首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The SWI/SNF and SAGA chromatin-modifying complexes contain bromodomains that help anchor these complexes to acetylated promoter nucleosomes. To study the importance of bromodomains in these complexes, we have compared the chromatin-remodeling and octamer-transfer activity of the SWI/SNF complex to a mutant complex that lacks the Swi2/Snf2 bromodomain. Here we show that the SWI/SNF complex can remodel or transfer SAGA-acetylated nucleosomes more efficiently than the Swi2/Snf2 bromodomain-deleted complex. These results demonstrate that the Swi2/Snf2 bromodomain is important for the remodeling as well as for the octamer-transfer activity of the complex on H3-acetylated nucleosomes. Moreover, we show that, although the wild-type SWI/SNF complex displaces SAGA that is bound to acetylated nucleosomes, the bromodomain mutant SWI/SNF complex is less efficient in SAGA displacement. Thus, the Swi2/Snf2 bromodomain is required for the full functional activity of SWI/SNF on acetylated nucleosomes and is important for the displacement of SAGA from acetylated promoter nucleosomes.  相似文献   

6.
Deciphering the transcriptional histone acetylation code for a human gene   总被引:45,自引:0,他引:45  
Agalioti T  Chen G  Thanos D 《Cell》2002,111(3):381-392
  相似文献   

7.
8.
Activation domains drive nucleosome eviction by SWI/SNF   总被引:4,自引:0,他引:4  
  相似文献   

9.
The multisubunit SWI/SNF and RSC complexes utilize energy derived from ATP hydrolysis to mobilize nucleosomes and render the DNA accessible for various nuclear processes. Here we test the idea that remodeling involves intermediates with mobile DNA bulges or loops within the nucleosome by cross-linking the H2A N- or C-terminal tails together to generate protein "loops" that constrict separation of the DNA from the histone surface. Analyses indicate that this intranucleosomal cross-linking causes little or no change in remodeling-dependent exposure of DNA sequences within the nucleosome to restriction enzymes. However, cross-linking inhibits nucleosome mobilization and blocks complete movement of nucleosomes to extreme end positions on the DNA fragments. These results are consistent with evidence that nucleosome remodeling involves intermediates with DNA loops on the nucleosome surface but indicate that such loops do not freely diffuse about the surface of the histone octamer. We propose a threading model for movement of DNA loops around the perimeter of the nucleosome core.  相似文献   

10.
11.
12.
13.
Although recent studies highlight the importance of histone modifications and ATP‐dependent chromatin remodelling in DNA double‐strand break (DSB) repair, how these mechanisms cooperate has remained largely unexplored. Here, we show that the SWI/SNF chromatin remodelling complex, earlier known to facilitate the phosphorylation of histone H2AX at Ser‐139 (S139ph) after DNA damage, binds to γ‐H2AX (the phosphorylated form of H2AX)‐containing nucleosomes in S139ph‐dependent manner. Unexpectedly, BRG1, the catalytic subunit of SWI/SNF, binds to γ‐H2AX nucleosomes by interacting with acetylated H3, not with S139ph itself, through its bromodomain. Blocking the BRG1 interaction with γ‐H2AX nucleosomes either by deletion or overexpression of the BRG1 bromodomain leads to defect of S139ph and DSB repair. H3 acetylation is required for the binding of BRG1 to γ‐H2AX nucleosomes. S139ph stimulates the H3 acetylation on γ‐H2AX nucleosomes, and the histone acetyltransferase Gcn5 is responsible for this novel crosstalk. The H3 acetylation on γ‐H2AX nucleosomes is induced by DNA damage. These results collectively suggest that SWI/SNF, γ‐H2AX and H3 acetylation cooperatively act in a feedback activation loop to facilitate DSB repair.  相似文献   

14.
15.
Post-translational acetylation of histone tails is often required for the recruitment of ATP-dependent chromatin remodelers, which in turn mobilize nucleosomes on the chromatin fiber. Here we show that the lower lobe of the ATP-dependent chromatin remodeler RSC exists in a dynamic equilibrium and can be found extended away or retracted against the tripartite upper lobe of the complex. Extension of the lower lobe increases the size of a central cavity that has been proposed to be the nucleosome binding site. We show that the presence of acetylated histone 3 N-terminal tail peptides stabilizes the lower lobe of RSC in the retracted state, suggesting that domains recognizing the acetylated histone tails reside at the interface between the two lobes. Based on three-dimensional reconstructions, we propose a model for the interaction of RSC with acetylated nucleosomes.  相似文献   

16.
An ATP-dependent DNA translocase domain consisting of seven conserved motifs is a general feature of all ATP-dependent chromatin remodelers. While motifs on the ATPase domains of the yeast SWI/SNF and ISWI families of remodelers are highly conserved, the ATPase domains of these complexes appear not to be functionally interchangeable. We found one reason that may account for this is the ATPase domains interact differently with nucleosomes even though both associate with nucleosomal DNA 17–18 bp from the dyad axis. The cleft formed between the two lobes of the ISW2 ATPase domain is bound to nucleosomal DNA and Isw2 associates with the side of nucleosomal DNA away from the histone octamer. The ATPase domain of SWI/SNF binds to the same region of nucleosomal DNA, but is bound outside of the cleft region. The catalytic subunit of SWI/SNF also appears to intercalate between the DNA gyre and histone octamer. The altered interactions of SWI/SNF with DNA are specific to nucleosomes and do not occur with free DNA. These differences are likely mediated through interactions with the histone surface. The placement of SWI/SNF between the octamer and DNA could make it easier to disrupt histone–DNA interactions.  相似文献   

17.
18.
19.
Hassan AH  Neely KE  Workman JL 《Cell》2001,104(6):817-827
  相似文献   

20.
RSC and SWI/SNF chromatin-remodeling complexes were previously reported to generate a stably altered nucleosome. We now describe the formation of hybrids between nucleosomes of different sizes, showing that the stably altered structure is a noncovalent dimer. A basis for dimer formation is suggested by an effect of RSC on the supercoiling of closed, circular arrays of nucleosomes. The effect may be explained by the interaction of RSC with DNA at the ends of the nucleosome, which could lead to the release 60--80 bp or more from the ends. DNA released in this way may be trapped in the stable dimer or lead to alternative fates such as histone octamer transfer to another DNA or sliding along the same DNA molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号