首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flaxseed gum solutions were extracted and dried by different methods: ethanol precipitation, freeze drying, 105 °C oven drying, 80 °C oven drying, spray drying, and vacuum drying. The effects of these drying methods on the rheological properties of flaxseed gum were investigated in present study. Ethanol precipitation increased the apparent viscosity of flaxseed gum solution, while all the other methods decreased the apparent viscosity. Most of the drying methods slightly increased the activation energy, except ethanol precipitation. In frequency sweep test, all the drying methods reduced the G′ and G″ values. In creep–recovery tests, the data were modeled by Berger’s model. The E2 and η1 values were reduced by all of the drying methods in this study. Some relationships were found between the parameters in the Power Law model of the frequency sweep test and the parameters in Berger’s model.  相似文献   

2.
We examined the effects of different processing methods on the nutritional composition and antioxidant activity of mealworms. After processing with nine methods, we calculated the contents of protein, fat, ash, carbohydrate, minerals (P, Ca, K, Fe, Na), vitamin B group (B1, B2, B3), moisture, and calories. When processed by freeze drying among freeze drying, hot air drying, oven broiling, roasting, pan frying, deep frying, boiling, steaming, and microwaving, the contents of protein, some minerals, and vitamins were the highest. The content of total minerals was lowest after deep frying, and those of vitamin B1 and B3 were the lowest after microwaving. Antioxidant activity was then evaluated using DPPH and ABTS radical scavenging assays. DPPH assays showed that microwaving, freeze drying, deep frying, steaming, boiling, and oven broiling of mealworms yielded scavenging activities of 20.9–29.0% at 2,000 μg/mL, which was similar to the activity level (22.7–33.2%) of 40–60 μM tocopherol. ABTS assays confirmed that only freeze‐dried mealworms at 2,000 μg/mL exhibited higher activity than 10 μM tocopherol. Interestingly, similar trends were found for antioxidant activity levels and total phenolic contents in mealworms.  相似文献   

3.
Many methods have been proposed to extract and quantify algal pigments. Comparative studies have found that pigment extraction efficiency varies among solvent and mechanical disruption protocols due to differential cellular resistance, thereby, leading to potential misinterpretation of pigment data. When the type or resistance of algae are unknown, a method is required that efficiently extract pigments from all taxonomic groups. The objective of this study was to develop a simple and efficient one stage periphyton pigment extraction protocol by comparing the extractability of four solvents (acetone, methanol, methanol/acetone, and methanol/acetone/N,N‐dimethylformamide), the effects of grinding, and the effects of freeze‐drying. The best overall extraction was obtained using freeze‐dried samples extracted with methanol/acetone/DMF/water (MAD). Eighty‐six percent more chlorophyll was extracted when the sample was freeze‐dried relative to fresh/frozen samples extracted with 90% acetone. Freeze‐drying greatly improved the extraction of both polar and non‐polar (lipophilic/hydrophobic) pigments while MAD increased the extractability of polar pigments and improved peak resolution of all pigments. Chemotaxonomic assessment differed between samples that were fresh/frozen or freeze‐dried before extraction. The relative abundance of cyanobacteria was greater for freeze‐dried material compared with fresh/frozen due to the improved extractability of cyanobacterial pigments. Based on the results of this study, the traditional approach of 90% acetone as a solvent is not recommended for periphyton samples containing cyanobacteria or when the composition of the mat is unknown. The combination of freeze‐drying and MAD was sufficient for the extraction of pigments from a periphyton mat containing filamentous cyanobacteria, green algae, and diatoms.  相似文献   

4.
The effects of different conditioning treatments (fresh, freezing, freeze‐drying, oven‐drying and greenhouse‐drying) on the total phenolic content (TPC) and antioxidant activities of two brown algae, Sargassum muticum and Bifurcaria bifurcata, were investigated and compared. Phenolic compounds were extracted in a methanol/water (50:50) solution, and TPC was measured by the colorimetric Folin‐Ciocalteu assay. Antioxidant activity was assessed by the DPPH (2, 2‐diphenyl‐1‐picrylhydrazyl) radical scavenging assay and the β‐carotene bleaching method. The dried seaweeds showed lower phenolic contents and lower antioxidant capacities than the fresh and frozen ones, which suggests that the phenolic content and antioxidant activities are decreased by the drying treatments, especially, oven‐ and greenhouse‐drying. Relationships between TPC, antioxidant properties and conditioning treatments are discussed.  相似文献   

5.
Preservation of Bacteria by Circulating-Gas Freeze Drying   总被引:2,自引:1,他引:1       下载免费PDF全文
Water-washed Serratia marcescens and Escherichia coli were freeze dried in a circulating-gas system at atmospheric pressure. This convective procedure resulted in a substantially higher survival of organisms than could be obtained by the vacuum method of freeze drying. There was little or no decrease in cell viability during convective drying when the residual moisture content was 15% or higher. Below this level, survival declined with decreasing moisture content. A detailed comparison of the convective and vacuum methods indicated that the advantage gained by freeze drying bacteria in air accrues in the early period of sublimation, at which time cells were found to be sensitive to vacuum drying but insensitive to air drying. An explanation for this difference is proposed, based upon the kinetics of water removal in the two processes. In brief, it is suggested that the convective method permits samples to be dried more uniformly; and regional over-drying, which may be deleterious even if transient, is thus avoided in achieving the optimal level of moisture.  相似文献   

6.
Dredged sediments may contain considerable amounts of metallic and/or organic pollutants. The risk of metal transfer from sediment deposits to soils can be evaluated using chemical extraction procedures; however, the temperatures at which samples are dried before metal extraction vary widely from one study to another. This led us to investigate the impact of drying temperature on the extractability of metals from dredged sediments. First, water-, CaCl 2 - and DTPA-extractions were performed on 12 dredged sediments collected in France, with analyses being carried out on both raw (i.e. not dried) samples and on samples dried at 105°C. Higher extractable Cd and Zn contents were recorded for the samples dried at 105°C than for the raw samples. In order to assess the effect of drying temperature on metal extractability, we selected one sediment and carried out CaCl 2 -, HNO 3 - and DTPA-extractions on the raw sample and on samples dried at three different temperatures. In general, increasing the drying temperature led to an increase in the extractability of Cr and Cu for all three extraction methods. The CaCl 2 -extractability of Ni and Zn decreased as drying temperature increased, except for the sample dried at 105°C. The HNO 3 - and DTPA-extractabilities of these two metals were highest when the sediments were air-dried and then decreased with increasing drying temperature. Similar behavior was observed for Cd, except in the case of HNO 3 -extractability. As the aim of chemical analysis using selective extraction is to measure the bio-available fractions of metals in soils and sediments, we suggest that extraction should be carried out on raw samples in order to simulate plant growth conditions.  相似文献   

7.
Natural extracts are frequently adopted as a valuable alternative to antibiotics in intensive animal farming. Their diverse bioactive constituents such as phytosterols, glucosinolates, carotenoids and polyphenols have shown antioxidant, anti-inflammatory and antibacterial effects. Tannins are the largest class of polyphenol compounds of plant extracts, which can be classified into two hydrolysable or condensed subgroups. Poultry and swine nutrition are the most important sectors in which tannins have been used, firstly adopting tannin-rich feedstuffs and more recently, using tannin extracts from different plants. Several commercial products are available containing tannins extracted from the European chestnut tree (Castanea sativa Mill.) and the American quebracho (Schinopsis spp.). Tannins extracted from these plants have been applied on intensive swine farms due to their ability to improve animal performance and health. These positive and prominent effects are frequently associated with the antinutritional effects in reducing feed palatability, digestibility and protein utilization of feed. Some criticisms and contrasting results regarding pig performance and intestinal health have been reported. This paper provides an overview of the effects of chestnut and quebracho tannins on growth performance and intestinal health of pigs in order to clarify the appropriate dosage and response in the various physiological stages.  相似文献   

8.
A capacitive sensor was proposed and tested for the monitoring and control of a freeze drying process of a vaccine against the Newcastle disease of birds. The residual moisture of the vaccine was measured by the thermogravimetric method. The vaccine activity was determined by titration in chicken embryos. It was shown that, at the stages of freezing and primary drying, a capacitive sensor measured the fraction of unfrozen liquid phase in a material and allowed one to control the sublimation stage of drying in an optimal way. This prevented the foaming of the material and shortened the total drying time approximately twice. The control range at the sublimation stage of drying expanded up to −70°C. It was found at the final stage of drying that the signal of a capacitive sensor passed through a maximum value. We supposed that this maximum corresponds to the minimum of intramolecular mobility of biological macromolecules and hence to the optimal residual moisture of the material, which ensures long-term preservation of its activity. We also suppose that using the capacitive sensor at the final stage of drying allows one to more precisely detect the time when the residual moisture of dried material reaches the optimal value.KEY WORDS: biological materials, capacitive sensor, freeze drying, optimal residual moistureAt present, most biological materials containing live viruses or bacteria are exposed to lyophilization (i.e., drying from the frozen state); this ensures long-term preservation of their activity. Typically, this process consists of preliminary freezing and subsequent freeze drying. The latter process, in turn, consists of two stages: primary drying and secondary drying. During primary drying or sublimation, frozen water is removed from a biological product under vacuum and at temperatures below 0°C. At this stage, the drying rate is limited because of the foaming of a product that occurs due to its high temperature and the excess amount of liquid phase in it. The secondary drying, or final stage, begins after the end of the sublimation stage and occurs at temperatures above 0°C. The goal of the secondary drying is to bring the residual moisture of a biological product to an optimum level, which provides long-term preservation of its activity. Note that the moisture content both above and below the optimum value reduces the effective life of biological materials (1,2)To increase the shelf life of biological products, the following should be investigated: (1) the influence of the composition of the dried biological product and the residual moisture on the change in its activity over the time (3); (2) it is needed to optimize the sublimation drying process for different types of biological products (4). For the investigation of the of the state of water in the dried biologic drugs and the influence of the humidity of the biological on the change in their activity during shelf life, different physical methods are used such as neutron scattering (5), nuclear magnetic resonance (NMR) (6,7), Raman spectroscopy (8), infrared spectroscopy, differential scanning calorimetry, thermal activity monitor (9), and gravimetric sorption analysis (10). The investigations using these methods allow to find an optimum composition of a protective medium for biologics and to determine its optimal residual moisture.At all stages of the freeze drying, the parameters of the material and the parameters of the drying process (temperature of a material, the shelf temperature, the condenser temperature, the pressure in the sublimation chamber, etc.) are also monitored. According to these data, the mode of the process is selected to conduct him for the minimum time and get the best product quality (11). Usually during the drying process, the temperature is measured in several vials with biologic located on different shelves. The sharp increase of the temperature indicates the end of primary drying and the beginning of the secondary drying. The finish of the sublimation stage is revealed by a sharp decrease of the partial pressure of water vapor in the sublimation chamber (12,13). Note that the partial pressure of water vapor in the sublimation chamber does not characterize the state of the biological product to be dried and it is an indirect parameter. For monitoring and controlling the process of freeze drying, it is important to use the own properties of biological materials. In (14), a resistivity sensor placed in a frozen biological material was proposed to control the primary stage of freeze drying. A disadvantage of this method is that one cannot establish an unambiguous relationship between the amount of liquid phase in the frozen material and the value of resistivity: the resistance of the sensor depends not only on the amount of liquid phase but also on the concentration of dissolved salts. Another disadvantage of the resistivity sensor is that, when the temperature decreases, the resistivity of the material sharply increases to values that are difficult to measure, which makes impossible the control of the sublimation stage with this sensor.In (15,16), the interesting methods for determining the moisture of biological materials during secondary drying were proposed. These methods are based on the measurement of the partial pressure of water vapors in the sublimation chamber by NIR spectroscopy or Raman spectroscopy. Note that this method is indirect and requires laborious calibration to establish a correspondence between the current moisture of the biological material in vials and the pressure of water vapor in the sublimation chamber.It should be noted that one has to carry out a series of long-term experiments to find the optimal residual moisture of a biological product. These experiments result in the lifetimes of biological samples with various residual moistures. As the optimal residual moisture of a biological product, one takes the value that provides the longest term preservation of its activity.However, finding the optimal conditions of freeze drying has traditionally been a process of trial and error and required several experimental runs (17). Note also that the freeze drying process is time-consuming and labor intensive.A promising method for the investigation of the properties of biological materials is dielcometry (18,19). This method is relatively simple and very informative since it gives information about the structure of biological macromolecules and the state and role of water in the biological material, etc. This method was used in (2022) for monitoring biological materials at the primary stage of freeze drying. In (20), authors had found an anomalous low-frequency dispersion of the dielectric permittivity in the biological under study and explain this phenomenon by the proton transfer among water molecules, connected by hydrogen bonds The dielectric relaxation time turned out to be sensitive to the loss of moisture content in the product, and the authors suggested to use of this phenomenon to determine the end point of the freeze drying process. The authors mounted the electrodes of the capacitive sensor on the outer surface of vials with the material to be dried. This approach allows monitoring the sublimation rate and determining the end of the primary stage of freeze drying. Unfortunately, the sensitivity of the capacitive sensor of this design is not enough for the reliable monitoring of the stage of secondary drying.In this paper, a new design of a capacitive sensor and measurement technique are proposed that enable monitoring all stages of the drying process: the freezing stage, the sublimation stage, and the final stage. During freezing and the sublimation stages, the sensor monitors the amount of liquid phase in the frozen material. This allows an optimal control during the whole sublimation stage which prevents the foaming of the material and significantly reduces the total drying time. The sensor also fixes the end of the sublimation stage and the beginning of the final stage of drying. At this stage, the high sensitivity of the measuring system enables one to discover that there is a certain time interval when the signal of the capacitive sensor passes through a maximum. We believe that this maximum corresponds to the minimum of the molecular mobility of biological macromolecules and the optimal residual moisture of the material to be dried.  相似文献   

9.
Aims: The survival rate of freeze‐dried cultures is not enough information for technological applications of micro‐organisms. There could be serious metabolic/structural damage in the survivors, leading to a delay time that can jeopardize the design of a rapid biochemical oxygen demand (BOD) metabolic‐based bioassay. Therefore, we will study the metabolic activity (as ferricyanide reduction activity) and the survival rate (as colony‐forming units, CFU) of different Klebsiella pneumoniae freeze‐dried cultures looking for stable metabolic conditions after 35 days of storage. Method and Results: Here, we tried several simple freeze‐drying processes of Kl. pneumoniae. Electrochemical measurements of ferrocyanide and survival rates obtained with the different freeze‐dried cultures were used to choose the best freeze‐drying process that leads to a rapid metabolic‐based bioassay. Conclusions: The use of milk plus monosodium glutamate was the best choice to obtain a Kl. pneumoniae freeze‐dried culture with metabolic stable conditions after storage at ?20°C without the need of vacuum storage and ready to use after 20 min of rehydration. We also demonstrate that the viability and the metabolic activity are not always directly correlated. Significance and Impact of the Study: This study shows that the use of this Kl. pneumoniae freeze‐dried culture is appropriate for the design of a rapid BOD bioassay.  相似文献   

10.
Humic acid in the live alga Pilayellalittoralis was isolated as an aqueous gel by a standard sequential extraction method augmented with removal of alginic acid. Portions of the aqueous gel were (1) vacuum oven dried at 40 °C, (2) freeze freeze dried after cooling in liquid N2, and (3) dried with supercritical fluid CO2 after substitution of water in the gel with acetone. This paper compares the analytical and spectral properties of the products with compost derived HA and reports significant differences in their surface areas, packing densities, water retention, solute sorption and metal binding properties. The results are discussed in terms of different product morphologies determined by scanning electron microscopy. The aerogel obtained by supercritical fluid CO2 drying of an HA gel from Pilayella has the highest surface area (188 m2 g-1) reported for a humic acid. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Neptunia oleracea is a plant consumed as vegetable and used as a traditional herb to treat several ailments. This study evaluated metabolite variations among N. oleracea leaf and stem subjected to air drying (AD), freeze drying (FD) and oven drying (OD) using proton nuclear magnetic resonance (1H NMR) based metabolomics. The correlation was also studied for the metabolite content with total phenolic content (TPC), DPPH free radical scavenging and α-glucosidase inhibitory activities. A total of 18 metabolites were identified from N. oleracea extracts, including 10 primary metabolites, 5 flavonoids and 3 phenolic acids using NMR. Ultra-high performance liquid chromatography tandem mass spectrometry analysis (UHPLC-MS/MS) confirmed the presence of the secondary metabolites and revealed the flavonoid derivatives present. All the identified phenolics are first reported from this plant. Multivariate data analysis (MVDA) showed strong correlation between the metabolites with the antioxidant and α-glucosidase inhibitory activities of FD N. oleracea leaves. The compounds suggested to be responsible for the high activity of FD leaves include vitexin-2-O-rhamnoside, catechin, caffeic acid, gallic acid and derivatives of quercetin, kaempferol and myricetin. This study demonstrates that FD N. oleracea leaves are a potential natural source for antioxidant and α-glucosidase inhibitors.  相似文献   

12.
The ability of live cells (LC), freeze dried cells (FDC) and oven dried cells (ODC) of the yeast Rhodotorula glutinis to remove lead from aqueous solution has been studied. Discernible differences were found between the biosorption properties of LC and the other two types of cell preparation. The LC preparation exhibited an uptake level of about 12 mg g−1 in a batch contactor with a biomass dosage of 2 g l−1 and an initial lead concentration of 100 mg l−1. This compared with, respectively, about 26 and 30 mg g−1 for the FDC and ODC biosorbents under the same experimental conditions. It is seen that the level of lead uptake by the two latter biosorbents was increased to, respectively, 2.2- and 2.5-fold of the level observed for the LC preparation. The superior performance of the FDC and ODC biosorbents in the lead binding process was attributed to the presence of additional binding sites on their cell wall surfaces as indicated by potentiometric titration data. These binding sites were ascribed to carboxylic and phosphoric groups, which are the primary sites of divalent metal complexation. Modeling of the titration data revealed that subjecting R. glutinis biomass to freeze drying or oven drying increased its proton binding site concentration by a factor of 3. It appears that the two simple physical treatments were able to compromise the R. glutinis cell wall structure in such a way as to make sites normally inaccessible to become active in proton and lead binding.  相似文献   

13.
Agaricus blazei is a mushroom that belongs to the Brazilian biodiversity and is considered as an important producer of bioactive compounds beneficial to human health. Studies have demonstrated that these compounds present immuno-modulatory, antioxidant and antitumor properties. In order to compare the most used method for fungal polysaccharide drying, lyophilization with other industrial-scale methods, the aim of this work was to submit A. blazei LPB 03 polysaccharide extracts to vaucum, spray and freeze drying, and evaluate the maintenance of its antitumoral effects in vitro. Exopolysaccharides produced by A. blazei LPB 03 on submerged fermentation were extracted with ethanol and submitted to drying processes. The efficiency represents the water content that was removed during the drying process. The resultant dried products showed water content around 3% and water activity less than 0.380, preventing therefore the growth of microorganisms and reactions of chemical degradation. Exopolysaccharide extracts dried by vacuum and spray dryer did not showed any significant cytotoxic effect on cell viability of Wistar mice macrophages. Content of total sugars and protein decrease after drying, nevertheless, 20 mg/ml of exopolysaccharides dried by spray dryer reached 33% of inhibition rate over Ehrlich tumor cells in vitro.  相似文献   

14.
影响生物制品冻干粉针剂水分的探讨   总被引:3,自引:0,他引:3  
探讨生物制品冻干粉针剂样品放置一时间后残余水分增高的原因。进行了水分测定,真空度检测,二甲硅油和丁基橡胶药用瓶塞干燥失重的检测。冻干后每只丁基橡胶药用瓶塞平均含水分0.00224g。结果表明丁基橡胶药用瓶塞灭苗,干燥和冻干过程中去除水分不彻底是引起样品中水分升高的直接原因。  相似文献   

15.
This article examines the applicability of near‐infrared spectroscopy (NIRS) to evaluate the virus state in a freeze‐dried live, attenuated vaccine formulation. Therefore, this formulation was freeze‐dried using different virus volumes and after applying different pre‐freeze‐drying virus treatments (resulting in different virus states): (i) as used in the commercial formulation; (ii) without antigen (placebo); (iii) concentrated via a centrifugal filter device; and (iv) stressed by 96 h exposure to room temperature. Each freeze‐dried product was measured directly after freeze‐drying with NIR spectroscopy and the spectra were analyzed using principal component analysis (PCA). Herewith, two NIR spectral regions were evaluated: (i) the 7300–4000 cm?1 region containing the amide A/II band which might reflect information on the coated proteins of freeze‐dried live, attenuated viruses; and (ii) the C–H vibration overtone regions (10,000–7500 and 6340–5500 cm?1) which might supply information on the lipid layer surrounding the freeze‐dried live, attenuated viruses. The different pre‐freeze‐drying treated live, attenuated virus formulations (different virus states and virus volumes) resulted in different clusters in the scores plots resulting from the PCA of the collected NIR spectra. Secondly, partial least squares discriminant analysis models (PLS‐DA) were developed and evaluated, allowing classification of the freeze‐dried formulations according to virus pretreatment. The results of this study suggest the applicability of NIR spectroscopy for evaluating live, attenuated vaccine formulations with respect to their virus pretreatment and virus volume. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1573–1586, 2013  相似文献   

16.
Tannins, polyphenolic compounds found in plants, are known to complex with proteins of feed and rumen bacteria. This group of substances has the potential to reduce methane production either with or without negative effects on digestibility and microbial yield. In the first step of this study, 10 tannin-rich extracts from chestnut, mimosa, myrabolan, quebracho, sumach, tara, valonea, oak, cocoa and grape seed, and four rapeseed tannin monomers (pelargonidin, catechin, cyanidin and sinapinic acid) were used in a series of in vitro trials using the Hohenheim gas test, with grass silage as substrate. The objective was to screen the potential of various tannin-rich extracts to reduce methane production without a significant effect on total gas production (GP). Supplementation with pelargonidin and cyanidin did not reduce methane production; however, catechin and sinapinic acid reduced methane production without altering GP. All tannin-rich extracts, except for tara extract, significantly reduced methane production by 8% to 28% without altering GP. On the basis of these results, five tannin-rich extracts were selected and further investigated in a second step using a Rusitec system. Each tannin-rich extract (1.5 g) was supplemented to grass silage (15 g). In this experiment, nutrient degradation, microbial protein synthesis and volatile fatty acid production were used as additional response criteria. Chestnut extract caused the greatest reduction in methane production followed by valonea, grape seed and sumach, whereas myrabolan extract did not reduce methane production. Whereas chestnut extract reduced acetate production by 19%, supplementation with grape seed or myrabolan extract increased acetate production. However, degradation of fibre fractions was reduced in all tannin treatments. Degradation of dry matter and organic matter was also reduced by tannin supplementation, and no differences were found between the tannin-rich extracts. CP degradation and ammonia-N accumulation in the Rusitec were reduced by tannin treatment. The amount and efficiency of microbial protein synthesis were not significantly affected by tannin supplementation. The results of this study indicated that some tannin-rich extracts are able to reduce methane production without altering microbial protein synthesis. We hypothesized that chestnut and valonea extract have the greatest potential to reduce methane production without negative side effects.  相似文献   

17.
This article examines the applicability of Fourier Transform Infrared (FTIR) spectroscopy to detect the applied virus medium volume (i.e., during sample filling), to evaluate the virus state and to distinguish between different vaccine doses in a freeze dried live, attenuated vaccine formulation. Therefore, different formulations were freeze dried after preparing them with different virus medium volumes (i.e., 30, 100, and 400 µl) or after applying different pre‐freeze‐drying sample treatments (resulting in different virus states); i.e., (i) as done for the commercial formulation; (ii) samples without virus medium (placebo); (iii) samples with virus medium but free from antigen; (iv) concentrated samples obtained via a centrifugal filter device; and (v) samples stressed by 96h exposure to room temperature; or by using different doses (placebo, 25‐dose vials, 50‐dose‐vials and 125‐dose vials). Each freeze‐dried product was measured directly after freeze‐drying with FTIR spectroscopy. The collected spectra were analyzed using principal component analysis (PCA) and evaluated at three spectral regions, which might provide information on the coated proteins of freeze dried live, attenuated viruses: (i) 1700–1600 cm?1 (amide I band), 1600–1500 cm?1 (amide II band) and 1200–1350 cm?1 (amide III band). The latter spectral band does not overlap with water signals and is hence not influenced by residual moisture in the samples. It was proven that FTIR could distinguish between the freeze‐dried samples prepared using different virus medium volumes, containing different doses and using different pre‐freeze‐drying sample treatments in the amide III region. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1107–1118, 2015  相似文献   

18.
Tannins belong to plant secondary metabolites exhibiting a wide range of biological activity. One of the important aspects of the realization of the biological effects of tannins is the interaction with lipids of cell membranes. In this work we studied the interaction of two hydrolysable tannins: 1,2,3,4,6-penta-O-galloyl-β-d-glucose (PGG) and 1,2-di-O-galloyl-4,6-valoneoyl-β-d-glucose (T1) which had the same number of both aromatic rings (5) and hydroxyl groups (15) but differing in flexibility due to the presence of valoneoyl group in the T1 molecule with DMPC (dimyristoylphosphatidylcholine) lipid nano-vesicles (liposomes). Tannins-liposomes interactions were investigated using fluorescence spectroscopy, differential scanning calorimetry, laser Doppler velocimetry, dynamic light scattering and Fourier Transform Infra-Red spectroscopy. It was shown that more flexible PGG molecules stronger decreased the microviscosity of the liposomal membranes and increased the values of negative zeta potential in comparison with the more rigid T1. Both compounds diminished the phase transition temperature of DMPC membranes, interacted with liposomes via PO groups of head of phospholipids and their hydrophobic regions. These tannins neutralized DPPH free radicals with the stoichiometry of the reaction equal 1:1.The effects of the studied compounds on liposomes were discussed in relation to tannin quantum chemical parameters calculated by molecular modeling.  相似文献   

19.
Aims: The effects of different freeze‐drying protective agents on the viabilities of biocontrol strains Bacillus cereus AR156, Burkholderia vietnamiensis B418 and Pantoea agglomerans 2Re40 were investigated. Method and Results: Several concentrations of protective and rehydration media were tested to improve the survival of biocontrol agents after freeze‐drying. The subsequent survival rates during storage and rehydration media of freeze‐dried biocontrol strains were also examined. Conclusions: The results indicated that cellobiose (5%) and d ‐galactose (5%) gave maximum viability of strains Bu. vietnamiensis B418 and P. agglomerans 2Re40 (98 and 54·3% respectively) while the perfect one (100%) of strain B. cereus AR156 was obtained with sucrose (5%) during freeze‐drying, and the highest survival of the three strains was reached when they were rehydrated with 10% nonfat skim milk. In the following storage, the survival rates showed that B. cereus AR156 could still reach 50% after 12 months. Significance and Impact of the study: This study showed that freeze‐drying could be used to stabilize cells of these three biocontrol strains. Further studies should focus on the scale‐up possibilities and formulation development.  相似文献   

20.
The aim of the present study was to focus on the impact of two different methods and the effects of cryoprotectants on the survival of a probiotic bacterium, Streptococcus phocae PI80, during storage. For the protection of freeze dried cells, the optimal storage conditions were determined with a high survival rate. After the freeze drying process, all cryoprotectants exhibited a protective effect on cell viability at all storage temperatures. High relative cell viability was observed when cells were incubated at ?20°C, which was optimum for the protection of S. phocae PI80. Trehalose was the most promising cryoprotectant at all temperatures during the storage period of bacterial cells. The combination of trehalose + skim milk showed more than 85% survivability compared to other combinations at ?20°C for 60 days. In addition, encapsulation of probiotic cells into alginate-chitosan gel capsules showed better survival of S. phocae cells (5.468 ± 0.15 LogCFU/mL) with high bacteriocin activity at ?20°C for six months. The cell-loaded microcapsules remained stable when treated with simulated gastric and intestinal fluids. After 6 h in vivo treatment, the capsules were found to be broken, releasing the probiotic cells directly into the intestinal system of rats. Therefore, microencapsulation was found to be the most efficient technique, which not only protected the cells for a longer time but also released the cells into the in vivo intestinal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号