首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homologs of aflatoxin biosynthetic genes have been identified in the pine needle pathogen Dothistroma pini. D. pini produces dothistromin, a difuranoanthraquinone toxin with structural similarity to the aflatoxin precursor versicolorin B. Previous studies with purified dothistromin suggest a possible role for this toxin in pathogenicity. By using an aflatoxin gene as a hybridization probe, a genomic D. pini clone was identified that contained four dot genes with similarity to genes in aflatoxin and sterigmatocystin gene clusters with predicted activities of a ketoreductase (dotA), oxidase (dotB), major facilitator superfamily transporter (dotC), and thioesterase (dotD). A D. pini dotA mutant was made by targeted gene replacement and shown to be severely impaired in dothistromin production, confirming that dotA is involved in dothistromin biosynthesis. Accumulation of versicolorin A (a precursor of aflatoxin) by the dotA mutant confirms that the dotA gene product is involved in an aflatoxin-like biosynthetic pathway. Since toxin genes have been found to be clustered in fungi in every case analyzed so far, it is speculated that the four dot genes may comprise part of a dothistromin biosynthetic gene cluster. A fifth gene, ddhA, is not a homolog of aflatoxin genes and could be at one end of the dothistromin cluster. These genes will allow comparative biochemical and genetic studies of the aflatoxin and dothistromin biosynthetic pathways and may also lead to new ways to control Dothistroma needle blight.  相似文献   

2.
Bradshaw RE  Zhang S 《Mycopathologia》2006,162(3):201-213
Dothistromin is a mycotoxin that is remarkably similar in structure to versicolorin B, a precursor of both aflatoxin and sterigmatocystin. Dothistromin-producing fungi also produce related compounds, including some aflatoxin precursors as well as alternative forms of dothistromin. Dothistromin is synthesized by pathogenic species of Dothistroma in the red bands of pine needles associated with needle blight, but is also made in culture where it is strongly secreted into the surrounding medium. Orthologs of aflatoxin and sterigmatocystin biosynthetic genes have been found that are required for the biosynthesis of dothistromin, along with others that are speculated to be involved in the same pathway on the basis of their sequence similarity to aflatoxin genes. An epoxide hydrolase gene that has no homolog in the aflatoxin or sterigmatocystin gene clusters is also clustered with the dothistromin genes, and all these genes appear to be located on a minichromosome in Dothistroma septosporum. The dothistromin genes are expressed at an early stage of growth, suggesting a role in the first stages of plant invasion by the fungus. Future studies are expected to reveal more about the role of dothistromin in needle blight and about the genomic organization and expression of dothistromin genes: these studies will provide for interesting comparisons with these aspects of aflatoxin and sterigmatocystin biosynthesis.  相似文献   

3.
Aflatoxins are notorious toxic secondary metabolites known for their impacts on human and animal health, and their effects on the marketability of key grain and nut crops. Understanding aflatoxin biosynthesis is the focus of a large and diverse research community. Concerted efforts by this community have led not only to a well-characterized biosynthetic pathway, but also to the discovery of novel regulatory mechanisms. Common to secondary metabolism is the clustering of biosynthetic genes and their regulation by pathway specific as well as global regulators. Recent data show that arrangement of secondary metabolite genes in clusters may allow for an important global regulation of secondary metabolism based on physical location along the chromosome. Available genomic and proteomic tools are now allowing us to examine aflatoxin biosynthesis more broadly and to put its regulation in context with fungal development and fungal ecology. This review covers our current understanding of the biosynthesis and regulation of aflatoxin and highlights new and emerging information garnered from structural and functional genomics. The focus of this review will be on studies in Aspergillus flavus and Aspergillus parasiticus, the two agronomically important species that produce aflatoxin. Also covered will be the important contributions gained by studies on production of the aflatoxin precursor sterigmatocystin in Aspergillus nidulans.  相似文献   

4.
Molecular genetic analysis and regulation of aflatoxin biosynthesis   总被引:15,自引:0,他引:15  
Aflatoxins, produced by some Aspergillus species, are toxic and extremely carcinogenic furanocoumarins. Recent investigations of the molecular mechanism of AFB biosynthesis showed that the genes required for biosynthesis are in a 70 kb gene cluster. They encode a DNA-binding protein functioning in aflatoxin pathway gene regulation, and other enzymes such as cytochrome p450-type monooxygenases, dehydrogenases, methyltransferases, and polyketide and fatty acid synthases. Information gained from these studies has led to a better understanding of aflatoxin biosynthesis by these fungi. The characterization of genes involved in aflatoxin formation affords the opportunity to examine the mechanism of molecular regulation of the aflatoxin biosynthetic pathway, particularly during the interaction between aflatoxin-producing fungi and plants.  相似文献   

5.
Homologs of aflatoxin biosynthetic genes have been identified in the pine needle pathogen Dothistroma pini. D. pini produces dothistromin, a difuranoanthraquinone toxin with structural similarity to the aflatoxin precursor versicolorin B. Previous studies with purified dothistromin suggest a possible role for this toxin in pathogenicity. By using an aflatoxin gene as a hybridization probe, a genomic D. pini clone was identified that contained four dot genes with similarity to genes in aflatoxin and sterigmatocystin gene clusters with predicted activities of a ketoreductase (dotA), oxidase (dotB), major facilitator superfamily transporter (dotC), and thioesterase (dotD). A D. pini dotA mutant was made by targeted gene replacement and shown to be severely impaired in dothistromin production, confirming that dotA is involved in dothistromin biosynthesis. Accumulation of versicolorin A (a precursor of aflatoxin) by the dotA mutant confirms that the dotA gene product is involved in an aflatoxin-like biosynthetic pathway. Since toxin genes have been found to be clustered in fungi in every case analyzed so far, it is speculated that the four dot genes may comprise part of a dothistromin biosynthetic gene cluster. A fifth gene, ddhA, is not a homolog of aflatoxin genes and could be at one end of the dothistromin cluster. These genes will allow comparative biochemical and genetic studies of the aflatoxin and dothistromin biosynthetic pathways and may also lead to new ways to control Dothistroma needle blight.  相似文献   

6.
Aflatoxins are polyketide-derived, toxic, and carcinogenic secondary metabolites produced primarily by two fungal species, Aspergillus flavus and A. parasiticus, on crops such as corn, peanuts, cottonseed, and treenuts. Regulatory guidelines issued by the U.S. Food and Drug Administration (FDA) prevent sale of commodities if contamination by these toxins exceeds certain levels. The biosynthesis of these toxins has been extensively studied. About 15 stable precursors have been identified. The genes involved in encoding the proteins required for the oxidative and regulatory steps in the biosynthesis are clustered in a 70 kb portion of chromosome 3 in the A. flavus genome. With the characterization of the gene cluster, new insights into the cellular processes that govern the genes involved in aflatoxin biosynthesis have been revealed, but the signaling processes that turn on aflatoxin biosynthesis during fungal contamination of crops are still not well understood. New molecular technologies, such as gene microarray analyses, quantitative polymerase chain reaction (PCR), and chromatin immunoprecipitation are being used to understand how physiological stress, environmental and soil conditions, receptivity of the plant, and fungal virulence lead to episodic outbreaks of aflatoxin contamination in certain commercially important crops. With this fundamental understanding, we will be better able to design improved non-aflatoxigenic biocompetitive Aspergillus strains and develop inhibitors of aflatoxin production (native to affected crops or otherwise) amenable to agricultural application for enhancing host-resistance against fungal invasion or toxin production. Comparisons of aflatoxin-producing species with other fungal species that retain some of the genes required for aflatoxin formation is expected to provide insight into the evolution of the aflatoxin gene cluster, and its role in fungal physiology. Therefore, information on how and why the fungus makes the toxin will be valuable for developing an effective and lasting strategy for control of aflatoxin contamination.  相似文献   

7.
8.
黄曲霉毒素生物合成途径调节基因在黄曲霉毒素产生过程中发挥十分重要的作用,它为绝大多数黄曲霉毒素合成相关基因的表达所必需。黄曲霉毒素生物合成途径调节基因的启动子中,含有若干真菌转录因子同源物的假定结合位点。AflR蛋白是黄曲霉毒素生物合成途径中的主要正性转录因子,它调节大多数黄曲霉毒素合成相关基因,也包括其自身基因的表达。  相似文献   

9.
Dothistromin is a polyketide toxin, produced by a fungal forest pathogen, with structural similarity to the aflatoxin precursor versicolorin B. Biochemical and genetic studies suggested that there are common steps in the biosynthetic pathways for these metabolites and showed similarities between some of the genes. A polyketide synthase gene (pksA) was isolated from dothistromin-producing Dothistroma septosporum by hybridization with an aflatoxin ortholog from Aspergillus parasiticus. Inactivation of this gene in D. septosporum resulted in mutants that could not produce dothistromin but that could convert exogenous aflatoxin precursors, including norsolorinic acid, into dothistromin. The mutants also had reduced asexual sporulation compared to the wild type. So far four other genes are known to be clustered immediately alongside pksA. Three of these (cypA, moxA, avfA) are predicted to be orthologs of aflatoxin biosynthetic genes. The other gene (epoA), located between avfA and moxA, is predicted to encode an epoxide hydrolase, for which there is no homolog in either the aflatoxin or sterigmatocystin gene clusters. The pksA gene is located on a small chromosome of ~1.3 Mb in size, along with the dothistromin ketoreductase (dotA) gene.  相似文献   

10.
Aflatoxins comprise a group of polyketide-derived carcinogenic mycotoxins produced byAspergillus parasiticus andAspergillus flavus. By transformation with a disruption construct, pXX, we disrupted the aflatoxin pathway inA. parasiticus SRRC 2043, resulting in the inability of this strain to produce aflatoxin intermediates as well as a major yellow pigment in the transformants. The disruption was attributed to a single-crossover, homologous integration event between pXX and the recipientA. parasiticus genome at a specific locus, designatedpksA. Sequence analysis suggest thatpksA is a homolog of theAspergillus nidulans wA gene, a polyketide synthase gene involved in conidial wall pigment biosynthesis. The conservedβ-ketoacyl synthase, acyltransferase and acyl carrier-protein domains were present in the deduced amino acid sequence of thepksA product. Noβ-ketoacyl reductase and enoyl reductase domains were found, suggesting thatpksA does not encode catalytic activities for processingβ-carbon similar to those required for long chain fatty acid synthesis. ThepksA gene is located in the aflatoxin pathway gene cluster and is linked to thenor-1 gene, an aflatoxin pathway gene required for converting norsolorinic acid to averantin. These two genes are divergently transcribed from a 1.5 kb intergenic region. We propose thatpksA is a polyketide synthase gene required for the early steps of aflatoxin biosynthesis.  相似文献   

11.
Regulation of fatty acid biosynthesis in Escherichia coli.   总被引:25,自引:0,他引:25       下载免费PDF全文
Our understanding of fatty acid biosynthesis in Escherichia coli has increased greatly in recent years. Since the discovery that the intermediates of fatty acid biosynthesis are bound to the heat-stable protein cofactor termed acyl carrier protein, the fatty acid synthesis pathway of E. coli has been studied in some detail. Interestingly, many advances in the field have aided in the discovery of analogous systems in other organisms. In fact, E. coli has provided a paradigm of predictive value for the synthesis of fatty acids in bacteria and plants and the synthesis of bacterial polyketide antibiotics. In this review, we concentrate on four major areas of research. First, the reactions in fatty acid biosynthesis and the proteins catalyzing these reactions are discussed in detail. The genes encoding many of these proteins have been cloned, and characterization of these genes has led to a better understanding of the pathway. Second, the function and role of the two essential cofactors in fatty acid synthesis, coenzyme A and acyl carrier protein, are addressed. Finally, the steps governing the spectrum of products produced in synthesis and alternative destinations, other than membrane phospholipids, for fatty acids in E. coli are described. Throughout the review, the contribution of each portion of the pathway to the global regulation of synthesis is examined. In no other organism is the bulk of knowledge regarding fatty acid metabolism so great; however, questions still remain to be answered. Pursuing such questions should reveal additional regulatory mechanisms of fatty acid synthesis and, hopefully, the role of fatty acid synthesis and other cellular processes in the global control of cellular growth.  相似文献   

12.
At one end of the 70 kb aflatoxin biosynthetic pathway gene cluster in Aspergillus parasiticus and Aspergillus flavus reported earlier, we have cloned a group of four genes that constitute a well-defined gene cluster related to sugar utilization in A. parasiticus: (1) sugR, (2) hxtA, (3) glcA and (4) nadA. No similar well-defined sugar gene cluster has been reported so far in any other related Aspergillus species such as A. flavus, A. nidulans, A. sojae, A. niger, A. oryzae and A. fumigatus. The expression of the hxtA gene, encoding a hexose transporter protein, was found to be concurrent with the aflatoxin pathway cluster genes, in aflatoxin-conducive medium. This is significant since a close linkage between the two gene clusters could potentially explain the induction of aflatoxin biosynthesis by simple sugars such as glucose or sucrose.  相似文献   

13.
14.
Yu J  Bhatnagar D  Cleveland TE 《FEBS letters》2004,564(1-2):126-130
An 82-kb Aspergillus parasiticus genomic DNA region representing the completed sequence of the well-organized aflatoxin pathway gene cluster has been sequenced and annotated. In addition to the 19 reported and characterized aflatoxin pathway genes and the four sugar utilization genes in this cluster, we report here the identification of six newly identified genes which are putatively involved in aflatoxin formation. The function of these genes, the cluster organization and its significance in gene expression are discussed.  相似文献   

15.
The Smchd1 gene encodes a large protein with homology to the SMC family of proteins involved in chromosome condensation and cohesion. Previous studies have found that Smchd1 has an important role in CpG island (CGI) methylation on the inactive X chromosome (Xi) and in stable silencing of some Xi genes. In this study, using genome-wide expression analysis, we showed that Smchd1 is required for the silencing of around 10% of the genes on Xi, apparently independent of CGI hypomethylation, and, moreover, that these genes nonrandomly occur in clusters. Additionally, we found that Smchd1 is required for CpG island methylation and silencing at a cluster of four imprinted genes in the Prader-Willi syndrome (PWS) locus on chromosome 7 and genes from the protocadherin-alpha and -beta clusters. All of the affected autosomal loci display developmentally regulated brain-specific methylation patterns which are lost in Smchd1 homozygous mutants. We discuss the implications of these findings for understanding the function of Smchd1 in epigenetic regulation of gene expression.  相似文献   

16.
Aspergillus flavus is one of the major moulds that colonize peanut in the field and during storage. The impact to human and animal health, and to the economy in agriculture and commerce, is significant since this mold produces the most potent known natural toxins, aflatoxins, which are carcinogenic, mutagenic, immunosuppressive, and teratogenic. A strain of marine Bacillus megaterium isolated from the Yellow Sea of East China was evaluated for its effect in inhibiting aflatoxin formation in A. flavus through down-regulating aflatoxin pathway gene expression as demonstrated by gene chip analysis. Aflatoxin accumulation in potato dextrose broth liquid medium and liquid minimal medium was almost totally (more than 98 %) inhibited by co-cultivation with B. megaterium. Growth was also reduced. Using expression studies, we identified the fungal genes down-regulated by co-cultivation with B. megaterium across the entire fungal genome and specifically within the aflatoxin pathway gene cluster (aflF, aflT, aflS, aflJ, aflL, aflX). Modulating the expression of these genes could be used for controlling aflatoxin contamination in crops such as corn, cotton, and peanut. Importantly, the expression of the regulatory gene aflS was significantly down-regulated during co-cultivation. We present a model showing a hypothesis of the regulatory mechanism of aflatoxin production suppression by AflS and AflR through B. megaterium co-cultivation.  相似文献   

17.
18.

Background

Clostridium botulinum and related clostridial species express extremely potent neurotoxins known as botulinum neurotoxins (BoNTs) that cause long-lasting, potentially fatal intoxications in humans and other mammals. The amino acid variation within the BoNT is used to categorize the species into seven immunologically distinct BoNT serotypes (A–G) which are further divided into subtypes. The BoNTs are located within two generally conserved gene arrangements known as botulinum progenitor complexes which encode toxin-associated proteins involved in toxin stability and expression.

Methodology/Principal Findings

Because serotype A and B strains are responsible for the vast majority of human botulism cases worldwide, the location, arrangement and sequences of genes from eight different toxin complexes representing four different BoNT/A subtypes (BoNT/A1-Ba4) and one BoNT/B1 strain were examined. The bivalent Ba4 strain contained both the BoNT/A4 and BoNT/bvB toxin clusters. The arrangements of the BoNT/A3 and BoNT/A4 subtypes differed from the BoNT/A1 strains and were similar to those of BoNT/A2. However, unlike the BoNT/A2 subtype, the toxin complex genes of BoNT/A3 and BoNT/A4 were found within large plasmids and not within the chromosome. In the Ba4 strain, both BoNT toxin clusters (A4 and bivalent B) were located within the same 270 kb plasmid, separated by 97 kb. Complete genomic sequencing of the BoNT/B1 strain also revealed that its toxin complex genes were located within a 149 kb plasmid and the BoNT/A3 complex is within a 267 kb plasmid.

Conclusions/Significance

Despite their size differences and the BoNT genes they contain, the three plasmids containing these toxin cluster genes share significant sequence identity. The presence of partial insertion sequence (IS) elements, evidence of recombination/gene duplication events, and the discovery of the BoNT/A3, BoNT/Ba4 and BoNT/B1 toxin complex genes within plasmids illustrate the different mechanisms by which these genes move among diverse genetic backgrounds of C. botulinum.  相似文献   

19.
Calcium- and salt-stress signaling in plants: shedding light on SOS pathway   总被引:2,自引:0,他引:2  
As salt stress imposes a major environmental threat to agriculture, understanding the basic physiology and genetics of cell under salt stress is crucial for developing any transgenic strategy. Salt Overly Sensitive (SOS) genes (SOS1-SOS3) were isolated through positional cloning. Since sos mutants are hypersensitive to salt, their characterization resulted in the discovery of a novel pathway, which has helped in our understanding the mechanism of salt-stress tolerance in plants. Genetic analysis confirmed that SOS1-SOS3 function in a common pathway of salt tolerance. This pathway also emphasizes the significance of Ca2+ signal in reinstating cellular ion homeostasis. SOS3, a Ca2+ sensor, transduces the signal downstream after activating and interacting with SOS2 protein kinase. This SOS3-SOS2 complex activates the Na+/H+ antiporter activity of SOS1 thereby reestablish cellular ion homeostasis. Recently, SOS4 and SOS5 have also been characterized. SOS4 encodes a pyridoxal (PL) kinase that is involved in the biosynthesis of pyridoxal-5-phosphate (PLP), an active form of vitamin B6. SOS5 has been shown to be a putative cell surface adhesion protein that is required for normal cell expansion. Under salt stress, the normal growth and expansion of a plant cell becomes even more important and SOS5 helps in the maintenance of cell wall integrity and architecture. In this review we focus on the recent advances in salt stress and SOS signaling pathway. A broad coverage of the discovery of SOS mutants, structural aspect of these genes and the latest developments in the field of SOS1-SOS5 has been described.  相似文献   

20.
Transformation ofAspergillus flavus to study aflatoxin biosynthesis   总被引:5,自引:0,他引:5  
Aflatoxin contamination of agricultural commodities continues to be a serious problem in the United States. Breeding for resistant genotypes has been unsuccessful and detoxification of food sources is not economically feasible. New strategies for control may become apparent once more is known about the biosynthesis and regulation of aflatoxin. Although the biosynthetic pathway of aflatoxin has been extensively studied, little is known about the regulation of the individual steps in the pathway. We have developed a genetic transformation system forAspergillus flavus that provides a new and expedient approach to studying the biosynthesis of aflatoxin and its regulation. Through the use of this genetic transformation system, genes for aflatoxin biosynthesis can be identified and isolated by the complementation of aflatoxin negative mutants. In this paper we discuss molecular strategies for studying the regulation and biosynthesis of aflatoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号