首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
A viviparous lizard, Eremias multiocellata, was used to investigate the possible sexual and ontogenetic effects on selected body temperature, thermal tolerance range and the thermal dependence of locomotor performance. We show that adults are sexually dimorphic and males have larger bodies and heads than females. Adults selected higher body temperatures (34.5 vs. 32.4 °C) and could tolerate a broader range of body temperatures (8.1–46.8 vs. 9.1–43.1 °C) than juveniles. The sprint speed and maximum sprint distance increased with temperature from 21 °C to 33 °C, but decreased at 36 °C and 39 °C in both juveniles and adults. Adults ran faster and longer than juveniles at each tested temperature. Adult locomotor performance was not correlated with snout–vent length (SVL) or sex, and sprint speed was positively correlated with hindlimb length. Juvenile locomotor performance was positively correlated with both SVL and hindlimb length. The ontogenetic variation in selected body temperature, thermal tolerance and locomotor performance in E. multiocellata suggests that the effects of morphology on temperature selection and locomotor performance vary at different ontogenetic stages.  相似文献   

2.
The purpose of this study was to investigate the effects of whole body cryotherapy (WBC) on a range of thermoregulatory measures. We also sought to examine the influence of sex and body composition. A convenience sample of 18 healthy participants (10 males and 8 females) (27±6 yr) volunteered for this study. Temperature (core, tympanic, skin and mean body), heart rate, blood pressure, and thermal comfort and sensation were recorded pre- and post- (immediately and every 5 min until 35 min post) exposure to a single bout of WBC (30 s at −60 °C, 150 s at 110 °C). Anthropometric data (height, weight, body surface area, body mass index, fat mass and fat free mass) were also recorded. No significant differences in temperature (core, tympanic, skin and mean body), heart rate, blood pressure, or thermal comfort / sensation were observed between male and females at baseline. Immediately post WBC mean body (male:31.9±0.8 °C; female:31.0±0.9 °C; ∆ mean body temperature:0.9±0.1 °C; P≤0.05, d=0.64) and mean skin (male:22.1±2.2 °C; female:19.6±2.8 °C; ∆ mean skin temperature:−2.5±0.6 °C; d=0.99, P≤0.05) temperature was significantly different between sexes. Sex differences were also observed in regional skin temperature (male thigh, 20.8±1.1 °C; female thigh, 16.7±1.1 °C, ∆ mean thigh skin temperature:−4.1 °C; d=3.72; male calf, 20.5±1.1 °C; female calf, 18.2±1 °C, ∆ mean calf skin temperature:−2.3±0.1 °C; d=3.61; male arm, 21.7±1 °C; female arm, 19±0.4 °C, ∆ mean arm skin temperature: −2.7±0.3 °C; d=3.54; P≤0.05). Mean arterial pressure was significantly different over time (P≤0.001) and between sexes (male 0 mins:94±10 mmHg; female 0 mins:85±7 mmHg; male 35 mins:88±7 mmHg; female 35 mins:80±6 mmHg; P≤0.05). Combined data set indicated a strong negative relationship between skin temperature and body fat percentage 35 min’ post WBC (r=−0.749, P≤0.001) and for core temperature and body mass index in males only (r=0.726, P≤0.05) immediately after WBC. There were no significant differences between sexes in any other variables (heart rate, tympanic and perceptual variables). We observed sex differences in mean skin and mean body temperature following exposure to whole body cryotherapy. In an attempt to optimise treatment, these differences should be taken into account if whole body cryotherapy is prescribed.  相似文献   

3.
Effect of rearing temperature on growth and thermal tolerance of Schizothorax (Racoma) kozlovi Nikolsky larvae and juveniles was investigated. The fish (start at 12 d post hatch) were reared for nearly 6 months at five constant temperatures of 10, 14, 18, 22 and 26 °C. Then juvenile fish being acclimated at three temperatures of 14, 18 and 22 °C were chosen to determine their critical thermal maximum (CTMax) and lethal thermal maximum (LTMax) by using the dynamic method. Growth rate of S. kozlovi larvae and juveniles was significantly influenced by temperature and fish size, exhibiting an increase with increased rearing temperature, but a decline with increased fish size. A significant ontogenetic variation in the optimal temperatures for maximum growth were estimated to be 24.7 °C and 20.6 °C for larvae and juveniles of S. kozlovi, respectively. The results also demonstrated that acclimation temperature had marked effects on their CTMax and LTMax, which ranged from 32.86 °C to 34.54 °C and from 33.79 °C to 34.80 °C, respectively. It is suggested that rearing temperature must never rise above 32 °C for its successful aquaculture. Significant temperature effects on the growth rate and thermal tolerance both exhibit a plasticity pattern. Determination of critical heat tolerance and optima temperature for maximum growth of S. kozlovi is of ecological significance in the conservation and aquaculture of this species.  相似文献   

4.
Boran (n=15) and Nguni (n=15) cows were used in a study to determine the effect of breed, age and coat colour on the concentration of heat shock protein 90 (HSP90AB1), physiological rectal and skin temperature, and markers of health. The cows were exposed to summer heat stress and Boran cows had higher significant (P<0.05) skin temperature (35.1±0.42 °C) as compared to the Nguni cows (36.0±0.38 °C). Nguni cows had higher body thermal gradients than the Boran cows. Boran cows had thicker skin (P<0.05) and longer hairs (24.3±2.26 mm) than their Nguni counterparts (20.2±2.00 mm). The HSP90AB1 concentration was increased in Boran cows, although breed had no significant (P>0.05) influence. Significantly (P<0.05) high urea and total cholesterol was recorded in Boran cows. Coat colour had a significant (P<0.05) effect on the weight and rectal temperature of the study animals. Coat colour and age had no significant effect (P>0.05) on the concentration of HSP90AB1, although older cows (≥9 years) had higher concentrations (5.4±1.29 ng/ml). Age had a significant (P<0.05) effect on packed cell volume, neutrophil/lymphocyte, urea, total protein and gamma-glutamyl transferase whereas cows with ≥9 years had more concentrations than young ones. Age significantly (P<0.05) influenced hair length, skin temperature and the thermal gradients. Breed was positively correlated (P<0.001) to coat colour, age, body condition score, weight and temperature humidity index while negatively correlated to urea and total cholesterol. It was concluded that Nguni cows were more adaptable to hot environments than the Boran cows as the latter were unable to balance thermal load between their bodies and the environment.  相似文献   

5.
The thermal environment can induce substantial variation in important life-history traits. Experimental manipulation of the thermal environment can help researchers determine the contribution of this factor to phenotypic variation in life-history traits. During the reproductive season, we kept female northern grass lizards, Takydromus septentrionalis (Lacertidae), in three temperature-controlled rooms (25, 28 and 32 °C) to measure the effect of the maternal thermal environment on reproductive traits. Maternal thermal environment remarkably affected reproductive frequency and thereby seasonal reproductive output, but had little effect on reproductive traits per clutch or hatchling traits. Females kept at 32 °C produced more clutches and thus had shorter clutch intervals than females from 28 to 25 °C. Clutch size, clutch mass, relative clutch mass, egg size and hatchling traits did not vary among the three treatments. The eggs produced by the females were incubated at 27 °C and the traits of hatchlings were measured. The result that egg (offspring) size was independent of maternal thermal environments is consistent with the prediction of the optimal egg size (offspring) theory. The eggs produced by low temperature females (28 and 25 °C) took longer time to complete their post-oviposition development than did eggs produced by high temperature females (32 °C). This suggests that the eggs from low temperatures might have been laid when the embryos were at relatively early stages. Therefore, maternal thermal environment prior to oviposition could affect post-oviposition development in T. septentrionalis.  相似文献   

6.
The effects of rearing temperature on hepatic glucokinase (GK), glucose-6-phosphatase (G6Pase) and Glucose-6-phosphate dehydrogenase (G6PD) activity and gene expression were studied in GIFT (genetically improved farmed tilapia) tilapia fed a high carbohydrate diet containing 28% crude protein, 5% crude lipid and 40% wheat starch. Triplicate groups of fish (11.28 g initial body weight) were fed the diet for 45 days at 22 °C, 28 °C or 34 °C. At the end of the trial, final body weight of juvenile at 28 °C (59.12 g) was higher than that of the fish reared at 22 °C (27.13 g) and 34 °C (43.17 g). Feed intake, feed efficiency and protein efficiency ratio were also better at 28 °C. Liver glycogen levels were higher at 28 °C, while plasma glucose levels were higher in the 22 °C group. Significant (P<0.05) effects of water temperature on enzymes activities and gene expression were observed. Hepatic GK activity and mRNA level were higher at 28 °C than at 34 °C. Higher G6Pase and G6PD activity and gene expression were observed at 22 °C. Overall, the data show that juveniles reared at 28 °C exhibited enhanced liver glycolytic capacity. In contrast, hepatic gluconeogenesis and lipogenesis were increased by low temperature (22 °C).  相似文献   

7.
The present study aims to understand the influence of two thermal extremes (15 °C and 35 °C) as thermal stressors on the selected line of developmental variants (slow and fast developers) in Propylea dissecta and to compare it with the response at the optimal temperature (27 °C). The ratio of slow and fast developers within an egg batch differed with thermal extremes irrespective of F1 and F15 generations. Adult body mass got depressed after selection for control slow developers at 15 °C while it got enhanced for selected fast developers at 35 °C. More selected slow developers were found at low temperature and more selected fast developers at high temperature. Selection probably favours the enhancement of immature survival and emergence ratio which was found to be highest for selected fast developers at 35 °C and selected slow developers at 15 °C. Population level disparity on thermal confliction was observed in ladybird post selection over several generations. Therefore, we put forward that exposure thermal extremes over a long duration, causes an adaptive differentiation in thermal responses of slow and fast developers.  相似文献   

8.
Heat balance can be difficult for young and/or small animals in polar regions because environmental conditions in combination with small body size or physiological immaturity can increase heat loss. We investigated how thermoregulatory patterns change with ontogeny in 5 age classes of harp seal (Pagophilus groenlandicus) from birth to post-molt to further understand the timing of thermoregulatory development in relation to their potential vulnerability to ongoing fluctuations in the extent and stability of Arctic pack ice. We measured changes in the amount, conductivity, and resistance of the seal pups׳ insulative layers (blubber and fur), the potential for endogenous heat-generation by shivering (muscle enzyme activity), and nonshivering thermogenesis (NST; brown adipose tissue (BAT) uncoupling protein 1 (UCP1) expression and mitochondrial density). There was no significant difference in blubber conductivity among age classes, though the amount of blubber insulation significantly increased from birth to weaning. Pelage conductivity was low (0.12±0.01 W m−1 °C−1) except in 9-day old pups (0.40±0.08 W m−1 °C−1); the significantly higher conductivity may signal the beginning of the molt, and this age group may be the most vulnerable to early water entry. Citrate synthase activity significantly increased (49.68±3.26 to 75.08±3.52 μmol min−1 g wet weight−1) in the muscle; however it is unlikely that increasing a single enzyme greatly impacts heat generation. BAT of younger pups contained UCP1, though expression and mitochondrial density quickly declined, and the ability of pups to produce heat via NST was lost by weaning. While total thermal resistance did not differ, neonatal and early nursing animals gained the majority of their thermal resistance from lanugo (82.5±0.03%); however, lanugo is not insulative when wet, and NST may be important to maintain euthermia and dry the coat if early immersion in water occurs. By late nursing, blubber seems sufficient as insulation (75.87±0.01% of resistance after 4 weeks), but high conductivity of fur may be responsible for retention of UCP1 expression. Weaned animals rely on blubber insulation, and no longer need NST, as wetted fur is no longer a threat to euthermia.  相似文献   

9.
Thermal stress in hot semi-arid environment is a major limitation of sheep production in tropical and sub-tropical climatic condition. The animals tend to maintain homeostasis through physiological adjustments in a hot environment (maximum temperature reaches up to 47.5 °C). Therefore, the present study was carried out to assess the effect of thermal exposure on physiological adaptability and seminal attributes of rams under semi-arid environment. The experiment was conducted for eight weeks involving sixteen Malpura crossbred rams (GMM: Garole X Malpura X Malpura). The rams were divided equally into two groups, designated as G1 and G2, respectively. The rams in G1 (Control) group were kept in a sheep shed under naturally prevailing environment without artificial manipulation of ambient temperature (Temperature 30.48±0.38 °C; Relative Humidity 28.59±1.15%). The rams of G2 group were exposed to different temperature at different hours of the day (38 °C at 1000–1100 h; 40 °C at 1100–1200 h; 42 °C at 12:00–1300 h; 43 °C at 1300–1400 h; 44 °C at 1400–1500 h and 42 °C at 1500–1600 h) in a climatic chamber for thermal exposure. Physiological responses, blood biochemical profile, blood endocrine profile, sexual behavior and seminal attributes were measured for both the groups. Thermal exposure significantly (P<0.05) increased the water intake; respiration rate, rectal temperature and skin temperature at afternoon in rams. Exposure of rams to thermal stress (G2) significantly (P<0.05) increased cortisol level and decreased tri-ido-thyronine level. The latency period after the first ejaculation, decreased significantly (P<0.05) in G2. The percentage of rapid motile sperm, linearity and average path velocity of sperm were also altered significantly (P<0.05) in thermal exposed rams as compared to control. However, comparable feed intake, body weight, and major blood biochemical parameters, as well as acceptable semen quality attributes of all the rams indicated that the Fec B gene introgressed Malpura cross rams adapted to the thermal exposure under semi-arid tropical climate.  相似文献   

10.
The timing in which ice is ingested may be important for optimizing its success. However, the effects of differences in the timing of ice ingestion has not been studied in resting participants. Therefore, the purpose of this study was to investigate the effects of differences in the timing of ice ingestion on rectal temperature (Tre) and rating of perceptual sensation in a hot environment. Seven males ingested 1.25 g kg−1 of crushed ice (ICE1.25: 0.5 °C) or cold water (CON: 4 °C) every 5 min for 30 min, or were given 7.5 g kgBM−1 of crushed ice (ICE7.5) to consume for 30 min in a hot environment (35 °C, 30% relative humidity). The participants then remained at rest for 1 h. As physiological indices, Tre, body mass and urine specific gravity were measured. Rating of thermal sensation was measured at 5-min intervals throughout the experiment. ICE1.25 continued to decrease Tre until approximately 50 min, and resulted in a greater reduction in Tre (−0.56±0.20 °C) than ICE7.5 (−0.41±0.14 °C). Tre was reduced from 40 to 75 min by ICE1.25, which is a significant reduction in comparison to ICE7.5 (p<.05). Mean RTS with ICE1.25 at 50–65 min was significantly lower than that with ICE7.5 (p<.05). These results suggest that pre-cooling with intermittent ice ingestion is a more effective strategy both for lowering the Tre and for the rating of thermal sensation.  相似文献   

11.
Increasing incubation temperatures, caused by global climate change or thermal effluent from industrial processes, may influence embryonic development of fish. This study investigates the cumulative effects of increased incubation temperature and repeated heat shocks on developing Lake Whitefish (Coregonus clupeaformis) embryos. We studied the effects of three constant incubation temperatures (2 °C, 5 °C or 8 °C water) and weekly, 1-h heat shocks (+3 °C) on hatching time, survival and morphology of embryos, as these endpoints may be particularly susceptible to temperature changes. The constant temperatures represent the predicted magnitude of elevated water temperatures from climate change and industrial thermal plumes. Time to the pre-hatch stage decreased as constant incubation temperature increased (148 d at 2 °C, 92 d at 5 °C, 50 d at 8 °C), but weekly heat shocks did not affect time to hatch. Mean survival rates and embryo morphometrics were compared at specific developmental time-points (blastopore, eyed, fin flutter and pre-hatch) across all treatments. Constant incubation temperatures or +3 °C heat-shock exposures did not significantly alter cumulative survival percentage (~50% cumulative survival to pre-hatch stage). Constant warm incubation temperatures did result in differences in morphology in pre-hatch stage embryos. 8 °C and 5 °C embryos were significantly smaller and had larger yolks than 2 °C embryos, but heat-shocked embryos did not differ from their respective constant temperature treatment groups. Elevated incubation temperatures may adversely alter Lake Whitefish embryo size at hatch, but weekly 1-h heat shocks did not affect size or survival at hatch. These results suggest that intermittent bouts of warm water effluent (e.g., variable industrial emissions) are less likely to negatively affect Lake Whitefish embryonic development than warmer constant incubation temperatures that may occur due to climate change.  相似文献   

12.
《Journal of Asia》2014,17(4):803-810
The effect of constant temperatures on development and survival of Lista haraldusalis (Walker) (Lepidoptera: Pyralidae), a newly reported insect species used to produce insect tea in Guizhou province (China), was studied in laboratory conditions at seven temperatures (19 °C, 22 °C, 25 °C, 28 °C, 31 °C, 34 °C, and 37 °C) on Platycarya strobilacea. Increasing the temperature from 19 °C to 31 °C led to a significant decrease in the developmental time from egg to adult emergence, and then the total developmental time increased at 34 °C. Egg incubation was the stage where L. haraldusalis experienced the highest mortality at all temperatures. The survival of L. haraldusalis was significantly higher at 25 °C and 28 °C, whereas none of the eggs hatched at 37 °C. Common and Ikemoto linear models were used to describe the relationship between the temperature and the developmental rate for each immature stage of L. haraldusalis. The estimated values of the lower temperature threshold and thermal constant of the total immature stages using Common and Ikemoto linear models were 11.34 °C and 11.20 °C, and 939.85 and 950.41 degree-days, respectively. Seven nonlinear models were used to fit the experimental data to estimate the developmental rate of L. haraldusalis. Based on the biological significance for model evaluation, Ikemoto linear, Logan-6, and SSI were the best models that fitted each immature stage of L. haraldusalis and they were used to estimate the temperature thresholds. These thermal requirements and temperature thresholds are crucial for facilitating the development of factory-based mass rearing of L. haraldusalis.  相似文献   

13.
The aim of this study was to compare two Portuguese (Alentejana and Mertolenga) and two exotic (Frisian and Limousine) cattle breeds in terms of the relationship between the increase in ambient temperature and the responses of the evaporative heat loss pathways and the effects on homeothermy. In the experiment, six heifers of the Alentejana, Frisian, and Mertolenga breeds and four heifers of the Limousine breed were used. The animals were placed in four temperature levels, the first one under thermoneutral conditions and the other ones with increase levels of thermal stress. When submitted to severe heat stress, the Frisian developed high thermal tachypnea (125 mov/min) and moderate sweating rates (117 g m−2 h−1), which did not prevent an increase in the rectal temperature (from 38.4 °C to 40.0 °C). Moderate increases in rectal temperature were observed in the Alentejana (from 38.8 °C to 39.4 °C) and Limousine (from 38.6 °C to 39.4 °C), especially in the period of highest heat stress. The Limousine showed moderate levels of tachypnea (101 mov/min) while showing the lowest sweating rates. The Alentejana showed significant increases in sweating rate (156 g m−2 h−1) that played a major role in homeothermy. The Mertolenga showed a superior stability of body temperature, even in the period of highest heat stress (from 38.5 °C to 39.1 °C). Uncommonly, the maintenance of homeothermy during moderate heat stress was achieved primarily by intense tachypnea (122 mov/min). The sweating rate remained abnormally low under conditions of moderate heat stress, rising significantly (110 g m−2 h−1) without evidence of stabilization, only when tendency for heat storage occurred. This unusual response of the evaporative heat loss pathways infers a different thermoregulatory strategy, suggesting a different adaptation to semi-arid environment and strong association with water metabolism.  相似文献   

14.
We investigated the metabolic rate of the Tasmanian marsupial, the eastern barred bandicoot, Perameles gunnii, before and after acclimation to cold temperature (5 °C) for a 2-week period. Although body temperature did not change significantly, we observed a significant increase in the metabolic rate (MR) when measured at 5 °C before and after cold acclimation. Nor-epinephrine had a significant effect on the metabolic rate when measured in the thermoneutral zone and when measured at 5 °C after cold acclimation; however, there was no significant increase when measured at 5 °C before cold acclimation. Nor-epinephrine also resulted in a small but significant decrease in body temperature. Electromyography (EMG) measurements were obtained before and after cold acclimation during shivering. Shivering decreased after two weeks of cold exposure indicating that the bandicoot had acclimated to that temperature. Nor-epinephrine (NE) significantly reduced shivering before but not after cold acclimation. The metabolic rate and shivering decreased in the adult eastern barred bandicoot after acclimation at 5 °C and nor-epinephrine had similar effects to cold acclimation. Our findings of minor changes in thermal conductance suggest that insulation differences were unlikely explanations for our results. These experiments indicate that this marsupial is able to increase its heat production by non-shivering thermogenesis.  相似文献   

15.
Using intra-abdominal miniature data loggers, we measured core body temperature in female springbok (Antidorcas marsupialis) of three colour morphs (black, normal and white), free-living in the Karoo, South Africa, for one year. During winter, white springbok displayed lower daily minimum body temperatures (37.4 ± 0.5 °C), than both black (38.1 ± 0.3 °C) and normal (38.0 ± 0.6 °C) springbok. During spring, black springbok displayed higher daily maximum body temperatures (40.7 ± 0.1 °C) than both white (40.2 ± 0.2 °C) and normal (40.2 ± 0.2 °C) springbok. These high maximum body temperatures were associated with larger daily amplitudes of nychthemeral rhythm of body temperature (2.0 ± 0.2 °C), than that of white (1.6 ± 0.1 °C) and normal (1.7 ± 0.2 °C) springbok. Biophysical properties of sample springbok pelts were consistent with these patterns, as the black springbok pelt showed lower reflectance in the visible spectral range, and higher heat load from simulated solar radiation, than did the pelts of the other two springbok. Black springbok had lower diurnal activity in winter, consistent with them having to forage less because their metabolic cost of homeothermy was lower, but were disadvantaged in hot periods. White springbok, by contrast, were more protected from solar heat load, but potentially less able to meet the energy cost of homeothermy in winter. Thus energy considerations may underlie the rarity of the springbok colour morphs.  相似文献   

16.
Studies examining the effects of incubation temperature fluctuation on the phenotype of hatchling reptiles have shown species variation. To examine whether incubation temperature fluctuation has a key role in influencing the phenotype of hatchling Chinese skinks (Plestiodon chinensis), we incubated eggs produced by 20 females under five thermal regimes (treatments). Eggs in three treatments were incubated in three incubators, one set constant at 27 °C and two ramp-programmed at 27±3 °C and 27±5 °C on a cycle of 12 h (+) and 12 h (−). The remaining eggs were incubated in two chambers: one inside a room where temperatures varied from 23.0 to 31.1 °C, with a mean of 27.0 °C; the other outside the room where temperatures varied from 20.2 to 35.3 °C, with a mean of 26.1 °C. We found that: (1) for eggs at a given embryonic stage at ovipositon, the mean rather than the variance of incubation temperatures determined the length of incubation; (2) most (egg mass, embryonic stage at oviposition, incubation length and all examined hatchling traits except tail length and locomotor performance) of the examined variables were affected by clutch; and (3) body mass was the only hatchling trait that differed among the five treatments, but the differences were tiny. These findings suggest that incubation temperature fluctuation has no direct role in influencing incubation length and hatchling phenotype in P. chinensis.  相似文献   

17.
A 30 day feeding trial was conducted using a freshwater fish, Labeo rohita (rohu), to determine their thermal tolerance, oxygen consumption and optimum temperature for growth. Four hundred and sixteen L. rohita fry (10 days old, 0.385±0.003 g) were equally distributed between four treatments (26, 31, 33 and 36 °C) each with four replicates for 30 days. Highest body weight gain and lowest feed conversion ratio (FCR) was recorded between 31 and 33 °C. The highest specific growth rate was recorded at 31 °C followed by 33 and 26 °C and the lowest was at 36 °C. Thermal tolerance and oxygen consumption studies were carried out after completion of growth study to determine tolerance level and metabolic activity at four different acclimation temperatures. Oxygen consumption rate increased significantly with increasing acclimation temperature. Preferred temperature decided from relationship between acclimation temperature and Q10 values were between 33 and 36 °C, which gives a better understanding of optimum temperature for growth of L. rohita. Critical thermal maxima (CTMax) and critical thermal minima (CTMin) were 42.33±0.07, 44.81±0.07, 45.35±0.06, 45.60±0.03 and 12.00±0.08, 12.46±0.04, 13.80±0.10, 14.43±0.06, respectively, and increased significantly with increasing acclimation temperatures (26, 31, 33 and 36 °C). Survival (%) was similar in all groups indicating that temperature range of 26–36 °C is not fatal to L. rohita fry. The optimum temperature range for growth was 31–33 °C and for Q10 values was 33–36 °C.  相似文献   

18.
Changing climates are predicted to alter the distribution of thermal niches. Small ectotherms such as ants may be particularly vulnerable to heat injury and death. We quantified the critical thermal maxima of 92 ant colonies representing 14 common temperate ant species. The mean CTmax for all measured ants was 47.8 °C (±0.27; range=40.2–51.2 °C), and within-colony variation was lower than among-colony variation. Critical thermal maxima differed among species and were negatively correlated with body size. Results of this study illustrate the importance of accounting for mass, among and within colony variation, and interspecific differences in diel activity patterns, which are often neglected in studies of ant thermal physiology.  相似文献   

19.
This study evaluated decay and termite resistance of thermally compressed pine wood panels under pressure at either 5 or 7 MPa and either 120 or 150 °C for 1 h. Wood specimens from the panels were exposed to laboratory decay resistance tests by using the wood degrading fungi, Gloeophyllum trabeum and Trametes versicolor. The thermal compression process caused increases in density and decreases in thickness of the panels; however, laboratory decay resistance tests revealed that thermally compressed wood was not resistant against the wood degrading fungi tested. More interesting results were found in laboratory termite resistance tests by using the Eastern subterranean termites, Reticulitermes flavipes. As pressure and temperature applied to the specimens increased to 7 MPa and 120 °C, mass losses in the specimens gradually decreased in comparison with control specimens. However, the specimens compressed at 7 MPa and 150 °C showed higher mass losses when compared to the specimens compressed at 7 MPa and 120 °C. The lowest water absorption and swelling rates were seen in the specimens exposed to a pressure of 7 MPa at 120 °C. The thermal compression process at 7 MPa and 150 °C resulted in the highest water absorption and swelling in the specimens.  相似文献   

20.
Maintaining a constant body temperature is critical to the proper functioning of metabolic reactions. Behavioural thermoregulation strategies may minimize the cost of energetic balance when an animal is outside its thermoneutral zone. We investigated whether ambient temperature and relative air humidity influence the use of behavioural strategies by a group of Prince Bernhard's titi monkeys (Callicebus bernhardi) living in a forest fragment. We monitored a social group composed of four individuals (an adult couple and two juveniles) for 1010 h from March to September 2015. We used the instantaneous scan sampling method to record the body posture, the microhabitat, and the occurrence of huddling with group mate(s) when animals were resting. We recorded ambient temperature and relative humidity in the shade every 10 min with a data logger hanging at a height of approximately 5 m. Daytime temperature ranged from 18.5 °C to 38.5 °C and relative humidity ranged from 21% to 97%. Titi monkeys avoided sunny places at higher temperatures, especially above 31 °C. Minimum night temperature did not influence the choice of resting microhabitats during the first hour after sunrise. Sitting was the major resting posture during the day (62%). Titi monkeys increased the use of heat-dissipating postures at ambient temperatures >27 °C. In addition, an increase in relative humidity increased the use of these postures at 26 °C, 27 °C, 29 °C and 33 °C, but caused a decrease at 24 °C. On the other hand, the ambient temperature did not influence the occurrence of huddling. We conclude that microhabitat choice and postural behaviour are important for titi monkeys to prevent overheating and suggest that these behavioural adjustments might also be critical for other tropical arboreal mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号