首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Age-related macular degeneration (AMD) is a major cause of loss of central vision in the elderly. The formation of drusen, an extracellular, amorphous deposit of material on Bruch''s membrane in the macula of the retina, occurs early in the course of the disease. Although some of the molecular components of drusen are known, there is no understanding of the cell biology that leads to the formation of drusen. We have previously demonstrated increased mitochondrial DNA (mtDNA) damage and decreased DNA repair enzyme capabilities in the rodent RPE/choroid with age. In this study, we found that drusen in AMD donor eyes contain markers for autophagy and exosomes. Furthermore, these markers are also found in the region of Bruch''s membrane in old mice. By in vitro modeling increased mtDNA damage induced by rotenone, an inhibitor of mitochondrial complex I, in the RPE, we found that the phagocytic activity was not altered but that there were: 1) increased autophagic markers, 2) decreased lysosomal activity, 3) increased exocytotic activity and 4) release of chemoattractants. Exosomes released by the stressed RPE are coated with complement and can bind complement factor H, mutations of which are associated with AMD. We speculate that increased autophagy and the release of intracellular proteins via exosomes by the aged RPE may contribute to the formation of drusen. Molecular and cellular changes in the old RPE may underlie susceptibility to genetic mutations that are found in AMD patients and may be associated with the pathogenesis of AMD in the elderly.  相似文献   

2.
The retinal pigment epithelium (RPE) is a pigmented monolayer of cells lying between the photoreceptors and a layer of fenestrated capillaries, the choriocapillaris. Choroideremia (CHM) is an X-linked progressive degeneration of these three layers caused by the loss of function of Rab Escort protein-1 (REP1). REP1 is involved in the prenylation of Rab proteins, key regulators of membrane trafficking. To study the pathological consequences of chronic disruption of membrane traffic in the RPE we used a cell type-specific knock-out mouse model of the disease, where the Chm/Rep1 gene is deleted only in pigmented cells (ChmFlox, Tyr-Cre+). Transmission electron microscopy (TEM) was used to quantitate the melanosome distribution in the RPE and immunofluorescent staining of rhodopsin was used to quantitate phagocytosed rod outer segments in retinal sections. The ultrastructure of the RPE and Bruch’s membrane at different ages was characterised by TEM to analyse age-related changes occurring as a result of defects in membrane traffic pathways. Chm/Rep1 gene knockout in RPE cells resulted in reduced numbers of melanosomes in the apical processes and delayed phagosome degradation. In addition, the RPE accumulated pathological changes at 5–6 months of age similar to those observed in 2-year old controls. These included the intracellular accumulation of lipofuscin-containing deposits, disorganised basal infoldings and the extracellular accumulation of basal laminar and basal linear deposits. The phenotype of the ChmFlox, Tyr-Cre+ mice suggests that loss of the Chm/Rep1 gene causes premature accumulation of features of aging in the RPE. Furthermore, the striking similarities between the present observations and some of the phenotypes reported in age-related macular degeneration (AMD) suggest that membrane traffic defects may contribute to the pathogenesis of AMD.  相似文献   

3.
The objective of this report is to describe the protocols for comparing the microRNA (miRNA) profiles of human induced-pluripotent stem (iPS) cells, retinal pigment epithelium (RPE) derived from human iPS cells (iPS-RPE), and fetal RPE. The protocols include collection of RNA for analysis by microarray, and the analysis of microarray data to identify miRNAs that are differentially expressed among three cell types. The methods for culture of iPS cells and fetal RPE are explained. The protocol used for differentiation of RPE from human iPS is also described. The RNA extraction technique we describe was selected to allow maximal recovery of very small RNA for use in a miRNA microarray. Finally, cellular pathway and network analysis of microarray data is explained. These techniques will facilitate the comparison of the miRNA profiles of three different cell types.  相似文献   

4.
Among the identified risk factors of age-related macular degeneration, sunlight is known to induce cumulative damage to the retina. A photosensitive derivative of the visual pigment, N-retinylidene-N-retinylethanolamine (A2E), may be involved in this phototoxicity. The high energy visible light between 380 nm and 500 nm (blue light) is incriminated. Our aim was to define the most toxic wavelengths in the blue-green range on an in vitro model of the disease. Primary cultures of porcine retinal pigment epithelium cells were incubated for 6 hours with different A2E concentrations and exposed for 18 hours to 10 nm illumination bands centered from 380 to 520 nm in 10 nm increments. Light irradiances were normalized with respect to the natural sunlight reaching the retina. Six hours after light exposure, cell viability, necrosis and apoptosis were assessed using the Apotox-Glo Triplex™ assay. Retinal pigment epithelium cells incubated with A2E displayed fluorescent bodies within the cytoplasm. Their absorption and emission spectra were similar to those of A2E. Exposure to 10 nm illumination bands induced a loss in cell viability with a dose dependence upon A2E concentrations. Irrespective of A2E concentration, the loss of cell viability was maximal for wavelengths from 415 to 455 nm. Cell viability decrease was correlated to an increase in cell apoptosis indicated by caspase-3/7 activities in the same spectral range. No light-elicited necrosis was measured as compared to control cells maintained in darkness. Our results defined the precise spectrum of light retinal toxicity in physiological irradiance conditions on an in vitro model of age-related macular degeneration. Surprisingly, a narrow bandwidth in blue light generated the greatest phototoxic risk to retinal pigment epithelium cells. This phototoxic spectrum may be advantageously valued in designing selective photoprotection ophthalmic filters, without disrupting essential visual and non-visual functions of the eye.  相似文献   

5.
6.
Basic studies of human pluripotential stem cells have advanced rapidly and stem cell products are now seeing therapeutic applications. However, questions remain regarding the tumorigenic potential of such cells. Here, we report the tumorigenic potential of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of wet-type, age-related macular degeneration (AMD). First, immunodeficient mouse strains (nude, SCID, NOD-SCID and NOG) were tested for HeLa cells’ tumor-forming capacity by transplanting various cell doses subcutaneously with or without Matrigel. The 50% Tumor Producing Dose (TPD50 value) is the minimal dose of transplanted cells that generated tumors in 50% of animals. For HeLa cells, the TPD50 was the lowest when cells were embedded in Matrigel and transplanted into NOG mice (TPD50 = 101.1, n = 75). The TPD50 for undifferentiated iPSCs transplanted subcutaneously to NOG mice in Matrigel was 102.12; (n = 30). Based on these experiments, 1×106 iPSC-derived RPE were transplanted subcutaneously with Matrigel, and no tumor was found during 15 months of monitoring (n = 65). Next, to model clinical application, we assessed the tumor-forming potential of HeLa cells and iPSC 201B7 cells following subretinal transplantation of nude rats. The TPD50 for iPSCs was 104.73 (n = 20) and for HeLa cells 101.32 (n = 37) respectively. Next, the tumorigenicity of iPSC-derived RPE was tested in the subretinal space of nude rats by transplanting 0.8–1.5×104 iPSC-derived RPE in a collagen-lined (1 mm×1 mm) sheet. No tumor was found with iPSC-derived RPE sheets during 6–12 months of monitoring (n = 26). Considering the number of rodents used, the monitoring period, the sensitivity of detecting tumors via subcutaneous and subretinal administration routes and the incidence of tumor formation from the iPSC-derived RPE, we conclude that the tumorigenic potential of the iPSC-derived RPE was negligible.  相似文献   

7.
Age is the major risk factor in the age-related macular degeneration (AMD) which is a complex multifactor neurodegenerative disease of the retina and the main cause of irreversible vision loss in people over 60 years old. The major role in AMD pathogenesis belongs to structure-functional changes in the retinal pigment epithelium cells, while the onset and progression of AMD are commonly believed to be caused by the immune system dysfunctions. The role of retinal glial cells (Muller cells, astrocytes, and microglia) in AMD pathogenesis is studied much less. These cells maintain neurons and retinal vessels through the synthesis of neurotrophic and angiogenic factors, as well as perform supporting, separating, trophic, secretory, and immune functions. It is known that retinal glia experiences morphological and functional changes with age. Age-related impairments in the functional activity of glial cells are closely related to the changes in the expression of trophic factors that affect the status of all cell types in the retina. In this review, we summarized available literature data on the role of retinal macro- and microglia and on the contribution of these cells to AMD pathogenesis.  相似文献   

8.
Alteration in retinal pigment epithelium (RPE) results in the visual dysfunction and blindness of retinal degenerative diseases. Injection of sodium iodate (NaIO3) generates degeneration of RPE. We analyzed the sequential ultrastructure and expression of proliferating cell nuclear antigen (PCNA) and retina-specific RPE65 in NaIO3-induced retinal degeneration model. Adult male rats were injected 1% NaIO3 (50 mg/kg) and eyes were enucleated at 1, 3, 5, 7 and 14 days post-injection (DPI), fixed, and processed for histological analysis. NaIO3-induced retinal degeneration was successfully established. At 1 DPI, most RPE cells were degenerated and replaced by a few proliferating RPE cells in the peripheral area. At 3 DPI, the RPE and photoreceptor out segments (POS) underwent a marked morphological change, including POS disruption, accumulation of residual bodies in RPE and POS, and hyperplasia of the RPE cell. At 5 DPI, POS showed a maximum increase in the outer segment debris and the retina showed partial detachment. These abnormal morphological changes gradually decreased by day 7. At 14 DPI, the damaged RPE and POS were partially regenerated from the peripheral to the central region. Expression of PCNA and RPE65 increased from day 3 onward. The damaged RPE showed earlier expression of PCNA and RPE65 than POS. The RPE damaged by NaIO3 rapidly proliferated to put down roots on Bruch’s membrane from the peripheral retina and proliferation and hyperplasia of the RPE had a regular direction of progress. Therefore, NaIO3-induced acute changes in retina mimic the patho-morphologic features of RPE-related diseases.  相似文献   

9.
Age-related macular degeneration (AMD) is a leading cause of legal blindness in the Western world. There are effective treatments for the vascular complications of neo-vascular AMD, but no effective therapies are available for the dry/atrophic form of the disease. A previously described transgenic CFH-gene deficient mouse model, (cfh−/−), shows hallmarks of early AMD. The ocular phenotype has been further analysed to demonstrate amyloid beta (Aβ) rich basement membrane deposits associated with activated complement C3. Cfh−/− mice were treated systemically in both prophylactic and therapeutic regimes with an anti-Aβ monoclonal antibody (mAb), 6F6, to determine the effect on the cfh−/− retinal phenotype. Prophylactic treatment with 6F6 demonstrated a dose dependent reduction in the accumulation of both Aβ and activated C3 deposition. A similar reduction in the retinal endpoints could be seen after therapeutic treatment. Serum Aβ levels after systemic administration of 6F6 show accumulation of Aβ in the periphery suggestive of a peripheral sink mechanism. In summary, anti-Aβ mAb treatment can partially prevent or reverse ocular phenotypes of the cfh−/− mouse. The data support this therapeutic approach in humans potentially modulating two key elements in the pathogenesis of AMD – Aβ and activated, complement C3.  相似文献   

10.
11.
Human retinal macular pigment (MP) is formed by the carotenoids lutein and zeaxanthin (including the isomer meso-zeaxanthin). MP has several functions in improving visual performance and protecting against the damaging effects of light, and MP levels are used as a proxy for macular health–specifically, to predict the likelihood of developing age-related macular degeneration. While the roles of these carotenoids in retinal health have been the object of intense study in recent years, precise mechanistic details of their protective action remain elusive. We have measured the Raman signals originating from MP carotenoids in ex vivo human retinal tissue, in order to assess their structure and conformation. We show that it is possible to distinguish between lutein and zeaxanthin, by their excitation profile (related to their absorption spectra) and the position of their ν1 Raman mode. In addition, analysis of the ν4 Raman band indicates that these carotenoids are present in a specific, constrained conformation in situ, consistent with their binding to specific proteins as postulated in the literature. We discuss how these conclusions relate to the function of these pigments in macular protection. We also address the possibilities for a more accurate, consistent measurement of MP levels by Raman spectroscopy.  相似文献   

12.

Purpose

Little is known about the susceptibility of posterior segment tissues, particularly the human retinal pigment epithelium (hRPE), to Chlamydia trachomatis. The purpose of the study was to investigate the possibility of infecting the hRPE with Chlamydia trachomatis, and to examine the infectivity of different Chlamydia trachomatis clinical isolates for hRPE cells and the hRPE cell response to the infection.

Methods

Cultured hRPE and McCoy cells were inoculated with eight Chlamydia trachomatis (serovar E) clinical isolates at multiplicity of infection (MOI) of 2.0 or 0.3. To detect Chlamydia trachomatis, samples were stained immunohistochemically with anti-major outer membrane protein antibodies at 24h, 48h, and 72h postinoculation (PI). The changes in the expression of signaling molecules and proteins of cytoskeleton and extracellular matrix in hRPE cells were examined immunohistochemically.

Results

All eight clinical isolates demonstrated ability to infect hRPE cells. At equal MOI of 0.3, the infectivity of Chlamydia trachomatis clinical isolates for RPE culture was found to be at least as high as that for McCoy cell culture. At 24h PI, the percentage of inclusion-containing cells varied from 1.5 ± 0.52 to 14.6 ± 3.3% in hRPE cell culture infected at MOI of 2.0 against 0.37 ± 0.34 to 8.9 ± 0.2% in McCoy cell culture infected at MOI of 0.3. Collagen type I, collagen type IV, basic fibroblast growth factor, transforming growth factor-beta and interleukin–8 expression at 48h PI were maximally increased, by 2.1-, 1.3-, 1.5-, 1.5- and 1.6-fold, respectively, in the Chlamydia trachomatis-infected compared with control hRPE cell culture specimens (P < 0.05).

Conclusions

This study, for the first time, proved the possibility of infecting hRPE cultured cells with Chlamydia trachomatis, which leads to proproliferative and proinflammatory changes in the expression of signaling molecules and extracellular matrix components.  相似文献   

13.
Retinal pigment epithelium(RPE) has essential functions, such as nourishing and supporting the neural retina, and is of vital importance in the pathogenesis of age-related retinal degeneration. However, the exact molecular changes of RPE during aging remain poorly understood.Here, we isolated human primary RPE(h RPE) cells from 18 eye donors distributed over a wide age range(10–67 years old). A quantitative proteomic analysis was performed to analyze changes in their intracellular and secreted p...  相似文献   

14.

Background

Age-related macular degeneration (AMD) is the main cause of blindness in the developed world. The etiology of AMD is multifactorial due to the interaction between genetic and environmental factors. IL-8 has a role in inflammation and angiogenesis; we report the genetic characterization of IL-8 allele architecture and evaluate the role of SNPs or haplotypes in the susceptibility to wet AMD, case-control study.

Methods

Case-control study including 721 AMD patients and 660 controls becoming from Italian population. Genotyping was carried out by Real Time-PCR. Differences in the frequencies were estimated by the chi-square test. Direct sequencing was carried out by capillary electrophoresis trough ABI3130xl.

Results

rs2227306 showed a p–value of 4.15*10−5 and an Odds Ratio (OR) for T allele of 1.39 [1.19–1.62]. After these positive results, we sequenced the entire IL-8 regulatory and coding regions of 60 patients and 30 controls stratified for their genotype at rs2227306. We defined two different haplotypes involving rs4073 (A/T), rs2227306 (C/T), rs2227346 (C/T) and rs1126647 (A/T): A-T-T-T (p-value: 2.08*10−9; OR: 1.68 [1.43–1.97]) and T-C-C-A (p-value: 7.07*10−11; OR: 0.60 [0.51–0.70]). To further investigate a potential functional role of associated haplotypes, we performed an expression study on RNA extracted from whole blood of 75 donors to verify a possible direct correlation between haplotype and gene expression, failing to reveal significant differences.

Conclusions

These results suggest a possible secondary role of IL-8 gene in the development of the disease. This paper outlines the importance of association between inflammation and AMD. Moreover IL-8 is a new susceptibility genomic biomarker of AMD.  相似文献   

15.

Background

Age-related macular degeneration (AMD) is the main cause of blindness and the curative options are limited. The objective of this meta-analysis was to determine the association between aspirin use and risk of AMD.

Methods

A comprehensive literature search was performed in PubMed, Embase, Web of Science, and reference lists. A meta-analysis was performed by STATA software.

Results

Ten studies involving 171729 individuals examining the association between aspirin use and risk of AMD were included. Among the included studies, 2 were randomized-controlled trials (RCTs), 4 were case-control studies and 4 were cohort studies. The relative risks (RRs) were pooled using a random-effects model. Relative risks with 95% confidence intervals (CIs) of aspirin use as a risk for AMD. The pooled RR of 10 included studies between the use of aspirin and risk of AMD was 1.09 (95% CI, 0.96–1.24). The same result was detected in early and late stage AMD subgroup analysis. In the subgroup analyses, the pooled RR of RCTs, case-control studies and cohort studies were 0.81 (95% CI, 0.64–1.02), 1.02 (95% CI, 0.92–1.14) and 1.08 (95% CI, 0.91–1.28), respectively.

Conclusions

The use of aspirin was not associated with the risk of AMD.  相似文献   

16.
The eye is a small and enclosed organ which makes it an ideal target for gene therapy. Recently various strategies have been applied to gene therapy in retinopathies using non-viral and viral gene delivery to the retina and retinal pigment epithelium (RPE). Subretinal injection is the best approach to deliver viral vectors directly to RPE cells. Before the clinical trial of a gene therapy, it is inevitable to validate the efficacy of the therapy in animal models of various retinopathies. Thus, subretinal injection in mice becomes a fundamental technique for an ocular gene therapy. In this protocol, we provide the easy and replicable technique for subretinal injection of viral vectors to experimental mice. This technique is modified from the intravitreal injection, which is widely used technique in ophthalmology clinics. The representative results of RPE/choroid/scleral complex flat-mount will help to understand the efficacy of this technique and adjust the volume and titer of viral vectors for the extent of gene transduction.  相似文献   

17.
18.
Major genetic factors for age-related macular degeneration (AMD) have recently been identified as susceptibility risk factors, including variants in the CFH gene and the ARMS2 LOC387715/HTRA1locus. Our purpose was to perform a case-control study in two populations among individuals who did not carry risk variants for CFHY402H and LOC387715 A69S (ARMS2), called “study” individuals, in order to identify new genetic risk factors. Based on a candidate gene approach, we analyzed SNP rs5888 of the SCARB1 gene, coding for SRBI, which is involved in the lipid and lutein pathways. This study was conducted in a French series of 1241 AMD patients and 297 controls, and in a North American series of 1257 patients with advanced AMD and 1732 controls. Among these individuals, we identified 61 French patients, 77 French controls, 85 North American patients and 338 North American controls who did not carry the CFH nor ARMS2 polymorphisms. An association between AMD and the SCARB1 gene was seen among the study subjects. The genotypic distribution of the rs5888 polymorphism was significantly different between cases and controls in the French population (p<0.006). Heterozygosity at the rs5888 SNP increased risk of AMD compared to the CC genotypes in the French study population (odds ratio (OR) = 3.5, CI95%: 1.4–8.9, p<0.01) and after pooling the 2 populations (OR = 2.9, 95% CI: 1.6–5.3, p<0.002). Subgroup analysis in exudative forms of AMD revealed a pooled OR of 3.6 for individuals heterozygous for rs5888 (95% CI: 1.7–7.6, p<0.0015). These results suggest the possible contribution of SCARB1, a new genetic factor in AMD, and implicate a role for cholesterol and antioxidant micronutrient (lutein and vitamin E) metabolism in AMD.  相似文献   

19.
20.
Age-related macular degeneration (AMD) is the leading cause of legal blindness among the elderly population in the industrialized world, affecting about 14 million people in the United States alone. Smoking is a major environmental risk factor for AMD, and hydroquinone is a major component in cigarette smoke. Hydroquinone induces the formation of cell membrane blebs in human retinal pigment epithelium (RPE). Blebs may accumulate and eventually contribute first to sub-RPE deposits and then drusen formation, which is a prominent histopathologic feature in eyes with AMD. As an attempt to better understand the mechanisms involved in early AMD, we sought to investigate the proteomic profile of RPE blebs. Isolated blebs were subjected to SDS-PAGE fractionation, and in-gel trypsin-digested peptides were analyzed by LC-MS/MS that lead to the identification of a total of 314 proteins. Identified proteins were predominantly involved in oxidative phosphorylation, cell junction, focal adhesion, cytoskeleton regulation, and immunogenic processes. Importantly basigin and matrix metalloproteinase-14, key proteins involved in extracellular matrix remodeling, were identified in RPE blebs and shown to be more prevalent in AMD patients. Altogether our findings suggest, for the first time, the potential involvement of RPE blebs in eye disease and shed light on the implication of cell-derived microvesicles in human pathology.Age-related macular degeneration (AMD)1 is one of the most common pathologies in the retina, consisting in a chronic degenerative disorder that constitutes the leading cause of blindness in the elderly, probably affecting 14 million people in the United States. AMD is a multifactorial disease in nature in which age is the predominant risk factor, although there are also environmental factors involved. In this regard, smoking is thought to be a major environmental risk factor as supported by extensive epidemiological evidence (15). AMD develops in two different stages: early AMD (also referred to as dry AMD) and the late stage of AMD known as wet AMD by virtue of the extensive neovascularization taking place in the retina choroid. Although there is a fair understanding of the mechanisms involved in wet AMD, little is known about dry AMD and its transition into the most severe stage of this disorder, i.e. wet AMD (6).Early AMD targets the retinal pigment epithelium (RPE) and the Bruch membrane (BrM) in the retina. The RPE constitutes a cell monolayer that is crucial to maintain a normal photoreceptor function. In fact, RPE participates in the cycling of the visual molecules, provides nutrients to rods and cones, and is responsible for withdrawing waste debris from the outer segments of photoreceptors (7). The early stage of AMD is characterized by initial deregulation of the normal extracellular matrix (ECM) turnover leading to thickening of the BrM, sub-RPE deposit accumulation, and drusen formation (8). As mentioned earlier, cumulative evidence suggests that smoking may constitute a major risk factor for early AMD. In fact, we and others have provided evidence that hydroquinone (HQ), a major component of cigarette smoke, has the ability to deregulate the ECM (912). Aside from cigarette smoke, HQ is a compound of environmental relevance because of its broad presence in plastics, foodstuff, and air pollution (13, 14).Mild injuries inflected to the retina elicit a cellular response in the RPE consisting in pinching off small areas of the plasma membrane, which renders small microvesicles called blebs (15). The reason(s) behind membrane blebbing remains unknown, although it has been postulated to be an attempt to discard damaged cellular constituents by the RPE cell (8). Under prolonged injury, blebs may accumulate between the RPE and the basal lamina underneath this cell monolayer. Based on this concept, a plausible role for blebs in the pathogenesis of dry AMD has been suggested as a likely contributor to build-up of the sub-RPE deposits, which are characteristic of the early stages of this disorder (8). To date, however, RPE bleb composition and potential functions remain largely unexplored.However, membrane bleb or microvesicle production stimulated by a variety of stress has been extensively described in many different cell types (1623). To gain a better understanding of the functional relevance of blebs in general and the pathogenic mechanism(s) involved in early AMD in particular, we sought to investigate the identity of proteins carried by human RPE blebs. Previously microvesicles from lymphocytes have been subjected to analysis leading to the identification of a number of proteins (24). In our study, we show the proteomics characterization of stress-induced blebs in RPE cells from human retina. We report identification of several proteins, some of them potentially involved in matrix metalloproteinase (MMP) activation, membrane lipid raft formation, and immunogenic processes. Interestingly RPE blebs were found to carry basigin (including highly glycosylated species) and MMP-14, which are key proteins regulating the ECM turnover and remodeling. A previous proteomics study also has revealed the presence of basigin in the blebs from malignant lymphocytes (24). In the present study, we intended to gain some insight into the functional characterization of blebs to unravel some of the biological consequences of cell membrane blebbing in disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号