首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterotoxigenic Escherichia coli (ETEC) are an important cause of diarrheal morbidity in developing countries, especially in children and also of traveler's diarrhea. Colonization factors (CFs) of ETEC, like CFA/I and CS2 which are genetically and structurally related, play a substantial role in pathogenicity, and since intestinal–mucosal immune responses against CFs appear to be protective, much effort has focused on the development of a CF-based ETEC vaccine. We have constructed hybrid operons in which the major CS2 subunit-encoding cotA gene was inserted into the CFA/I operon, either replacing (hybrid I) or being added to the major CFA/I subunit-encoding cfaB gene (hybrid II). Using specific monoclonal antibodies against the major subunits of CFA/I and CS2, high levels of surface expression of both fimbrial subunits were shown in E. coli carrying the hybrid II operon. Oral immunization of mice with formalin-killed bacteria expressing hybrid II fimbriae induced strong CFA/I- and CS2-specific serum IgG + IgM and fecal IgA antibody responses, which were higher than those achieved by similar immunization with the reference strains. Bacteria expressing hybrid fimbriae are potential candidate strains in an oral-killed CF-ETEC vaccine, and the approach represents an attractive and novel means of producing a broad-spectrum ETEC vaccine.  相似文献   

2.
Enterotoxigenic Escherichia Coli (ETEC) strains are the commonest bacteria causing diarrhea in children in developing countries and travelers to these areas. Colonization factors (CFs) and enterotoxins are the main virulence determinants in ETEC pathogenesis. Heterogeneity of CFs is commonly considered the bottleneck to developing an effective vaccine. It is believed that broad spectrum protection against ETEC would be achieved by induced anti‐CF and anti‐enterotoxin immunity simultaneously. Here, a fusion antigen strategy was used to construct a quadrivalent recombinant protein called 3CL and composed of CfaB, a structural subunit of CFA/I, and CS6 structural subunits, LTB and STa toxoid of ETEC. Its anti‐CF and antitoxin immunogenicity was then assessed. To achieve high‐level expression, the 3CL gene was synthesized using E. coli codon bias. Female BALB/C mice were immunized with purified recombinant 3CL. Immunized mice developed antibodies that were capable of detecting each recombinant subunit in addition to native CS6 protein and also protected the mice against ETEC challenge. Moreover, sera from immunized mice also neutralized STa toxin in a suckling mouse assay. These results indicate that 3CL can induce anti‐CF and neutralizing antitoxin antibodies along with introducing CFA/I as a platform for epitope insertion.
  相似文献   

3.

Background

Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of bacterial diarrhea. Over the last decade, from 1996 to 2012, changes in the virulence antigen properties of ETEC such as heat labile (LT) and heat stable (ST) toxins, colonization factors (CFs), and ‘O’-serogroups have been observed. The aim of this prospective study was to compare changes in antigenic profiles of ETEC strains isolated from a 2% surveillance system at the icddr,b hospital in Dhaka, Bangladesh between 2007–2012 and an earlier time period of 1996–1998 conducted at the same surveillance site.

Methodology

In the surveillance system every 50th patient attending the hospital was screened for major enteric pathogens including ETEC, Vibrio cholerae, Shigella spp. and Salmonella spp. from January 2007 to December 2012.

Principal Findings

Of the 15,152 diarrheal specimens tested between 2007–2012, the overall rate of ETEC isolation was 11%; of these, 43% were LT/ST, 27% LT and 30% ST positive. Isolation rate of ST-ETEC (p<0.009) and LT/ST ETEC (p<0.011) during 2007–2012 period differed significantly compared to those seen between 1996–1998. In comparison to the 1996–1998 period, difference in CF profile of ETEC isolates during 2007–2012 was observed particularly for strains expressing CS7 (12.4%), CS14 (9.5%) and CS17 (10.0%). The predominant CF types were CS5+CS6, CFA/I, CS7, CS17, CS1+CS3, CS6 and CS14. The most common serogroups among the CF positive ETEC isolates were O115, O114, O6, O25 and O8. A strong association was found between CFs and ‘O’ serogroups i.e. between CS5+CS6 and (O115 and O126); CS7 and (O114), CFA/I and (O78 and O126), CS17 and (O8 and O167) and CS1/CS2+CS3 and (O6).

Conclusion

The analyses show a shift in prevalence of antigenic types of ETEC over the study period; the information is important in designing effective ETEC vaccines with broad protective coverage.  相似文献   

4.
Enterotoxigenic Escherichia coli (ETEC) is a significant cause of morbidity and mortality in the developing world. ETEC-mediated diarrhea is orchestrated by heat-labile toxin (LT) and heat-stable toxins (STp and STh), acting in concert with a repertoire of more than 25 colonization factors (CFs). LT, the major virulence factor, induces fluid secretion after delivery of a monomeric ADP-ribosylase (LTA) and its pentameric carrier B subunit (LTB). A study of ETEC isolates from humans in Brazil reported the existence of natural LT variants. In the present study, analysis of predicted amino acid sequences showed that the LT amino acid polymorphisms are associated with a geographically and temporally diverse set of 192 clinical ETEC strains and identified 12 novel LT variants. Twenty distinct LT amino acid variants were observed in the globally distributed strains, and phylogenetic analysis showed these to be associated with different CF profiles. Notably, the most prevalent LT1 allele variants were correlated with major ETEC lineages expressing CS1 + CS3 or CS2 + CS3, and the most prevalent LT2 allele variants were correlated with major ETEC lineages expressing CS5 + CS6 or CFA/I. LTB allele variants generally exhibited more-stringent amino acid sequence conservation (2 substitutions identified) than LTA allele variants (22 substitutions identified). The functional impact of LT1 and LT2 polymorphisms on virulence was investigated by measuring total-toxin production, secretion, and stability using GM1–enzyme-linked immunosorbent assays (GM1-ELISA) and in silico protein modeling. Our data show that LT2 strains produce 5-fold more toxin than LT1 strains (P < 0.001), which may suggest greater virulence potential for this genetic variant. Our data suggest that functionally distinct LT-CF variants with increased fitness have persisted during the evolution of ETEC and have spread globally.  相似文献   

5.
Fifty-eight enterotoxigenic Escherichia coli (ETEC) strains, isolated from children with and without diarrhea in Sao Paulo, were examined for the presence of colonization factor antigens (CFAs) and their ability to adhere to HeLa cells. Antisera to CFA/I, the coli surface (CS) antigens CS1CS3, CS2CS3, and CS2 of CFA/II, CFA/III, and CS5CS6 and CS6 of CFA/IV were used. CFAs were identified in 43% of the ETEC strains: 40% of the strains with CFAs harbored CFA/I, 24% carried CFA/II (CS1CS3), 24% carried CFA/IV (CS6), and 12% carried CFA/IV (CS5CS6). CFAs occurred mainly among ETEC strains producing only heat-stable (ST-I) enterotoxin and in strains also producing heat-labile toxin (LT-I). No ETEC strains tested expressed CFA/III. A marked change in serotypes of ST-I-producing strains was found in Sao Paulo between 1979 and 1990. Adherence to HeLa cells was detected in 14% of the ETEC strains. All of them had a diffuse adherence pattern and produced only ST-I, and 88% carried CS6 antigen.  相似文献   

6.
Adhesion is the first step in the pathogenesis of enterotoxigenic Escherichia coli infections. The genes encoding the most prevalent adhesion factors CFA/I, CS3 and CS6 were cloned into Vibrio cholerae strain CVD 103–HgR and expression of fimbriae was investigated in wildtype and recombinant strains by transmission electron microscopy in conjunction with immunolabelling and negative staining. Negative staining was effective in revealing CFA/I and CS3, but not CS6. Although morphology of fimbriae differed between wildtype and recombinant strains, corresponding surface antigens were recognized by specific antibodies. The present study provides evidence that ETEC-specific fimbriae can adequately be expressed in an attenuated V. cholerae vaccine strain and that immunoelectron microscopy is a critical tool to validate the surface expression of antigens in view of their possible suitability for recombinant vaccines.  相似文献   

7.
Immunological heterogeneity has long been the major challenge in developing broadly effective vaccines to protect humans and animals against bacterial and viral infections. Enterotoxigenic Escherichia coli (ETEC) strains, the leading bacterial cause of diarrhea in humans, express at least 23 immunologically different colonization factor antigens (CFAs) and two distinct enterotoxins [heat-labile toxin (LT) and heat-stable toxin type Ib (STa or hSTa)]. ETEC strains expressing any one or two CFAs and either toxin cause diarrhea, therefore vaccines inducing broad immunity against a majority of CFAs, if not all, and both toxins are expected to be effective against ETEC. In this study, we applied the multiepitope fusion antigen (MEFA) strategy to construct ETEC antigens and examined antigens for broad anti-CFA and antitoxin immunogenicity. CFA MEFA CFA/I/II/IV [CVI 2014, 21(2):243-9], which carried epitopes of seven CFAs [CFA/I, CFA/II (CS1, CS2, CS3), CFA/IV (CS4, CS5, CS6)] expressed by the most prevalent and virulent ETEC strains, was genetically fused to LT-STa toxoid fusion monomer 3xSTaA14Q-dmLT or 3xSTaN12S-dmLT [IAI 2014, 82(5):1823-32] for CFA/I/II/IV-STaA14Q-dmLT and CFA/I/II/IV-STaN12S-dmLT MEFAs. Mice intraperitoneally immunized with either CFA/I/II/IV-STa-toxoid-dmLT MEFA developed antibodies specific to seven CFAs and both toxins, at levels equivalent or comparable to those induced from co-administration of the CFA/I/II/IV MEFA and toxoid fusion 3xSTaN12S-dmLT. Moreover, induced antibodies showed in vitro adherence inhibition activities against ETEC or E. coli strains expressing these seven CFAs and neutralization activities against both toxins. These results indicated CFA/I/II/IV-STa-toxoid-dmLT MEFA or CFA/I/II/IV MEFA combined with 3xSTaN12S-dmLT induced broadly protective anti-CFA and antitoxin immunity, and suggested their potential application in broadly effective ETEC vaccine development. This MEFA strategy may be generally used in multivalent vaccine development.  相似文献   

8.
Entertoxigenic Escherichia coli (ETEC) strains of nineteen serogroups which produced colonization factors (coli-surface-associated antigens CS5, CS6, CS7 and CS17, colonization factor antigen CFA/III and putative colonization factors PCFO159:H4, PCFO166 and PCFO9) were tested for hybridization with a DNA probe containing the cfaD sequence that regulates expression of CFA/I. Strong colony hybridization, similar to that with the CFA/I-positive control strain H10407, occurred with ETEC strains of serogroups O27, O159 and O169 which produced CS6 antigen, and with all the strains which produced PCFO166 fimbriae. Weak colony hybridization, compared to the control strain, was found with ETEC producing CS5 fimbriae with CS6 antigen, CFA/III fimbriae with CS6 antigen, CS7 fimbriae or PCFO159:H4 fimbriae. CS6-antigen-positive strains of serogroups O79, O89 and O148 and all the CS17-antigen-positive and PCFO9-fimbriae-positive strains were negative in colony hybridization tests with the cfaD probe. Plasmid DNA of nine ETEC strains and their colonization-factor-negative derivatives was tested for hybridization with the cfaD probe and with ST and LT oligonucleotide probes. The sequences that hybridized with the cfaD probe were on the plasmids which coded for enterotoxin production. Fifteen strains were transformed with NTP513, a recombinant plasmid which contains the CFA/I region 1 fimbrial subunit operon but lacks a functional cfaD sequence, in order to determine whether DNA in any of these strains could substitute for the cfaD sequence in the regulation of production of CFA/I fimbriae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A total of 134 enterotoxigenicEscherichia coli (ETEC) of serogroups O25, O27, O148, and O159 were tested in the enzyme-linked immunosorbent assays for the colonization factor antigens I (CFA/I), CFA/II (coli surface antigens CS1, 2 and 3) and putative colonization factor (PCF) 8775 (CS4, 5 and 6). CS6 was detected without CS4 or CS5 in 94% of the strains of serogroup O25, 86% of strains of serogroup O27, 87% of strains of serogroup O148, and 29% of strains of serogroup, O159. The frequency with which CS6 occurs in ETEC of common serotypes without the antigens CS4 or CS5 suggests that it might be a colonization factor.  相似文献   

10.
Two enterotoxigenic Escherichia coli strains of serotype 0.25.H42 that produced coli surface associated antigens CS4 and CS6 hybridized with a probe containing the cfaD sequence that regulates expression of colonization factor antigen CFA/I. Transformation of a cloned cfaD gene into some derivatives of the strains that were negative for CS4 and CS6 resulted in expression of CS4 but not CS6. By hybridization the sequence that regulated CS4 production in the wild type 025 strains was located on a plasmid that also encoded the CS6 antigen. The structural genes for the CS4 antigen were on a separate plasmid. The 025 strains carried a third plasmid encoding enterotoxin production which was therefore unlinked to regulation sequences or genes encoding CS antigens.  相似文献   

11.
Immunoglobulins, prepared from polyclonal rabbit antisera raised against Escherichia coli fimbrial antigens, colonization factor antigen (CFA)/I, and coli-surface-associated antigens (CS)1, CS2 and CS4, were used to assess antigenic cross-reactions between these four fimbrial types by Western immunoblotting. Antibodies in a serum, prepared against CS4, cross-reacted strongly with the fimbrial subunits of CFA/I, CS1 and CS2. Antibodies in sera prepared against CFA/I and CS1 gave weak reactions with CS1 or CFA/I respectively and also with CS2 and CS4, while the antiserum prepared against CS2 did not react. CS4 antiserum also reacted with the CS17 fimbrial subunit, but not with the subunits of fimbrial antigens: CFA/III, CS5, putative colonization factor (PCF) 0159:H4 or PCF0166.  相似文献   

12.
定居因子CFA/I和CS6是肠毒素大肠杆菌 (ETEC)中重要的两种优势抗原 ,是ETEC疫苗研制的首选组分。采用基因重组技术将二者构建在以asd基因为选择标记的重组质粒上 ,与asd基因缺失突变型减毒福氏志贺氏菌FWL0 1构成宿主 载体平衡致死系统。实验结果表明 ,重组疫苗候选株能够稳定表达CFA/I和CS6抗原 ,并可在菌体表面形成相应菌毛。重组菌口服免疫BALB/c小鼠后 ,可诱生相应的抗CFA/I和CS6的特异性血清抗体IgG和分泌型抗体sIgA ,说明以志贺氏菌为载体 ,可以构建同时表达多个定居因子抗原的ETEC多价菌苗  相似文献   

13.
Cardiac fibroblast (CF) proliferation and differentiation into hypersecretory myofibroblasts can lead to excessive extracellular matrix (ECM) production and cardiac fibrosis. In turn, the ECM produced can potentially activate CFs via distinct feedback mechanisms. To assess how specific ECM components influence CF activation, isolated CFs were plated on specific collagen substrates (type I, III, and VI collagens) before functional assays were carried out. The type VI collagen substrate potently induced myofibroblast differentiation but had little effect on CF proliferation. Conversely, the type I and III collagen substrates did not affect differentiation but caused significant induction of proliferation (type I, 240.7 +/- 10.3%, and type III, 271.7 +/- 21.8% of basal). Type I collagen activated ERK1/2, whereas type III collagen did not. Treatment of CFs with angiotensin II, a potent mitogen of CFs, enhanced the growth observed on types I and III collagen but not on the type VI collagen substrate. Using an in vivo model of myocardial infarction (MI), we measured changes in type VI collagen expression and myofibroblast differentiation after post-MI remodeling. Concurrent elevations in type VI collagen and myofibroblast content were evident in the infarcted myocardium 20-wk post-MI. Overall, types I and III collagen stimulate CF proliferation, whereas type VI collagen plays a potentially novel role in cardiac remodeling through facilitation of myofibroblast differentiation.  相似文献   

14.
Abstract Sequences encoding the CS6 antigen of colonisation factor antigen (CFA)IV were cloned on a 3kb Cla I fragment. The recombinant plasmid pDEP5 coded for surface expression of CS6 measured by ELISA and production of CS6 polypeptides was detected in E. coli minicells. The genes for the CS1, CS2 and CS3 components of colonisation factor antigen CFA/II were cloned together on a length of DNA corresponding to about 17kb. CS3 was always expressed but production of either CS1 or CS2 depended on the serotype and biotype of the host strain. Separate subclones were obtained that expressed CS3 or CS1 and CS2.  相似文献   

15.
We examined the binding of colonization factor antigens (CFAs) of enterotoxigenic Escherichia coli to electrophoretically separated membrane components of rabbit intestinal brush borders or human intestinal (and non-intestinal) cell lines using an immunoblotting technique. Both CFA/I and CFA/II bound to distinct membrane components which seemed to be identical in rabbit brush borders and in a human intestinal cell line; these binding structures were mainly missing in membranes from epithelial cell lines of non-intestinal origin. Both shared and specific binding components were identified for CFA/I and the different subcomponents of CFA/II (CS1, CS2 and CS3), respectively. Chloroform-methanol extraction of lipids from the cell membranes did not change the binding pattern for either CFA/I or CFA/II suggesting that the binding occurred to (glyco)proteins rather than to (glyco)lipids.  相似文献   

16.
Sequences regulating production of fimbriae were cloned from two enterotoxigenic Escherichia coli strains. One cloned region, from E. coli 0.25.H42, controlled expression of coli surface-associated (CS) antigen 4, whereas the function of the other, from E. coli 0167.H5, was unclear. Both regulators were related to the cfaD gene that controls expression of colonization factor antigen I (CFA/I) although low stringency conditions were required to show significant hybridization between cfaD and the regulatory fragment from E. coli 0167. The cloned regulatory genes promoted expression of CFA/I, CS1, CS2 and CS4 antigens but the levels of production in the presence of the 0167 regulator were lower than those promoted by the CS4 regulator or cfaD.  相似文献   

17.

Background

Multiple infections with diverse enterotoxigenic E. coli (ETEC) strains lead to broad spectrum protection against ETEC diarrhea. However, the precise mechanism of protection against ETEC infection is still unknown. Therefore, memory B cell responses and affinity maturation of antibodies to the specific ETEC antigens might be important to understand the mechanism of protection.

Methodology

In this study, we investigated the heat labile toxin B subunit (LTB) and colonization factor antigens (CFA/I and CS6) specific IgA and IgG memory B cell responses in Bangladeshi adults (n = 52) who were infected with ETEC. We also investigated the avidity of IgA and IgG antibodies that developed after infection to these antigens.

Principal Findings

Patients infected with ETEC expressing LT or LT+heat stable toxin (ST) and CFA/I group or CS6 colonization factors developed LTB, CFA/I or CS6 specific memory B cell responses at day 30 after infection. Similarly, these patients developed high avidity IgA and IgG antibodies to LTB, CFA/I or CS6 at day 7 that remained significantly elevated at day 30 when compared to the avidity of these specific antibodies at the acute stage of infection (day 2). The memory B cell responses, antibody avidity and other immune responses to CFA/I not only developed in patients infected with ETEC expressing CFA/I but also in those infected with ETEC expressing CFA/I cross-reacting epitopes. We also detected a significant positive correlation of LTB, CFA/I and CS6 specific memory B cell responses with the corresponding increase in antibody avidity.

Conclusion

This study demonstrates that natural infection with ETEC induces memory B cells and high avidity antibodies to LTB and colonization factor CFA/I and CS6 antigens that could mediate anamnestic responses on re-exposure to ETEC and may help in understanding the requirements to design an effective vaccination strategies.  相似文献   

18.
Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrheal disease and deaths among children in developing countries and the major cause of traveler's diarrhea (TD). Since surface protein colonization factors (CFs) of ETEC are important for pathogenicity and immune protection is mainly mediated by locally produced IgA antibodies in the gut, much effort has focused on the development of an oral CF-based vaccine. The most extensively studied ETEC candidate vaccine is the rCTB-CF ETEC vaccine, containing recombinantly produced cholera B subunit and the most commonly encountered ETEC CFs on the surface of whole inactivated bacteria. Initial clinical trials with this vaccine showed significant immune responses against the key antigens in different age groups in Bangladesh and Egypt and protection against more severe TD in Western travelers. However, when tested in a phase-III trial in Egyptian infants, the protective efficacy of the vaccine was found to be low, indicating the need to improve the immunogenicity of the vaccine, e.g., by increasing the levels of the protective antigens. This review describes different strategies for the construction of recombinant nontoxigenic E. coli and Vibrio cholerae candidate vaccine strains over-expressing higher amounts of ETEC CFs than clinical ETEC isolates selected to produce high levels of the respective CF, e.g., those ETEC strains which have been used in the rCTB-CF ETEC vaccine. Several different expression vectors containing the genes responsible for the expression and assembly of the examined CFs, all downstream of the powerful tac promoter, which could be maintained either with or without antibiotic selection, were constructed. Expression from the tac promoter was under the control of the lacI q repressor present on the plasmids. Following induction with isopropyl-β-d-thiogalactopyranoside, candidate vaccine strains over-expressing single CFs, unnatural combinations of two CFs, and also hybrid forms of ETEC CFs were produced. Specific monoclonal antibodies against the major subunits of the examined CF were used to quantify the amount of the surface-expressed CF by a dot-blot assay and inhibition ELISA. Oral immunization with formalin- or phenol-inactivated recombinant bacteria over-expressing the CFs was found to induce significantly higher antibody responses compared to immunization with the previously used vaccine strains. We therefore conclude that our constructs may be useful as candidate strains in an oral whole-cell inactivated CF ETEC vaccine.  相似文献   

19.
Antibiotics have either bactericidal or bacteriostatic activity. However, they also induce considerable gene expression in bacteria when used at subinhibitory concentrations (below the MIC). We found that lincomycin, which inhibits protein synthesis by binding to the ribosomes of Gram-positive bacteria, was effective for inducing the expression of genes involved in secondary metabolism in Streptomyces strains when added to medium at subinhibitory concentrations. In Streptomyces coelicolor A3(2), lincomycin at 1/10 of its MIC markedly increased the expression of the pathway-specific regulatory gene actII-ORF4 in the blue-pigmented antibiotic actinorhodin (ACT) biosynthetic gene cluster, which resulted in ACT overproduction. Intriguingly, S. lividans 1326 grown in the presence of lincomycin at a subinhibitory concentration (1/12 or 1/3 of its MIC) produced abundant antibacterial compounds that were not detected in cells grown in lincomycin-free medium. Bioassay and mass spectrometry analysis revealed that some antibacterial compounds were novel congeners of calcium-dependent antibiotics. Our results indicate that lincomycin at subinhibitory concentrations potentiates the production of secondary metabolites in Streptomyces strains and suggest that activating these strains by utilizing the dose-response effects of lincomycin could be used to effectively induce the production of cryptic secondary metabolites. In addition to these findings, we also report that lincomycin used at concentrations for markedly increased ACT production resulted in alteration of the cytoplasmic protein (FoF1 ATP synthase α and β subunits, etc.) profile and increased intracellular ATP levels. A fundamental mechanism for these unique phenomena is also discussed.  相似文献   

20.
Fimbrial filaments assembled by distinct chaperone pathways share a common mechanism of intersubunit interaction, as elucidated for colonization factor antigen I (CFA/I), archetype of enterotoxigenic Escherichia coli (ETEC) Class 5 fimbriae. We postulated that a highly conserved beta-strand at the major subunit N-terminus represents the donor strand, analogous to interactions within Class I pili. We show here that CFA/I fimbriae utilize donor strand complementation to promote proper folding of and interactions between CFA/I subunits. We constructed a series of genetic variants of CfaE, the CFA/I adhesin, incorporating a C-terminal extension comprising a flexible linker and 10-19 of the N-terminal residues of CfaB, the major subunit. Variants with a donor strand complement (dsc) of >or= 12 residues were recoverable from periplasmic fractions. Genetic disruption of the donor beta-strand reduced CfaE recovery. A hexahistidine-tagged variant of dsc19CfaE formed soluble monomers, folded into beta-sheet conformation, displayed adhesion characteristic of CFA/I, and elicited antibodies that inhibited mannose-resistant haemagglutination by ETEC expressing CFA/I, CS4 and CS14 fimbriae. Immunoelectron microscopy indicated that CfaE was confined to the distal fimbrial tip. Our findings provide the basis to elucidate structure and function of this class of fimbrial adhesins and assess the feasibility of an adhesin-based vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号