首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After invading human erythrocytes, the malarial parasite Plasmodium falciparum, initiates a remarkable process of secreting proteins into the surrounding erythrocyte cytoplasm and plasma membrane. One of these exported proteins, the knob-associated histidine-rich protein (KAHRP), is essential for microvascular sequestration, a strategy whereby infected red cells adhere via knob structures to capillary walls and thus avoid being eliminated by the spleen. This cytoadherence is an important factor in many of the deaths caused by malaria. Green fluorescent protein fusions and fluorescence recovery after photobleaching were used to follow the pathway of KAHRP deployment from the parasite endomembrane system into an intermediate depot between parasite and host, then onwards to the erythrocyte cytoplasm and eventually into knobs. Sequence elements essential to individual steps in the pathway are defined and we show that parasite-derived structures, known as Maurer's clefts, are an elaboration of the canonical secretory pathway that is transposed outside the parasite into the host cell, the first example of its kind in eukaryotic biology.  相似文献   

2.
The malaria parasite Plasmodium falciparum assembles knob structures underneath the erythrocyte membrane that help present the major virulence protein, P. falciparum erythrocyte membrane protein-1 (PfEMP1). Membranous structures called Maurer's clefts are established in the erythrocyte cytoplasm and function as sorting compartments for proteins en route to the RBC membrane, including the knob-associated histidine-rich protein (KAHRP), and PfEMP1. We have generated mutants in which the Maurer's cleft protein, the ring exported protein-1 (REX1) is truncated or deleted. Removal of the C-terminal domain of REX1 compromises Maurer's cleft architecture and PfEMP1-mediated cytoadherance but permits some trafficking of PfEMP1 to the erythrocyte surface. Deletion of the coiled-coil region of REX1 ablates PfEMP1 surface display, trapping PfEMP1 at the Maurer's clefts. Complementation of mutants with REX1 partly restores PfEMP1-mediated binding to the endothelial cell ligand, CD36. Deletion of the coiled-coil region or complete deletion of REX1 is tightly associated with the loss of a subtelomeric region of chromosome 2, encoding KAHRP and other proteins. A KAHRP-green fluorescent protein (GFP) fusion expressed in the REX1-deletion parasites shows defective trafficking. Thus, loss of functional REX1 directly or indirectly ablates the assembly of the P. falciparum virulence complex at the surface of host erythrocytes.  相似文献   

3.
Plasmodium falciparum (Pf) malaria parasites remodel host erythrocytes by placing membranous structures in the host cell cytoplasm and inserting proteins into the surrounding erythrocyte membranes. Dynamic imaging techniques with high spatial and temporal resolutions are required to study the trafficking pathways of proteins and the time courses of their delivery to the host erythrocyte membrane. METHODOLOGY AND FINDINGS: Using a tetracysteine (TC) motif tag and TC-binding biarsenical fluorophores (BAFs) including fluorescein arsenical hairpin (FlAsH) and resorufin arsenical hairpin (ReAsH), we detected knob-associated histidine-rich protein (KAHRP) constructs in Pf-parasitized erythrocytes and compared their fluorescence signals to those of GFP (green fluorescent protein)-tagged KAHRP. Rigorous treatment with BAL (2, 3 dimercaptopropanol; British anti-Lewisite) was required to reduce high background due to nonspecific BAF interactions with endogenous cysteine-rich proteins. After this background reduction, similar patterns of fluorescence were obtained from the TC- and GFP-tagged proteins. The fluorescence from FlAsH and ReAsH-labeled protein bleached at faster rates than the fluorescence from GFP-labeled protein. CONCLUSION: While TC/BAF labeling to Pf-infected erythrocytes is presently limited by high background signals, it may offer a useful complement or alternative to GFP labeling methods. Our observations are in agreement with the currently-accepted model of KAHRP movement through the cytoplasm, including transient association of KAHRP with Maurer's clefts before its incorporation into knobs in the host erythrocyte membrane.  相似文献   

4.
Plasmodium falciparum dramatically modifies the structure and function of the membrane of the parasitized host erythrocyte. Altered membrane properties are the consequence of the interaction of a group of exported malaria proteins with host cell membrane proteins. KAHRP (the knob-associated histidine-rich protein), a member of this group, has been shown to interact with erythrocyte membrane skeletal protein spectrin. However, the molecular basis for this interaction has yet to be defined. In the present study, we defined the binding motifs in both KAHRP and spectrin and identified a functional role for this interaction. We showed that spectrin bound to a 72-amino-acid KAHRP fragment (residues 370-441). Among nine-spectrin fragments, which encompass the entire alpha and beta spectrin molecules (four alpha spectrin and five beta spectrin fragments), KAHRP bound only to one, the alpha N-5 fragment. The KAHRP-binding site within the alpha N-5 fragment was localized uniquely to repeat 4. The interaction of full-length spectrin dimer to KAHRP was inhibited by repeat 4 of alpha spectrin. Importantly, resealing of this repeat peptide into erythrocytes mislocalized KAHRP in the parasitized cells. We concluded that the interaction of KAHRP with spectrin is critical for appropriate membrane localization of KAHRP in parasitized erythrocytes. As the presence of KAHRP at the erythrocyte membrane is necessary for cytoadherence in vivo, our findings have implications for the development of new therapies for mitigating the severity of malaria infection.  相似文献   

5.
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) clusters at electron-dense knob-like structures on the surface of malaria-infected red blood cells and mediates their adhesion to the vascular endothelium. In parasites lacking knobs, vascular adhesion is less efficient, and infected red cells are not able to immobilize successfully under hemodynamic flow conditions even though PfEMP1 is still present on the exterior of the infected red cell. We examined the interaction between the knob-associated histidine-rich protein (KAHRP), the parasite protein upon which knob formation is dependent, and PfEMP1, and we show evidence of a direct interaction between KAHRP and the cytoplasmic region of PfEMP1 (VARC). We have identified three fragments of KAHRP which bind VARC. Two of these KAHRP fragments (K1A and K2A) interact with VARC with binding affinities (K(D(kin))) of 1 x 10(-7) M and 3.3 x 10(-6) M respectively, values comparable to those reported previously for protein-protein interactions in normal and infected red cells. Further experiments localized the high affinity binding regions of KAHRP to the 63-residue histidine-rich and 70-residue 5' repeats. Deletion of these two regions from the KAHRP fragments abolished their ability to bind to VARC. Identification of the critical domains involved in interaction between KAHRP and PfEMP1 may aid development of new therapies to prevent serious complications of P. falciparum malaria.  相似文献   

6.
P Acharya  S Chaubey  M Grover  U Tatu 《PloS one》2012,7(9):e44605
Cell surface structures termed knobs are one of the most important pathogenesis related protein complexes deployed by the malaria parasite Plasmodium falciparum at the surface of the infected erythrocyte. Despite their relevance to the disease, their structure, mechanisms of traffic and their process of assembly remain poorly understood. In this study, we have explored the possible role of a parasite-encoded Hsp40 class of chaperone, namely PFB0090c/PF3D7_0201800 (KAHsp40) in protein trafficking in the infected erythrocyte. We found the gene coding for PF3D7_0201800 to be located in a chromosomal cluster together with knob components KAHRP and PfEMP3. Like the knob components, KAHsp40 too showed the presence of PEXEL motif required for transport to the erythrocyte compartment. Indeed, sub-cellular fractionation and immunofluorescence analysis (IFA) showed KAHsp40 to be exported in the erythrocyte cytoplasm in a stage dependent manner localizing as punctuate spots in the erythrocyte periphery, distinctly from Maurer's cleft, in structures which could be the reminiscent of knobs. Double IFA analysis revealed co-localization of PF3D7_0201800 with the markers of knobs (KAHRP, PfEMP1 and PfEMP3) and components of the PEXEL translocon (Hsp101, PTEX150). KAHsp40 was also found to be in a complex with KAHRP, PfEMP3 and Hsp101 as confirmed by co-immunoprecipitation assay. Our results suggest potential involvement of a parasite encoded Hsp40 in chaperoning knob assembly in the erythrocyte compartment.  相似文献   

7.
Red blood cells can withstand the harsh mechanical conditions in the vasculature only because the bending rigidity of their plasma membrane is complemented by the shear elasticity of the underlying spectrin-actin network. During an infection by the malaria parasite Plasmodium falciparum, the parasite mines host actin from the junctional complexes and establishes a system of adhesive knobs, whose main structural component is the knob-associated histidine rich protein (KAHRP) secreted by the parasite. Here we aim at a mechanistic understanding of this dramatic transformation process. We have developed a particle-based computational model for the cytoskeleton of red blood cells and simulated it with Brownian dynamics to predict the mechanical changes resulting from actin mining and KAHRP-clustering. Our simulations include the three-dimensional conformations of the semi-flexible spectrin chains, the capping of the actin protofilaments and several established binding sites for KAHRP. For the healthy red blood cell, we find that incorporation of actin protofilaments leads to two regimes in the shear response. Actin mining decreases the shear modulus, but knob formation increases it. We show that dynamical changes in KAHRP binding affinities can explain the experimentally observed relocalization of KAHRP from ankyrin to actin complexes and demonstrate good qualitative agreement with experiments by measuring pair cross-correlations both in the computer simulations and in super-resolution imaging experiments.  相似文献   

8.
The pathology associated with malaria infection is largely due to the ability of infected human RBCs to adhere to a number of receptors on endothelial cells within tissues and organs. This phenomenon is driven by the export of parasite-encoded proteins to the host cell, the exact function of many of which is still unknown. Here we inactivate the function of one of these exported proteins, PFA66, a member of the J-domain protein family. Although parasites lacking this protein were still able to grow in cell culture, we observed severe defects in normal host cell modification, including aberrant morphology of surface knobs, disrupted presentation of the cytoadherence molecule PfEMP1, and a total lack of cytoadherence, despite the presence of the knob associated protein KAHRP. Complementation assays demonstrate that an intact J-domain is required for recovery to a wild-type phenotype and suggest that PFA66 functions in concert with a HSP70 to carry out host cell modification. Strikingly, this HSP70 is likely to be of host origin. ATPase assays on recombinant protein verify a functional interaction between PFA66 and residual host cell HSP70. Taken together, our data reveal a role for PFA66 in host cell modification, strongly implicate human HSP70s as being essential in this process and uncover a new KAHRP-independent molecular factor required for correct knob biogenesis.  相似文献   

9.
Plasmodium falciparum modifies the host erythrocyte's plasma membrane by the formation of electron-dense structures called knobs. We have produced monoclonal antibodies (McAbs) which specifically bind to the knobs in immunoelectron microscopic experiments with thin sections of parasitized erythrocytes. However, the McAbs fail to bind to the surface of live parasitized erythrocytes. Immunoblotting experiments with these McAbs show the antigen is localized to the erythrocyte plasma membrane. The antigen with which the McAbs react varies in mol. wt from 80 to 95 kd in different knob-producing isolates of P. falciparum and is absent in knobless variants. The McAbs react with the expressed product of a P. falciparum cDNA clone, thus demonstrating that the clone encodes part of this knob-associated protein. The sequence of the cDNA fragment partially overlaps a published cDNA sequence reported to encode the amino-terminal portion of the knob protein, and extends the predicted open reading frame by 190 amino acids. The carboxyl-terminal portion of the predicted amino acid sequence contains a highly charged stretch of approximately 100 amino acid residues. We suggest that this unusual, highly charged region participates in intermolecular salt bridging leading to dense packing of these molecules. This would create the electron-dense regions observed by electron microscopy and might also explain the insolubility of the knob-associated protein in the absence of strong ionic detergents or chaotropic agents.  相似文献   

10.
During the maturation of intracellular asexual stages of Plasmodium falciparum parasite-encoded proteins are exported into the erythrocyte cytosol. A number of these parasite proteins attach to the host cell cytoskeleton and facilitate transformation of a disk-shaped erythrocyte into a rounded and more rigid infected erythrocyte able to cytoadhere to the vasculature. Knob formation on the surface of infected erythrocytes is critical for this cytoadherence to the host endothelium. P. falciparum proteins have been identified that localize to the parasite-infected erythrocyte membrane: the variant cytoadherence ligand erythrocyte membrane protein 1 (PfEMP1), the knob-associated histidine-rich protein (KAHRP) and the erythrocyte membrane protein 3 (PfEMP3). In this study, we have generated parasites expressing PfEMP3-green fluorescent protein chimeras and identified domains involved in entry to the secretory pathway, export across the parasitophorous vacuolar membrane and attachment to Maurer's clefts and the erythrocyte membrane. Solubility assays, fluorescence photobleaching experiments and immunogold electron microscopy suggest that the exported chimeric proteins are trafficked in a complex rather than in vesicles. This study characterizes elements involved in the tight but transient binding of PfEMP3 to Maurer's clefts and shows that the same elements are necessary for correct assembly under the erythrocyte membrane.  相似文献   

11.
The current status of histidine-rich proteins in malaria parasites with regard to their genomic organization, protein structure and function is discussed, one of such protein present in an avian malaria parasite Plasmodium lophurae contains about 73% histidine and called as HRP (histidine-rich protein). Among human malaria parasites, in Plasmodium falciparum, only three such proteins have been described, namely knob protein also known as knob associated histidine-rich protein (KP or KAHRP), soluble histidine-alanine rich protein (soluble HARP or PfHRP II) and small histidine-alanine rich protein (SHARP) containing 8, 35 and 30% histidine contents respectively. With rapid emergence of powerful tools in molecular biology the genes of all these histidine-rich proteins have been cloned and sequenced within a short period of time. The genomic organizations of all these proteins are very much similar to each other, in each case the gene contains a signal peptide coding sequence (exon 1) followed by an intron. This intron is followed by the main coding region (exon 2) which has no further intervening sequences. In the main coding region of each gene, the histidine-rich sequences start after 25-30 amino acids from N-terminal end (75-90 nucleotides from 5' in exon 2). All the three histidine-rich proteins of P. falciparum share some homology with the HRP of P. lophurae; they all cross react with anti HRP and incorporate higher amount of exogenous histidine. The relationship between KP and HRP resides in the repeated polyhistidine sequences, (His) 6-9, from the core of the multiple tandem repeats of HRP, whereas, the peptide Ala-His-His is commonly shared by HRP and two other proteins of P. falciparum (soluble HARP and SHARP).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The ability of Plasmodium falciparum-infected red blood cells (IRBCs) to bind to vascular endothelium, thus enabling sequestration in vital host organs, is an important pathogenic mechanism in malaria. Adhesion of P. falciparum IRBCs to platelets, which results in the formation of IRBC clumps, is another cytoadherence phenomenon that is associated with severe disease. Here, we have used in vitro cytoadherence assays to demonstrate, to our knowledge for the first time, that P. falciparum IRBCs use the 32-kDa human protein gC1qR/HABP1/p32 as a receptor to bind to human brain microvascular endothelial cells. In addition, we show that P. falciparum IRBCs can also bind to gC1qR/HABP1/p32 on platelets to form clumps. Our study has thus identified a novel host receptor that is used for both adhesion to vascular endothelium and platelet-mediated clumping. Given the association of adhesion to vascular endothelium and platelet-mediated clumping with severe disease, adhesion to gC1qR/HABP1/p32 by P. falciparum IRBCs may play an important role in malaria pathogenesis.  相似文献   

13.
Plasmodium falciparum: cytoadherence of a knobless clone   总被引:6,自引:0,他引:6  
Sequestration of Plasmodium falciparum-infected erythrocytes is crucial to parasite survival as it prevents destruction in the liver and spleen. Knobs have been considered necessary but not sufficient for cytoadherence to vascular endothelial cells in vivo and to melanoma or umbilical vein endothelial cells in vitro. We describe here a knobless clone that cytoadheres strongly to C32 melanoma cells. This clone cannot express the knob-associated histidine-rich protein (KAHRP) due to the deletion of the KAHRP gene. Our results raise the possibility of an alternative mechanism for in vitro cytoadherence and suggest that the use of long term cultured isolates and melanoma cells as a model for cytoadherence in vivo may be misleading.  相似文献   

14.
This report describes the isolation of a viruslike particle from in vitro cultures of the human malaria parasite P. falciparum. Electronmicroscopic observations suggest that the particles are liberated into the culture medium by budding from the erythrocyte membrane. The density of the free particles is 1.16, they contain nucleic acid and two distinct molecular species of the knob-associated Histidine-rich protein. Proteins of the particles are recognized by sera from malaria patients. The previously described knobs may correspond to viral coats inserted in the membrane.  相似文献   

15.
The high mortality of Plasmodium falciparum malaria is the result of a parasite ligand, PfEMP1 (P. falciparum) erythrocyte membrane protein 1), on the surface of infected red blood cells (IRBCs), which adheres to the vascular endothelium and causes the sequestration of IRBCs in the microvasculature. PfEMP1 transport to the IRBC surface involves Maurer's clefts, which are parasite-derived membranous structures in the IRBC cytoplasm. Targeted gene disruption of a Maurer's cleft protein, SBP1 (skeleton-binding protein 1), prevented IRBC adhesion because of the loss of PfEMP1 expression on the IRBC surface. PfEMP1 was still present in Maurer's clefts, and the transport and localization of several other Maurer's cleft proteins were unchanged. Maurer's clefts were altered in appearance and were no longer found as close to the periphery of the IRBC. Complementation of mutant parasites with sbp1 led to the reappearance of PfEMP1 on the IRBC surface and the restoration of adhesion. Our results demonstrate that SBP1 is essential for the translocation of PfEMP1 onto the surface of IRBCs and is likely to play a pivotal role in the pathogenesis of P. falciparum malaria.  相似文献   

16.
The nature of the surface deformations of erythrocytes infected with the human malaria parasite Plasmodium falciparum was analyzed using scanning electron microscopy at two stages of the 48-h parasite maturation cycle. Infected cells bearing trophozoite-stage parasites (24-36 h) had small protrusions (knobs), with diameters varying from 160 to 110 nm, and a density ranging from 10 to 35 knobs X micron-2. When parasites were fully mature (schizont stage, 40-44 h), knob size decreased (100-70 nm), whereas density increased (45-70 knobs X micron-2). Size and density of the knobs varied inversely, suggesting that knob production (a) occurred throughout intraerythrocytic parasite development from trophozoite to schizont and (b) was related to dynamic changes of the erythrocyte membrane. Variation in the distribution of the knobs over the red cell surface was observed during parasite maturation. At the early trophozoite stage of parasite development, knobs appeared to be formed in particular domains of the cell surface. As the density of knobs increased and they covered the entire cell surface, their lateral distribution was dispersive (more-than-random); this was particularly evident at the schizont stage. Regional surface patterns of knobs (rows, circles) were seen throughout parasite development. The nature of the dynamic changes that occurred at the red cell surface during knob formation, as well as the nonrandom distribution of knobs, suggested that the red cell cytoskeleton may have played a key role in knob formation and patterning.  相似文献   

17.
Differential screening of cDNA libraries constructed from knobby and predominantly knobless Plasmodium falciparum isolates, identified the sequence SD17. Chromosome blotting experiments have shown that this sequence, which is located on chromosome 2 of most isolates, was deleted in the cloned parasite line E12 of the FCQ27/PNG isolate. Here we show that erythrocytes infected with the SD17-containing cloned line D10 have typical knob structures on their surfaces, whereas those infected with the line E12 lack knobs. An expression clone was constructed from SD17 and used to affinity purify antibodies from the sera of individuals living in areas of Papua New Guinea where malaria is endemic. The antibodies reacted in immunoblotting experiments with a single polypeptide that varied in Mr from 85,000 to 105,000 among different isolates. The antigen was not expressed in the knobless clone E12. Postembedding immunoelectron microscopy showed localization of the antigen over the knobs of FC27 and two other isolates, largely on the cytoplasmic side. We conclude that the parasite antigen corresponding to clone SD17 is a knob protein.  相似文献   

18.
Kilili GK  LaCount DJ 《Eukaryotic cell》2011,10(11):1439-1447
Binding of exported malaria parasite proteins to the host cell membrane and cytoskeleton contributes to the morphological, functional, and antigenic changes seen in Plasmodium falciparum-infected erythrocytes. One such exported protein that targets the erythrocyte cytoskeleton is the mature parasite-infected erythrocyte surface antigen (MESA), which interacts with the N-terminal 30-kDa domain of protein 4.1R via a 19-residue sequence. We report here that the MESA erythrocyte cytoskeleton-binding (MEC) domain is present in at least 13 other P. falciparum proteins predicted to be exported to the host cell. An alignment of the putative cytoskeleton-binding sequences revealed a conserved aspartic acid at the C terminus that was omitted from the originally reported binding domain. Mutagenesis experiments demonstrated that this aspartic acid was required for the optimal binding of MESA to inside-out vesicles (IOVs) prepared from erythrocytes. Using pulldown assays, we characterized the binding of fragments encoding the MEC domains from PFE0040c/MESA and six other proteins (PF10_0378, PFA0675w, PFB0925w, PFD0095c, PFF1510w, and PFI1790w) to IOVs. All seven proteins bound to IOVs, with MESA showing the strongest affinity in saturation binding experiments. We further examined the interaction of the MEC domain proteins with components of the erythrocyte cytoskeleton and showed that MESA, PF10_0378, and PFA0675w coprecipitated full-length 4.1R from lysates prepared from IOVs. These data demonstrated that the MEC motif is present and functional in at least six other P. falciparum proteins that are exported to the host cell cytoplasm.  相似文献   

19.
20.
There is a well-established clinical association between hemoglobin genotype and innate protection against Plasmodium falciparum malaria. In contrast to normal hemoglobin A, mutant hemoglobin C is associated with substantial reductions in the risk of severe malaria in both heterozygous AC and homozygous CC individuals. Irrespective of hemoglobin genotype, parasites may induce knob-like projections on the erythrocyte surface. The knobs play a major role in the pathogenesis of severe malaria by serving as points of adherence for P. falciparum-infected erythrocytes to microvascular endothelia. To evaluate the influence of hemoglobin genotype on knob formation, we used a combination of atomic force and light microscopy for concomitant topographic and wide-field fluorescence imaging. Parasitized AA, AC, and CC erythrocytes showed a population of knobs with a mean width of approximately 70 nm. Parasitized AC and CC erythrocytes showed a second population of large knobs with a mean width of approximately 120 nm. Furthermore, spatial knob distribution analyses demonstrated that knobs on AC and CC erythrocytes were more aggregated than on AA erythrocytes. These data support a model in which large knobs and their aggregates are promoted by hemoglobin C, reducing the adherence of parasitized erythrocytes in the microvasculature and ameliorating the severity of a malaria infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号