首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A common technique used for sensitive and specific diagnostic virus detection in clinical samples is PCR that can identify one or several viruses in one assay. However, a diagnostic microarray containing probes for all human pathogens could replace hundreds of individual PCR-reactions and remove the need for a clear clinical hypothesis regarding a suspected pathogen. We have established such a diagnostic platform for random amplification and subsequent microarray identification of viral pathogens in clinical samples. We show that Phi29 polymerase-amplification of a diverse set of clinical samples generates enough viral material for successful identification by the Microbial Detection Array, demonstrating the potential of the microarray technique for broad-spectrum pathogen detection. We conclude that this method detects both DNA and RNA virus, present in the same sample, as well as differentiates between different virus subtypes. We propose this assay for diagnostic analysis of viruses in clinical samples.  相似文献   

2.
Critical to most studies in molecular microbial ecology is the application of DNA/RNA extraction methods which can reveal the true level of population biodiversity present in samples from the community under investigation. Activated sludge communities have been studied extensively using molecular methods, but rarely have the nucleic acid isolation methods applied been assessed for their ability to achieve this. This study compares eight published RNA and DNA extraction protocols and one commercially available DNA isolation kit for their capacity to provide high quality nucleic acids that reflect the community composition. Each method was assessed on the basis of nucleic acid yield, purity and integrity, and the ability to provide PCR amplifiable RNA and DNA from known marker populations that varied in their resistance to nucleic acid extraction. Only three consistently provided DNA from each of the marker populations known to be present in the samples from fluorescence in situ hybridisation analysis. The failure of the other methods emphasises the need to validate all DNA/RNA extraction protocols. It is recommended that several validated extraction methods be used and the extracts pooled to further minimise any risk of bias.  相似文献   

3.
Immobilized sample amplification (ISA) is a novel method for amplification, detection, monitoring, and quantitative determination of nucleic acids from a minute amount of sample. We present here a novel quantitative ISA assay for retroviruses using a replication-defective recombinant retrovirus as a model retrovirus. Samples, as small as 5 to 10 microl or as large as 1 ml or more in volume, are readily immobilized on a nylon or polyester matrix. Retroviral RNA is directly amplified following the rehydration of the immobilized samples, thus eliminating the needs for retroviral RNA extraction. An ISA assay of a 10-microl viral sample generates results equal to or better than that of RT-PCR on equivalent amount RNA isolated from larger sample volumes. Recovery of RNA from small volumes, such as 10 microl, is almost impossible, whereas ISA assay detects retroviruses from as small as 1 to 5 microl of viral samples containing 10(4) cfu/ml determined by colony-forming assay. Extraction of RNA from a small amount of infectious viral samples not only is a difficult, biohazardous procedure, but also introduces random errors which contribute to variability in viral quantitation. Since the ISA method eliminates the isolation/extraction of the nucleic acids, it significantly shortens the handling time for the biohazardous materials and simplifies the procedure for analyzing small quantities of biological samples. This method detects less than 10 infectious retroviral particles as determined by both colony-forming assay and electron microscope studies. The format and protocol of this quantitative ISA assay can be easily automated to fit into numerous platforms, thus making it attractive for laboratory automation.  相似文献   

4.
5.
We present a method for the rapid and simple extraction of DNA from marine sediments using electroelution. It effectively separates DNA from compounds, including humic substances, that interfere with subsequent DNA quantification and amplification. After extraction of the DNA from the sediment into an aqueous solution, the crude sample is encased in 2% agarose gel and exposed to an electrical current, which draws the DNA out of the gel into a centrifugal filter vial. After electroelution, the sample is centrifuged to remove contaminants ≤100 000 Da. Recovery of DNA using this method is quantitative and does not discriminate on the basis of size, as determined using DNA standards and DNA extracts from environmental samples. Amplification of DNA is considerably improved due to removal of PCR inhibitors. For Archaea, only these purified extracts yielded PCR products. This method allows for the use of relatively large volumes of sediment and is particularly useful for sediments containing low biomass such as deeply buried marine sediments. It works with both organic-rich and -poor sediment, as well as with sediment where calcium carbonate is abundant and sediment where it is limited; consequently, adjustment of protocols is unnecessary for samples with very different organic and mineral contents.  相似文献   

6.
Isolation of viral pathogens from clinical and/or animal samples has traditionally relied on either cell cultures or laboratory animal model systems. However, virus viability is notoriously susceptible to adverse conditions that may include inappropriate procedures for sample collection, storage temperature, support media and transportation. Using our recently described ISA method, we have developed a novel procedure to isolate infectious single-stranded positive-sense RNA viruses from clinical or animal samples. This approach, that we have now called "ISA-lation", exploits the capacity of viral cDNA subgenomic fragments to re-assemble and produce infectious viral RNA in susceptible cells. Here, it was successfully used to rescue enterovirus, Chikungunya and Tick-borne encephalitis viruses from a variety of inactivated animal and human samples. ISA-lation represents an effective option to rescue infectious virus from clinical and/or animal samples that may have deteriorated during the collection and storage period, but also potentially overcomes logistic and administrative difficulties generated when complying with current health and safety and biosecurity guidelines associated with shipment of infectious viral material.  相似文献   

7.
8.
Mitochondrial COII DNA was amplified by PCR from total DNA extracted from field collected primate fecal samples (n=24) which had been stored without refrigeration for over 30 days. High molecular weight DNA total DNA was obtained from samples stored in 70% (v/v) ethanol, SDS lysis buffer (LB) and guanidine isothiocyanate buffer (GTB) than from samples stored in 10% formalin. Fecal DNA quality and COII amplification varied according to storage solution (formalin, ethanol, LB and GTB), extraction method (LB-based and GTB-based) and primate species (chimpanzee, baboon, human). It is recommended that fecal samples be collected in LB for DNA analysis. However, GTB-based protocols are suitable when total RNA is needed for epidemiological studies of viral diseases or gene expression analysis.  相似文献   

9.
10.
11.
Viral infections cause many different diseases stemming both from well-characterized viral pathogens but also from emerging viruses, and the search for novel viruses continues to be of great importance. High-throughput sequencing is an important technology for this purpose. However, viral nucleic acids often constitute a minute proportion of the total genetic material in a sample from infected tissue. Techniques to enrich viral targets in high-throughput sequencing have been reported, but the sensitivity of such methods is not well established. This study compares different library preparation techniques targeting both DNA and RNA with and without virion enrichment. By optimizing the selection of intact virus particles, both by physical and enzymatic approaches, we assessed the effectiveness of the specific enrichment of viral sequences as compared to non-enriched sample preparations by selectively looking for and counting read sequences obtained from shotgun sequencing. Using shotgun sequencing of total DNA or RNA, viral targets were detected at concentrations corresponding to the predicted level, providing a foundation for estimating the effectiveness of virion enrichment. Virion enrichment typically produced a 1000-fold increase in the proportion of DNA virus sequences. For RNA virions the gain was less pronounced with a maximum 13-fold increase. This enrichment varied between the different sample concentrations, with no clear trend. Despite that less sequencing was required to identify target sequences, it was not evident from our data that a lower detection level was achieved by virion enrichment compared to shotgun sequencing.  相似文献   

12.
13.
以川陕哲罗鲑为目标物种的水样环境DNA分析流程的优化   总被引:1,自引:0,他引:1  
姜维  王启军  邓捷  赵虎  孔飞  张红星 《生态学杂志》2016,27(7):2372-2378
水样环境DNA分析包括水样采集、DNA提取和分析等流程,已成为监测濒危水生生物种群分布调查的重要手段.为减少在监测目标物种尤其濒危物种中的不确定性,对水环境DNA分析流程的优化至关重要.本研究以川陕哲罗鲑为目标物种,采用滤膜法采集养殖池中的水样,设计了 250 mL、500 mL、1 L和2 L等4种水样采集量,分别采用 PoweWater DNA Isolation kit和DNeasy Tissue and Blood DNA extraction kit 提取水样环境DNA(eDNA),使用物种mtDNA D_loop区特异性引物进行PCR扩增,通过研究滤膜法、水样采集量和水样DNA提取方法对水样eDNA中目标基因检出率的影响,探索适宜的eDNA分析操作方案.结果表明: 使用DNeasy Tissue and Blood DNA extraction kit提取的水样DNA中目的基因的检出率为100%,效果明显优于PoweWater DNA Isolation kit(目标基因的检出率为0);目标基因扩增条带的亮度随水样采样量的增加而增加,其中2 L水样目标基因的扩增效果较理想;序列比对结果显示,本试验从水样DNA中成功扩增得到了川陕哲罗鲑mtDNA Dloop区部分序列.表明DNA提取方法和水样采集量对目标物种的检出率有显著的影响,滤膜法、2 L水样采集量、DNeasy Tissue and Blood DNA extraction kit更适宜进行水样的DNA分析,mtDNA D-loop区可作为川陕哲罗鲑识别的特异性分子标记.  相似文献   

14.
15.
Squash (Cucurbita moschata) is one of the most important crops in tropical countries. Geminiviruses are an important group of plant pathogens. In 2002 a new begomovirus was reported to naturally infect squash and some other crops in Costa Rica. Our objective was to compare, using molecular techniques, the extraction and further purification of DNA from squash by different extraction protocols and storage methods. A single infected sample was collected, half of the material was stored frozen at ?70°C, and the remainder was stored dehydrated in silica gel (SG). Total nucleic acids (TNAs) were extracted by three different protocols and were quantified by fluorometry, and the quality was analysed by electrophoresis in agarose gels, polymerase chain reaction (PCR) of the virus genome, dot blot and Southern blot hybridization. Even though the tissue stored in SG yielded a higher amount of TNAs, the genetic material exhibited lower integrity and this made it useful exclusively for the detection of geminiviral DNA by PCR amplification of short viral sequences and by hybridization with short viral probes. The Dellaporta method proved to be the most effective for the detection of geminiviral DNA in infected squash tissue. Although the cetyltrimethylammonium bromide method showed similar results, the procedure is more time‐consuming. Surprisingly, the citrate method showed either similar or worse results than the other methods.  相似文献   

16.
17.
The sensitivity and reliability of PCR for diagnostic and research purposes require efficient unbiased procedures of extraction and purification of nucleic acids. One of the major limitations of PCR-based tests is the inhibition of the amplification process by substances present in clinical samples. This study used specimens spiked with a known amount of plasmid pBKV (ATCC 33-1) to compare six methods for extraction and purification of viral DNA from urine and serum samples based on recovery efficiency in terms of yield of DNA and percentage of plasmid pBKV recovered, purity of extracted DNA, and percentage of inhibition. The most effective extraction methods were the phenol/chloroform technique and the silica gel extraction procedure for urine and serum samples, respectively. Considering DNA purity, the silica gel extraction procedure and the phenol/chloroform method produced the most satisfactory results in urine and serum samples, respectively. The presence of inhibitors was overcome by all DNA extraction techniques in urine samples, as evidenced by semiquantitative PCR amplification. In serum samples, the lysis method and the proteinase K procedure did not completely overcome the presence of inhibitors.  相似文献   

18.
The efficacy of DNA extraction protocols can be highly dependent upon both the type of sample being investigated and the types of downstream analyses performed. Considering that the use of new bacterial community analysis techniques (e.g., microbiomics, metagenomics) is becoming more prevalent in the agricultural and environmental sciences and many environmental samples within these disciplines can be physiochemically and microbiologically unique (e.g., fecal and litter/bedding samples from the poultry production spectrum), appropriate and effective DNA extraction methods need to be carefully chosen. Therefore, a novel semi-automated hybrid DNA extraction method was developed specifically for use with environmental poultry production samples. This method is a combination of the two major types of DNA extraction: mechanical and enzymatic. A two-step intense mechanical homogenization step (using bead-beating specifically formulated for environmental samples) was added to the beginning of the “gold standard” enzymatic DNA extraction method for fecal samples to enhance the removal of bacteria and DNA from the sample matrix and improve the recovery of Gram-positive bacterial community members. Once the enzymatic extraction portion of the hybrid method was initiated, the remaining purification process was automated using a robotic workstation to increase sample throughput and decrease sample processing error. In comparison to the strict mechanical and enzymatic DNA extraction methods, this novel hybrid method provided the best overall combined performance when considering quantitative (using 16S rRNA qPCR) and qualitative (using microbiomics) estimates of the total bacterial communities when processing poultry feces and litter samples.  相似文献   

19.
We present two methods for DNA extraction from fresh and dried mushrooms that are adaptable to high-throughput sequencing initiatives, such as DNA barcoding. Our results show that these protocols yield ∼85% sequencing success from recently collected materials. Tests with both recent (<2 year) and older (>100 years) specimens reveal that older collections have low success rates and may be an inefficient resource for populating a barcode database. However, our method of extracting DNA from herbarium samples using small amount of tissue is reliable and could be used for important historical specimens. The application of these protocols greatly reduces time, and therefore cost, of generating DNA sequences from mushrooms and other fungi vs. traditional extraction methods. The efficiency of these methods illustrates that standardization and streamlining of sample processing should be shifted from the laboratory to the field.  相似文献   

20.

Background

Poorly preserved biological tissues have become an important source of DNA for a wide range of zoological studies. Measuring the quality of DNA obtained from these samples is often desired; however, there are no widely used techniques available for quantifying damage in highly degraded DNA samples. We present a general method that can be used to determine the frequency of polymerase blocking DNA damage in specific gene-regions in such samples. The approach uses quantitative PCR to measure the amount of DNA present at several fragment sizes within a sample. According to a model of random degradation the amount of available template will decline exponentially with increasing fragment size in damaged samples, and the frequency of DNA damage (λ) can be estimated by determining the rate of decline.

Results

The method is illustrated through the analysis of DNA extracted from sea lion faecal samples. Faeces contain a complex mixture of DNA from several sources and different components are expected to be differentially degraded. We estimated the frequency of DNA damage in both predator and prey DNA within individual faecal samples. The distribution of fragment lengths for each target fit well with the assumption of a random degradation process and, in keeping with our expectations, the estimated frequency of damage was always less in predator DNA than in prey DNA within the same sample (mean λpredator = 0.0106 per nucleotide; mean λprey = 0.0176 per nucleotide). This study is the first to explicitly define the amount of template damage in any DNA extracted from faeces and the first to quantify the amount of predator and prey DNA present within individual faecal samples.

Conclusion

We present an approach for characterizing mixed, highly degraded PCR templates such as those often encountered in ecological studies using non-invasive samples as a source of DNA, wildlife forensics investigations and ancient DNA research. This method will allow researchers to measure template quality in order to evaluate alternate sources of DNA, different methods of sample preservation and different DNA extraction protocols. The technique could also be applied to study the process of DNA decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号