly represented or at best poorly known.One of the most dramatic changes in Southern Ocean planktonic biogeography occurred near the Eocene/Oligocene boundary (38 Ma). Since then, Antarctic planktonic foraminiferal assemblages have exhibited distinct polar characteristics, marked in particular by low diversity, and this event thus reflects the initiation of the Antarctic faunal and floral provinces. Profound paleoceanographic changes at this time, which triggered the biogeographic crisis, appear to be related to the initiation of widespread Antarctic sea-ice formation, and rapid cooling of deep and intermediate waters, in turn associated with increased Antarctic glaciation. During the Oligocene, planktonic microfossil diversity was low in all groups throughout the world's oceans. In Antarctic waters, the early Oligocene foraminiferal fauna is monospecific (Subbotina angiporoides), while in the later Oligocene two species (S. angiporoides and Catapsydrax dissimilis) were recorded. Calcareous nannofossil assemblages are of low diversity compared with the Eocene. Subantarctic foraminiferal faunas of Oligocene age display much higher diversity than those in the Antarctic, but early and middle Oligoceae faunas still exhibit the lowest diversities for the entire Cenozoic. Siliceous assemblages remain relatively inconspicuous in most regions of the Southern Ocean.The Paleogene-Neogene transition (22 Ma) is marked by a major change in the global planktonic biogeography, i.e. modern patterns developed in which permanent, steep faunal and floral diversity gradients existed between tropical and polar regions; a gradient which has persisted even during the most severe glacial episodes. Oligocene assemblages of low diversity and almost cosmopolitan distribution were replaced by distinctive belts of planktonic assemblages arranged latitudinally from the tropics to the poles. The establishment of the steep planktonic diversity gradients and latitudinal provinces near the beginning of the Neogene almost certainly were linked to the development of the Circum-Antarctic Current in the late Oligocene which effectively separated high- and low-latitude planktonic assemblages. These fundamental global circulation and biogeographic patterns have persisted through the Neogene.During the Neogene (22 Ma to Present Day), Antarctic calcareous microfossil assemblages exhibit persistent low diversity and high dominance, while Subantarctic assemblages are of much greater diversity. The beginning of the Neogene (= beginning of Miocene) heralded the development of the high-latitude siliceous microfossil assemblages towards their present-day dominant role. Siliceous biogenec productivity began to increase. These changes were linked to the initial development and later intensification of circulation associated with the Antarctic Convergence and Antarctic Divergence. The Antarctic Convergence sharply separates dominantly siliceous assemblages to the south from calcareous assemblages to the north. Radiolarian assemblages became more endemic. Relatively warm early and middle Miocene conditions are reflected by slightly higher diversity of planktonic foraminifera and by the presence, in the northern Subantarctic, of conspicuous discoasters in early Miocene sediments. In Antarctic waters, calcareous nannofossils become unimportant as biogenic elements after the middle Miocene.The latest Miocene ( 5 m.y. ago) was marked by northward movement of the Antarctic Convergence, corresponding expansion of the Antarctic water mass, and low diversity of calcareous assemblages. Pliocene planktonic foraminifera seem to be largely monospecific in Antarctic and southern Subantarctic sequences. During the Quaternary, Antarctic waters reached a maximum northward expansion and exhibit highest siliceous biogenic productivity for the Cenozoic. In the Subantarctic, Quaternary foraminiferal diversities are much higher than in Pliocene sequences. Although calcareous nannofossil diversity may be high, only a few species are abundant. Large northward shifts of Antarctic and Subantarctic water masses have occurred during the Quaternary although no southward penetrations have occurred much beyond that of the present day. Several radiolarian and foraminiferal species disappeared or appeared at or close to a number of paleomagnetic reversals during the last 4 m.y. These faunal events, which provide valuable datums, do not seem to be associated with major climatic changes.  相似文献   

17.
During the Messinian, the Mediterranean area experienced fast and prominent paleoenvironmental changes, culminating in the so-called Messinian Salinity Crisis, with the deposition of the evaporitic series. This work investigates the micropaleontological assemblages in the pre-evaporitic sediments of the Sant’Agata Fossili Marls (SAF) of the Pollenzo section (Cuneo area, North Western Italy). A semiquantitative analysis is carried out on the upper part of the marly and pelitic sediments of the SAF underlying the first gypsum bed, ascribed to the Vena del Gesso Fm. (VDF). The studied interval belongs to the planktonic foraminifer Globorotalia conomiozea Zone and “non distinctive Zone” of Iaccarino and to the calcareous nannofossil MNN11b/c Zone of Raffi et al. (1998, 2003) ( [Raffi et al., 1998] and [Raffi et al., 2003]). Decrease of diversity and abundance of the foraminifer and calcareous nannofossil assemblages is recorded 12 m below the VDG and clearly reflects environmental stress. From bottom to top, six paleoecological events are recorded: (1) the first peak abundance of “small” Reticulofenestra and the last recovery (LR) of planktonic foraminifers; (2) the peak abundance of Pontosphaera japonica and the last recovery of warm water taxa Discoaster spp.; (3) the last recovery of benthic foraminifers; (4) the co-occurring peak abundances of Helicosphaera carteri and Sphenolithus abies, and the last recovery of warm water taxa Amaurolithus spp.; (5) the second peak of “small” Reticulofenestra; (6) the definitive disappearance of calcareous nannofossils. These paleoecological events describe a progressive isolation of the basin from the world ocean and increasingly stressed environment (LR planktonic foraminifers; LR Discoaster spp.), increasing dysoxic to anoxic conditions at the sea floor (LR benthic foraminifers), shallowing of the water column (peak of H. carteri), increasing salinity in surface waters (peak of S. abies), and enhanced nutrient concentration in surface waters (peak of “small” Reticulofenestra); these are related to paleoenvironmental changes predating gypsum deposition at Pollenzo and affecting the whole Mediterranean basin.  相似文献   

18.
A major turnover in planktonic foraminifera occurred across the Eocene/Oligocene (E/O) boundary. New drill holes through the E/O boundary in southern Tanzania contain extremely well-preserved and diverse assemblages of planktonic foraminifera. Here we document a 1.2 million year record of assemblages, diversity and stable isotope fluctuations through this critical interval, which is often dissolved and/or recrystallised in carbonate-rich facies. The E/O boundary is marked by the abrupt extinction of all five remaining species of the family Hantkeninidae and a distinct size reduction in the genus Pseudohastigerina. The boundary is preceded over a short stratigraphic interval by the extinction of Turborotalia cerroazulensis, Turborotalia cocoaensis and Turborotalia cunialensis. Quantitative analysis of planktonic foraminiferal assemblages reveals significant changes in the abundance of certain species and the composition of the assemblages. We compare diversity fluctuations to the stable isotope record of Pseudohastigerina naguewichiensis and use multispecies stable isotope analyses to determine the life habitats of the most important species. A major shift in the evenness occurs at ~ 33.8 Ma associated with the extinction of the T cerroazulensis group suggesting acute ecological disturbance. We propose that the extinction of the T. cerroazulensis group at ~ 33.8 Ma was directly related to cooling of sea surface temperatures, while the extinction of Hantkeninidae was due to modifications in the thermal structure of the oceans and associated productivity changes. After the extinctions, renewed origination and diversification occurred, leading to a characteristic Oligocene planktonic foraminifer assemblage.  相似文献   

19.
《Marine Micropaleontology》2009,70(3-4):334-340
Gallitellia vivans is the only Recent representative of the triserial planktonic foraminiferal family Guembelitriidae. The origin and evolution of this interesting albeit poorly known family are enigmatic. To elucidate the phylogenetic relationships between G. vivans and other planktonic foraminifera, we sequenced the small subunit ribosomal DNA (SSU rDNA) for comparison to our extensive database of planktonic and benthic species. Our analyses suggest that G. vivans represents a separate lineage of planktonic foraminifera, which branches close to the benthic rotaliids Stainforthia and Virgulinella. Both genera resemble Gallitellia in general morphological appearance, having elongate triserial tests at least in their early ontogenic stages. The divergence time of G. vivans is estimated at ca. 18 Ma (early Miocene), suggesting an origin independent from the Cretaceous and Paleogene triserial planktonic foraminifera. Our study thus indicates that modern triserial planktonic foraminifera are not related to the Cretaceous–Paleogene triserial species, and that the sporadic occurrences in the fossil record are not the result of poor preservation, but reflect multiple transitions from benthic to planktonic mode of life.  相似文献   

20.
Qualitative and quantitative analyses of planktonic foraminifera (completed by calcareous nannofossils in some localities) from 8 sections and boreholes located in 7 Neogene basins of the South Rifian Corridor (Morocco) enable us to identify 16 bioevents calibrated with the geomagnetic polarity time scale. These events are useful for (1) assigning the sediments to the Tortonian (bioevents 1 to 7), the Messinian (bioevents 9 to 14, the event 8 indicates the Tortonian/Messinian boundary), the Early Pliocene (bioevent 15) and the Middle Pliocene (bioevent 16), (2) establishing high resolution correlations between the sections and boreholes studied herein, (3) locating the South Rifian Corridor sections and boreholes within the framework of biostratigraphic events recognized during the latest ten years in time-equivalent Atlantic and Mediterranean sequences, and (4) estimating the variation of sedimentation rates in the studied basins. With respect to Morocco, previous detailed studies concerned only the Rabat area (Bou Regreg valley) and Guercif basin. Our results extend correlations to the other basins of the South Rifian Corridor, a key area to understand connections between the Atlantic Ocean and the Mediterranean Sea at the end of the Miocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号