首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Plant science》2005,169(6):1066-1073
Heterotrimeric G proteins are involved in a variety of cellular responses, but relatively little is known about their function and biochemistry in plant pollen. In this paper, we establish the presence of a G protein associated with the plasma membranes of Pinus bungeana pollen tube. A 40 kDa polypeptide is detected and immunolocalized predominantly in pollen tube plasma membranes by polyclonal antisera directed against conserved peptides of mammalian Gα-subunit during pollen tube development. Cholera and pertussis toxins exhibited biphasic actions on tube growth, that is to say, inhibited pollen tube growth and result in rupture of tubes at concentrations less than 400 ng mL−1, whereas stimulated pollen tube growth at concentration over 500 ng mL−1. Fourier transform-infrared (FT-IR) spectra showed that the two toxins at concentrations of 400 ng mL−1 resulted in enhanced synthesis of phenolics and reduced synthesis of cellulose, hemicellulose, and xylan of pollen tube wall, which may account for incidental rupture of pollen tubes at the concentration. These results suggest that the two toxins possibly affect pollen tube growth via downstream pertussis or cholera toxin-sensitive functional proteins, which regulate tube wall biosynthesis than at the Gα-subunit in P. bungeana tube growth.  相似文献   

2.
Kinetics of cellulose hydrolysis with halostable cellulase from a marine Aspergillus niger was analyzed at different salinities. Cellulase activity in 8% NaCl solution was 1.43 folds higher than that in NaCl free solution. Half saturation constant, Km (15.6260 g/L) and the rate constant of deactivation, Kde (0.3369 g/L h) in 8% NaCl solution was lower than that (18.6364 g/L), 0.3754 (g/L h) in NaCl free solution. The maximum initial hydrolysis velocity, Vmax (25.5295 g/L h), in 8% NaCl solution was higher than that in NaCl free solution (25.0153 g/L h). High salinity increased affinity to the cellulase to the substrate and thermostability. Halostable cellulase from a marine Aspergillus niger was valuable for cellulose hydrolysis under high salinity conditions.  相似文献   

3.
We synthesized four types of arginine-based amphipathic nonapeptides, including two homochiral peptides, R-(l-Arg-l-Arg-Aib)3-NH2 (R = 6-FAM-β-Ala: FAM-1; R = Ac: Ac-1) and R-(d-Arg-d-Arg-Aib)3-NH2 (R = 6-FAM-β-Ala: ent-FAM-1; R = Ac: ent-Ac-1); a heterochiral peptide, R-(l-Arg-d-Arg-Aib)3-NH2 (R = 6-FAM-β-Ala: FAM-2; R = Ac: Ac-2); and a racemic mixture of diastereomeric peptides, R-(rac-Arg-rac-Arg-Aib)3-NH2 (R = 6-FAM-β-Ala: FAM-3; R = Ac: Ac-3), and then investigated the relationship between their secondary structures and their ability to pass through cell membranes. Peptides 1 and ent-1 formed stable one-handed α-helical structures and were more effective at penetrating HeLa cells than the non-helical peptides 2 and 3.  相似文献   

4.
 Enzymatic hydrolysis of corncob and ethanol fermentation from cellulosic hydrolysate were investigated. After corncob was pretreated by 1% H2SO4 at 108 °C for 3 h, the cellulosic residue was hydrolyzed by cellulase from Trichoderma reesei ZU-02 and the hydrolysis yield was 67.5%. Poor cellobiase activity in T. reesei cellulase restricted the conversion of cellobiose to glucose, and the accumulation of cellobiose caused severe feedback inhibition to the activities of β-1,4-endoglucanase and β-1,4-exoglucanase in cellulase system. Supplementing cellobiase from Aspergillus niger ZU-07 greatly reduced the inhibitory effect caused by cellobiose, and the hydrolysis yield was improved to 83.9% with enhanced cellobiase activity of 6.5 CBU g−1 substrate. Fed-batch hydrolysis process was started with a batch hydrolysis containing 100 g l−1 substrate, with cellulosic residue added at 6 and 12 h twice to get a final substrate concentration of 200 g l−1. After 60 h of reaction, the reducing sugar concentration reached 116.3 g l−1 with a hydrolysis yield of 79.5%. Further fermentation of cellulosic hydrolysate containing 95.3 g l−1 glucose was performed using Saccharomyces cerevisiae 316, and 45.7 g l−1 ethanol was obtained within 18 h. The research results are meaningful in fuel ethanol production from agricultural residue instead of grain starch.  相似文献   

5.
Synthesis of maltooligosylsucroses by the recombinant amylomaltase from Corynebacterium glutamicum as a N terminal (His)6 chimera is reported. From the analysis of the products, by TLC and HPLC analysis on a Rezex RSO-Oligosaccharide column, the suitable glucosyl donor was found to be raw tapioca starch. The optimal condition was 2.0% (w/v) sucrose, 2.5% (w/v) raw tapioca starch and 9 U/ml of amylomaltase at 30 °C for 48 h, giving an overall 82% yield of maltooligosylsucrose products. After purified by Bio-Gel P-2 size exclusion column chromatography, the main products were determined by MS and NMR analysis to be maltosyl-, maltotriosyl-, maltotretraosyl- and maltopentaosyl-fructosides (G2F, G3F, G4F and G5F, respectively, where G = glucosyl unit and F = fructose) with an α-1,4 linkage between the added glucosyl unit and the sucrose. The low cariogenic property of these maltooligosylsucrose products was confirmed by analyzing the effect on the synthesis of water insoluble glucan, acid fermentation, plaque formation and cell aggregation of Streptococcus mutans when compared to those exerted by sucrose. Moreover, by adding sucrose to maltooligosylsucrose products at ratios of 1:1, 1:2 and 1:4, the inhibitory effects on glucosyltransferase activity of S. mutans by 7, 33 and 50%, respectively, were observed. These results suggest that the obtained maltooligosylsucrose products have an anticariogenic property and could be used to substitute for sucrose in food or related products.  相似文献   

6.
《Process Biochemistry》2014,49(9):1480-1487
Invertase from Candida guilliermondii MpIIIa was purified and biochemically characterized. The purified enzyme (INV3a-N) is a glycoprotein with a carbohydrate composition comprising nearly 74% of its total molecular weight (MW) and specific activity of 82,027 U/mg of protein. The enzyme displayed optimal activity at pH 5.0 and 65 ˚C. The Km and Vmax values for INV3a-N were 0.104 mM and 10.9 μmol/min/mg of protein, respectively, using sucrose as the substrate. The enzyme retained 50% and 20% of its maximal activity after 168 h and 30 days, respectively, at 50 ˚C. INV3a-N was fully active at sucrose concentrations of 400 mM and the activity of the enzyme dropped slowly at higher substrate concentration. Interestingly, the deglycosylated form of INV3a-N (INV3a-D) displayed 76–92% lower thermostability than that of INV3a-N at all temperatures assayed (50–70 ˚C), and was inhibited at sucrose concentrations of 200 mM. Findings here indicate glycosylation plays an important role, not only in the thermostability of INV3a-N, but also in the inhibition of the enzyme by sucrose. Since the enzyme is active at high sucrose concentrations, INV3a-N may be considered a suitable candidate for numerous industrial applications involving substrates with high sugar content or for improvement of ethanol production from cane molasses.  相似文献   

7.
Protoplasts were isolated enzymatically from the carrageenophyte red alga Grateloupia turuturu (Halymeniales, Rhodophyta) that occurs along the coast of the French Channel in Normandy. Effects of the main factors on the protoplast yield were identified to improve the isolation protocol. The optimal enzyme composition for cell wall digestion and protoplast viability consisted of 2% cellulase Onozuka R-10, 0.5% macerozyme R-10, 2% crude extract from viscera of Haliotis tuberculata, 0.8 M mannitol, 20 mM sodium citrate, 0.3% bovine serum albumin at 25°C, and 4-h incubation period. The protoplasts were approximately 5–15 μm in diameter, liberated mainly from the surface cell layers. Maximum yield was 1.5 × 107 protoplasts g-1 fresh tissue. The protoplasts underwent initial division after 14 days with a high density level of 1 × 106 cells mL-1 in culture medium and developed into microthalli of a line of two to six cells.  相似文献   

8.
A transferase was isolated, purified and characterised from Aspergillus aculeatus. The enzyme exhibited a pH and temperature optima of 6.0 and 60 °C, respectively and under such conditions remained stable with no decrease in activity after 5 h. The enzyme was purified 7.1 fold with a yield of 22.3% and specific activity of 486.1 U mg?1 after dialysis, concentration with polyethyleneglycol (30%) and DEAE-Sephacel chromatography. It was monomeric with a molecular mass of 85 kDa and Km and Vmax values of 272.3 mM and 166.7 μmol min?1 ml?1. The influence of pH, temperature, reaction time, and enzyme and sucrose concentration on the formation of short-chain fructooligosaccharides (FOS) was examined by statistical response surface methodology (RSM). The enzyme showed both transfructosylation and hydrolytic activity with the transfructosylation ratio increasing to 88% at a sucrose concentration of 600 mg ml?1. Sucrose concentration (400 mg ml?1) temperature (60 °C), and pH (5.6) favoured the synthesis of high levels of GF3 and GF4. Incubation time had a critical effect on the yield of FOS as the major products were GF2 after 4 h and GF4 after 8 h. A prolonged incubation of 16 h resulted in the conversion of GF4 into GF2 as a result of self hydrolase activity.  相似文献   

9.
Agrobacterium sp. was studied for the production of curdlan by conventional one-factor-at-a-time technique and response surface methodology. Factors such as initial pH, urea concentration, sucrose concentration having the greatest influence on the curdlan production were identified. By using response surface methodology (RSM), the curdlan production by Agrobacterium sp. was increased significantly by 109%, from 2.4 g/L to 5.02 g/L when the strain was cultivated in the optimal medium developed by RSM as compared to conventional one-factor-at-a-time technique. The curdlan production rate of 0.84 g/(L h) was obtained when Agrobacterium sp. was cultivated in the optimal medium developed by RSM, which was the highest curdlan production rate reported to date. The infrared (IR) and NMR spectra, the thermogram of DSC and pattern of X-ray diffraction for the curdlan of the present study were almost identical to those of the authentic curdlan sample (from Alcaligenes faecalis; Sigma). The purified curdlan was a linear polysaccharide composed of exclusively β-(1,3)-glucosidic linkages with the molecular weight of 160,000 Da by GPC. The crystalline melting point (Tm), glass transition temperature (Tg) and X-ray diffraction of the sample indicated low crystallinity in the structure.  相似文献   

10.
The elm leaf beetle, Xanthogaleruca luteola, is a serious pest of elm trees in urban areas. Partial biochemical characterization of pectinases and cellulases was conducted using the larval digestive system of the pest. Midgut extracts from larvae showed optimum activity for pectinase and cellulase against pectin and carboxymethyl cellulose, respectively, under acidic conditions (pH 6). Pectinases and cellulases were respectively more stable under acidic conditions (pH 4–7) and slightly acidic conditions (pH 5–7) than under highly acidic and alkaline conditions. However, the enzymes were more stable in slightly acidic conditions (pH 6) when incubation time was increased. Maximum activity for the pectinases and cellulases incubated at different temperatures was observed at 45 and 50 °C, respectively. Mg2+ remarkably increased pectinase activity, and cellulase activity increased significantly in the presence of Ca2+ and Mg2+. Sodium dodecyl sulfate significantly decreased pectinase and cellulase activity. The Michaelis–Menten constant (KM) and the maximal reaction velocity (Vmax) values for pectinase were 2 mg·mL? 1 and 0.017 mmol·min? 1·mg? 1 protein toward pectin, respectively. Zymogram analyses revealed the presence of one and five bands of pectinase and cellulase activity, respectively, in the larval midgut extract.  相似文献   

11.
Sorbitol, one of the main by-products of growth on high sucrose concentrations, is catalyzed by glucose-fructose oxidoreductase (GFOR, EC 1.1.99.28) in Zymomonas mobilis, which decreases the ethanol yield. In this study, an unmarked gfo mutant from Z. mobilis ZM4 was constructed using a site-specific FLP recombinase, and growth and ethanol production were evaluated with or without the addition of sorbitol to the media. The inactivation of gfo had contrasting effects in different substrates, especially at high concentrations. The maximum specific growth rate (μm) and theoretical ethanol yield value (Ym) increased from 0.065 h−1 and 60.56% to 0.094 h−1 and 83.87% in 342 g/L sucrose, respectively. Conversely, in 200 g/L glucose, gfo inactivation decreased μm and Ym from 0.15 h−1 and 89.85% to 0.10 h−1 and 67.59%, respectively, and prolonged the lag period from 16 h to 40 h. The addition of sorbitol slightly accelerated growth and sucrose hydrolysis by the gfo mutant in 342 g/L sucrose; however, addition of sorbitol restored the μm and Ym of the gfo mutant in 200 g/L glucose to 0.14 h−1 and 82.50%, respectively. Inactivation of gfo had a small effect on fructose utilization, and a positive one on mixture of glucose and fructose similar to that on sucrose. These results provide further understanding of the osmoregulation mechanisms in Z. mobilis and may help to exploit the biotechnological applications of this industrially important bacterium.  相似文献   

12.
Oil palm empty fruit bunch (OPEFB) was pretreated with 2% (v/v) HNO3 and degraded by Aspergillus niger EFB1 crude cellulase. Through 2 Level Factorial Design (2LFD), it was found that OPEFB concentration, temperature, incubation time, concentration of Tween 80 and agitation speed have significant effect in reducing sugar production. A standard Response Surface Methodology (RSM) design known as Central Composite Design (CCD) was used to optimize the enzymatic degradation condition of OPEFB in rotary drum bioreactor. Reducing sugar level of 1.183 g/L was obtained with the following optimized degradation conditions: 1.95% (w/v) OPEFB, 0.5% (v/v) Tween 80, 55 °C, 87.5 rpm in the incubation period of 3 days and 16 h. The optimal degradation condition improved reducing sugar production by 1.07 fold compared to that before optimization in shake flasks culture. The optimization strategy of enzymatic degradation of OPEFB inside rotary drum bioreactor led to increase in glucose, xylose, arabinose, galactose and mannose production by 3, 2.5, 1.64, 19.37 and 22.52 fold, respectively. The improvement in reducing sugar and polyoses production were comparable with the reduction in OPEFB cellulose and hemicellulose content by 89.32% and 48.17% respectively after enzymatic degradation in optimized condition.  相似文献   

13.
Temperature and pH play an important role in the stability of phycocyanin, a natural blue colorant. Systematic investigations showed the maximum stability of phycocyanin was in the pH range 5.5–6.0. Incubation at temperatures between 47 and 64 °C caused the concentration (CR) and half-life of phycocyanin in solution to decrease rapidly. The CR value remained at approximately 50% after incubating for 30 min at 59 °C. After heating at 60 °C for 15 min, the CR value of phycocyanin at pH 7.0 was maintained at around 62–70% when 20–40% glucose or sucrose was added, and the half-life increased from 19 min to 30–44 min. 2.5% sodium chloride was found to be an effective preservative for phycocyanin at pH 7.0 as a CR value of 76% was maintained and the half-life of 67 min was increased.  相似文献   

14.
Olive varieties ‘Koroneiki’, ‘Kalamata’, ‘Mastoidis’ and ‘Amigdalolia’ were employed in two experiments for 3 years to assess the effect of temperature on olive pollen germination and tube growth in relation to relative humidity and genotype. Pollen samples were subjected to pre-incubation at 10, 20, 30 or 40 °C in combination with decreased air relative humidity – 80, 40, 30 or 20%, respectively – for 24 h to simulate temperature stress that is observed during pollen dispersal; and subsequently in vitro cultured. In the second experiment, pollen was exposed at 15, 20, 25 and 30 °C for 24 h in vitro to evaluate pollen response in conditions of water and nutrients availability and to determine the optimum pollen germination and tube growth temperatures for each cultivar. The highest pre-incubation temperature treatment (40 °C) prevented pollen germination in ‘Koroneiki’ and ‘Mastoidis’, with the less affected varieties (‘Amigdalolia’ and ‘Kalamata’) having average germination percentages of only 7.6 and 2%, respectively. Pre-incubation at 30 °C had a negative impact on pollen germination in ‘Koroneiki’ (?65%), ‘Kalamata’ (?20%) and ‘Amigdalolia’ (?72%) compared to the control (20 °C). Pollen pre-incubation at 40 °C decreased significantly the pollen tube length in ‘Kalamata’ (?50%) and ‘Amigdalolia’ (?52%). In the second experiment, in vitro pollen germination increased after incubation at 25 °C for ‘Koroneiki’ (+6%), ‘Mastoidis’ (+52%), ‘Kalamata’ (+10%) and ‘Amigdalolia’ (+10%) compared to the control (20 °C). At 30 °C germination percentages for ‘Mastoidis’, ‘Kalamata’ and ‘Amigdalolia’ were 8, 6 and 14% higher, respectively, compared to the control (20 °C). Pollen tube length also increased with incubation temperature for all of the studied cultivars. Based on the cumulative stress response index (CSRI) that was calculated for high temperature stress the varieties were classified: ‘Mastoidis’ and ‘Kalamata’ as tolerant and ‘Koroneiki’ and ‘Amigdalolia’ as intermediate at 30 °C while all studied cultivars were sensitive at 40 °C. The observed strong genotype-differentiated response in high and low temperature stress could be exploited by plant breeders towards producing new tolerant olive varieties.  相似文献   

15.
Zymomonas mobilis genes encoding INVA and INVB were expressed in Pichia pastoris, under the control of the strong AOX1 promoter, and the recombinant enzymes were named INVAAOX1 and INVBAOX1. The expression levels of INVAAOX1 (1660 U/mg) and INVBAOX1 (1993 U/mg) in P. pastoris were 9- and 7-fold higher than those observed for the native INVA and INVB proteins in Z. mobilis. INVAAOX1 and INVBAOX1 displayed a 2- to 3-fold higher substrate affinity, and a 2- to 200-fold higher catalytic efficiency (kcat/KM) than that observed for native INVA and INVB from Z. mobilis. Positive Schiff staining of INVAAOX1 and INVBAOX1 suggested a glycoprotein nature of both invertases. After deglycosylation of these enzymes, denoted D-INVAAOX1 and D-INVBAOX1, they exhibited a 1.3- and 3-fold lower catalytic efficiency (107 and 164 s−1 mM−1, respectively), and a 1.3- to 5-fold lower thermal stability than the glycosylated forms at temperatures of 35–45 °C. After deglycosylation no effect was observed in optimal pH, being of 5.5 for INVAAOX1, INVBAOX1, D-INVAAOX1 and D-INVBAOX1. The invertase activity of both enzymes increased in 80% (INVAAOX1) and 20% (INVBAOX1) in the presence of Mn2+ at 1 mM and 5 mM, respectively. INVAAOX1 and INVBAOX1 were highly active at sucrose concentrations of up to 400 and 300 mM, respectively; however, the tolerance to sucrose decreased to 300 mM for D-INVAAOX1. Our findings suggest that glycosylation of INVAAOX1 and INVBAOX1 plays an important role in their thermal stability, catalytic efficiency, and tolerance to sucrose. In conclusion, the expression of INVA and INVB from Z. mobilis in P. pastoris yields new catalysts with improved catalytic properties, making them suitable candidates for a number of industrial applications or for the improvement of ethanol production from cane molasses.  相似文献   

16.
《Process Biochemistry》2007,42(4):518-526
An alkaline lipase from Burkholderia multivorans was produced within 15 h of growth in a 14 L bioreactor. An overall 12-fold enhanced production (58 U mL−1 and 36 U mg−1 protein) was achieved after medium optimization following the “one-variable-at-a-time” and the statistical approaches. The optimal composition of the lipase production medium was determined to be (% w/v or v/v): KH2PO4 0.1; K2HPO4 0.3; NH4Cl 0.5; MgSO4·7H2O 0.01; yeast extract 0.36; glucose 0.1; olive oil 3.0; CaCl2 0.4 mM; pH 7.0; inoculum density 3% (v/v) and incubation time 36 h in shake flasks. Lipase production was maximally influenced by olive oil/oleic acid as the inducer and yeast extract as the additive nitrogen. Plackett–Burman screening suggested catabolite repression by glucose. Amongst the divalent cations, Ca2+ was a positive signal while Mg2+ was a negative signal for lipase production. RSM predicted that incubation time, inoculum density and oil were required at their higher levels (36 h, 3% (v/v) and 3% (v/v), respectively) while glucose and yeast extract were required at their minimal levels for maximum lipase production in shake flasks. The production conditions were validated in a 14 L bioreactor where the incubation time was reduced to 15 h.  相似文献   

17.
Levan producing bacteria was isolated from rhizosphere soil. The molecular identification of this isolate was conducted using 16S rRNA, which resulted in a sequenced region of 1298 base pairs. The sequence alignment in the gene bank indicated that this isolate has a high percentage of similarity (99%) to the retrieved consensus sequence of Brachybacterium phenoliresistens strain phenol-A. The produced levan was characterized using TLC, FTIR, 1H NMR and 13C NMR spectroscopy techniques. The effects of nutritional and physical factors on this isolate’s levan production were investigated. The results demonstrated that the optimal sources for carbon and casein during levan production were sucrose and casein, yielding 7.88 g/land 8.12 g/l of levan, respectively. The highest levan yield (7.97 g/l) was obtained at a sucrose concentration of 300 g/l. At an initial pH of 7.8, this bacterium yielded their highest levan production of 7.88 g/l. The optimal incubation period was 72 h with a yield of 8.58 g/l, the optimal temperature was 30 °C and resulted in 7.87 g/l, and the highest levan production yield was obtained at 150 rpm and yielded 8.12 g/l.  相似文献   

18.
To achieve sucrose-metabolizing capability, different sucrose utilization operons have been introduced into E. coli that cannot utilize sucrose. However, these engineered strains still suffer from low growth rates and low sucrose uptake rates. In this study, cell surface display system was adopted in engineered E. coli AFP111 for succinic acid production from sucrose and molasses directly. Invertase (CscA) from E. coli W was successfully anchored to outer membrane by fusion with OmpC anchoring motif, and the displayed CscA showed high extracellular activity. Compared with the sucrose permease system, the cell surface display system consumed less ATP during sucrose metabolism. When less ATP was consumed by AFP111/pTrcC-cscA, the succinic acid productivity from sucrose was 23% higher than that by AFP111/pCR2.1-cscBKA that having the sucrose permease system. As a result, 41 g L−1 and 36.3 g L−1 succinic acid were produced by AFP111/pTrcC-cscA from sucrose and sugarcane molasses respectively at 34 h in 3-L fermentor during dual-phase fermentation. In addition, 79 g L−1 succinic acid was accumulated with recovered AFP111/pTrcC-cscA cells at the end of dual-phase fermentation in 3-L fermentor, and the overall yield was 1.19 mol mol−1 hexose.  相似文献   

19.
The removal of Remazol Blue and Reactive Black B by the immobilized thermophilic cyanobacterial strain Phormidium sp. was investigated under thermophilic conditions in a batch system, in order to determine the optimal conditions required for the highest dye removal. In the experiments, performed at pH 8.5, with different initial dye concentrations between 9.1 mg l−1 and 82.1 mg l−1 and at 45 °C, calcium alginate immobilized Phormidium sp. showed high dye decolorization, with maximum uptake yields ranging from 50% to 88% at all dye concentrations tested. When the effects of high dye concentrations on dye removal were investigated, the highest uptake yield in the beads was 50.3% for 82.1 mg l−1 Remazol Blue and 60.0% for 79.5 mg l−1 Reactive Black B. The highest color removal was detected at 45 °C and 50 °C incubation temperatures for all dye concentrations. As the temperature decreased, the removal yield of immobilized Phormidium sp. also decreased. At about 75 mg l−1 initial dye concentrations, the highest specific dye uptake measured was 41.29–41.17 mg g−1 for Remazol Blue and 47.69–43.82 mg g−1 for Reactive Black B at 45 °C and 50 °C incubation temperatures, respectively, after 8 days incubation.  相似文献   

20.
A two-stage hybrid fractionation process was investigated to produce cellulosic ethanol and furfural from corn stover. In the first stage, zinc chloride (ZnCl2) was used to selectively solubilize hemicellulose. During the second stage, the remaining treated solids were converted into ethanol using commercial cellulase and Saccharomyces cerevisiae or recombinant Escherichia coli, KO11. This hybrid fractionation process recovered 93.8% of glucan, 89.7% of xylan, 71.1% of arabinan, and 74.9% of lignin under optimal reaction conditions (1st stage: 5% acidified ZnCl2, 7.5 ml/min, 150 °C (10 min) and 170 °C (10 min); 2nd stage: simultaneous saccharification and fermentation (SSF) using S. cerevisiae). The furfural yield from the hemicellulose hydrolysates was 58%. The SSF of the treated solids resulted in 69–98% of the theoretical maximum ethanol yields based on the glucan content in the treated solids. After fermentation, the solid residues contained primarily lignin. Based on the total lignin in untreated corn stover, the lignin recovery yield was 74.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号