首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
2.
RNA editing plays an important role in the regulation of mitochondrial gene expression in flowering plants. In this study, we examined RNA editing of the mitochondrial genes cox2, atp6 and atp9 in five isonuclear alloplasmic male-sterile lines (IAMSLs) of rice to investigate whether different cytoplasmic types affect RNA editing. Although many editing sites were conserved among the three genes, we found that the editing efficiency of certain sites was significantly different between different IAMSLs or between IAMSLs and their corresponding cytoplasmic donor CMS lines. Furthermore, several editing sites were found to be either present or absent in certain IAMSLs and their corresponding CMS lines. These results indicate that nuclear loci, as well as unknown editing factors within the mitochondria of different cytoplasmic types, may be involved in RNA editing, and they suggest that RNA editing in plant mitochondria is affected by nucleo-cytoplasmic interactions.  相似文献   

3.
4.
The moss Physcomitrella patens has two RNA editing sites in the chloroplasts. Here we identified a novel DYW-subclass pentatricopeptide repeat (PPR) protein, PpPPR_45, as a chloroplast RNA editing factor in P. patens. Knockdown of the PpPPR_45 gene reduced the extent of RNA editing at the chloroplast rps14-C2 site, whereas over-expression of PpPPR_45 increased the levels of RNA editing at both the rps14-C2 site and its neighboring C site. This indicates that the expression level of PpPPR_45 affects the extent of RNA editing at the two neighboring sites.  相似文献   

5.
Rapid evolution of RNA editing sites in a small non-essential plastid gene   总被引:3,自引:0,他引:3  
Chloroplast RNA editing proceeds by C-to-U transitions at highly specific sites. Here, we provide a phylogenetic analysis of RNA editing in a small plastid gene, petL, encoding subunit VI of the cytochrome b6f complex. Analyzing representatives from most major groups of seed plants, we find an unexpectedly high frequency and dynamics of RNA editing. High-frequency editing has previously been observed in plastid ndh genes, which are remarkable in that their mutational inactivation does not produce an obvious mutant phenotype. In order to test the idea that reduced functional constraints allow for more flexible evolution of RNA editing sites, we have created petL knockout plants by tobacco chloroplast transformation. We find that, in the higher plant tobacco, targeted inactivation of petL does not impair plant growth under a variety of conditions markedly contrasting the important role of petL in photosynthesis in the green alga Chlamydomonas reinhardtii. Together with a low number of editing sites in plastid genes that are essential to gene expression and photosynthetic activity, these data suggest that RNA editing sites may evolve more readily in those genes whose transitory loss of function can be tolerated. Accumulated evidence for this ‘relative neutrality hypothesis for the evolution of plastid editing sites’ is discussed.  相似文献   

6.
7.
8.
Programmable RNA editing enables rewriting gene expression without changing genome sequences. Current tools for specific RNA editing dependent on the assembly of guide RNA into an RNA/protein complex, causing delivery barrier and low editing efficiency. We report a new gRNA-free system, RNA editing with individual RNA-binding enzyme (REWIRE), to perform precise base editing with a single engineered protein. This artificial enzyme contains a human-originated programmable PUF domain to specifically recognize RNAs and different deaminase domains to achieve efficient A-to-I or C-to-U editing, which achieved 60–80% editing rate in human cells, with a few non-specific editing sites in the targeted region and a low level off-target effect globally. The RNA-binding domain in REWIREs was further optimized to improve editing efficiency and minimize off-target effects. We applied the REWIREs to correct disease-associated mutations and achieve both types of base editing in mice. As a single-component system originated from human proteins, REWIRE presents a precise and efficient RNA editing platform with broad applicability.  相似文献   

9.
10.
RNA编辑是一种转录后基因加工修饰现象,广泛存在于高等植物细胞器中。已有研究表明,RNA编辑与植物发生白化或者黄化有关。通过PCR、RT-PCR及测序的方法,对具有阶段性白化特性的小麦(Triticum aestivum)返白系FA85及其野生型矮变一号(Aibian 1)的叶绿体蛋白质编码基因RNA编辑位点进行了测定,在14个基因上发现了26个编辑位点。有5个编辑位点在2个株系之间存在编辑效率的差异,且这些差异的位点均位于编码叶绿体RNA聚合酶的基因上,其中3个位点编辑前后对应的蛋白质二级结构可能有差异。对2个株系叶绿体中PEP、NEP及PEP、NEP共同依赖基因转录水平的检测显示,除psbA和clpP外,其它基因在小麦返白系中的转录水平均有不同程度的下降。这种转录水平的显著下降及叶绿体RNA聚合酶基因上RNA编辑位点编辑效率的改变,可能与小麦返白系叶片的返白有关。  相似文献   

11.
12.
13.
Adenosine-to-inosine (A-to-I) RNA editing is an endogenous regulatory mechanism involved in various biological processes. Site-specific, editing-state–dependent degradation of target RNA may be a powerful tool both for analyzing the mechanism of RNA editing and for regulating biological processes. Previously, we designed an artificial hammerhead ribozyme (HHR) for selective, site-specific RNA cleavage dependent on the A-to-I RNA editing state. In the present work, we developed an improved strategy for constructing a trans-acting HHR that specifically cleaves target editing sites in the adenosine but not the inosine state. Specificity for unedited sites was achieved by utilizing a sequence encoding the intrinsic cleavage specificity of a natural HHR. We used in vitro selection methods in an HHR library to select for an extended HHR containing a tertiary stabilization motif that facilitates HHR folding into an active conformation. By using this method, we successfully constructed highly active HHRs with unedited-specific cleavage. Moreover, using HHR cleavage followed by direct sequencing, we demonstrated that this ribozyme could cleave serotonin 2C receptor (HTR2C) mRNA extracted from mouse brain, depending on the site-specific editing state. This unedited-specific cleavage also enabled us to analyze the effect of editing state at the E and C sites on editing at other sites by using direct sequencing for the simultaneous quantification of the editing ratio at multiple sites. Our approach has the potential to elucidate the mechanism underlying the interdependencies of different editing states in substrate RNA with multiple editing sites.  相似文献   

14.
15.
Regulated point modification by an RNA editing enzyme occurs at four conserved sites in the Drosophila Shaker potassium channel. Single mRNA molecules can potentially represent any of 24 = 16 permutations (isoforms) of these natural variants. We generated isoform expression profiles to assess sexually dimorphic, spatial, and temporal differences. Striking tissue-specific expression was seen for particular isoforms. Moreover, isoform distributions showed evidence for coupling (linkage) of editing sites. Genetic manipulations of editing enzyme activity demonstrated that a chief determinant of Shaker editing site choice resides not in the editing enzyme, but rather, in unknown factors intrinsic to cells. Characterizing the biophysical properties of currents in nine isoforms revealed an unprecedented feature, functional epistasis; biophysical phenotypes of isoforms cannot be explained simply by the consequences of individual editing effects at the four sites. Our results unmask allosteric communication across disparate regions of the channel protein and between evolved and regulated amino acid changes introduced by RNA editing.  相似文献   

16.
17.
Rosenthal JJ  Bezanilla F 《Neuron》2002,34(5):743-757
We report the extensive editing of mRNAs that encode the classical delayed rectifier K+ channel (SqK(v)1.1A) in the squid giant axon. Using a quantitative RNA editing assay, 14 adenosine to guanine transitions were identified, and editing efficiency varied tremendously between positions. Interestingly, half of the sites are targeted to the T1 domain, important for subunit assembly. Other sites occur in the channel's transmembrane spans. The effects of editing on K+ channel function are elaborate. Edited codons affect channel gating, and several T1 sites regulate functional expression as well. In particular, the edit R87G, a phylogenetically conserved position, reduces expression close to 50-fold by regulating the channel's ability to form tetramers. These data suggest that RNA editing plays a dynamic role in regulating action potential repolarization in the giant axon.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号