首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon beams (5.16MeV/u, LET=290keV/μm) are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The aim of the current study was to determine the signaling differences between γ-rays and carbon ion-irradiation. A549 cells were irradiated with 1Gy carbon or γ-rays. Carbon beam was found to be three times more cytotoxic than γ-rays despite the fact that the numbers of γ-H2AX foci were same. Percentage of cells showing ATM/ATR foci were more with γ-rays however number of foci per cell were more in case of carbon irradiation. Large BRCA1 foci were found in all carbon irradiated cells unlike γ-rays irradiated cells and prosurvival ERK pathway was activated after γ-rays irradiation but not carbon. The noteworthy finding of this study is the early phase apoptosis induction by carbon ions. In the present study in A549 lung adenocarcinoma, authors conclude that despite activation of same repair molecules such as ATM and BRCA1, differences in low and high LET damage responses might be due to their distinct macromolecular complexes rather than their individual activation and the activation of cytoplasmic pathways such as ERK, whether it applies to all the cell lines need to be further explored.  相似文献   

2.
DNA double-strand breaks (DSB) are generally considered the most critical lesion induced by ionizing radiation (IR) and may initiate carcinogenesis and other disease. Using an immunofluorescence assay to simultaneously detect nuclear foci of the phosphorylated forms of histone H2AX and ATM kinase at sites of DSBs, we examined the response of 25 apparently normal and 10 DNA repair-deficient (ATM, ATR, NBN, LIG1, LIG4, and FANCG) primary fibroblast strains irradiated with low doses of 137Cs γ-rays. Quiescent G0/G1-phase cultures were exposed to 5, 10, and 25 cGy and allowed to repair for 24 h. The maximum level of IR-induced foci (0.15 foci per cGy, at 10 or 30 min) in the normal strains showed much less inter-individual variation (CV  0.2) than the level of spontaneous foci, which ranged from 0.2–2.6 foci/cell (CV  0.6; mean ± SD of 1.00 ± 0.57). Significantly slower focus formation post-irradiation was observed in seven normal strains, similar to most mutant strains examined. There was variation in repair efficiency measured by the fraction of IR-induced foci remaining 24 h post-irradiation, curiously with the strains having slower focus formation showing more efficient repair after 25 cGy. Interestingly, the ranges of spontaneous and residual induced foci levels at 24 h in the normal strains were as least as large as those observed for the repair-defective mutant strains. The inter-individual variation in DSB foci parameters observed in cells exposed to low doses of ionizing radiation in this small survey of apparently normal people suggests that hypomorphic genetic variants in genomic maintenance and/or DNA damage signaling and repair genes may contribute to differential susceptibility to cancer induced by environmental mutagens.  相似文献   

3.
We have calibrated the alkaline protocol of the plant comet (Single Cell Gel Electrophoresis) assay as a method for detecting the extent of induced DNA damage in potato plants (Solanum tuberosum L. cultivar Korela). After 2 and 24 h treatments of the rooted cuttings with the heavy metal cadmium (Cd2+), a dose–response increase in DNA damage was noted versus controls in root nuclei. With a 24 h recovery period, the Cd2+-induced DNA damage in roots increased significantly. No significant increase in DNA damage was demonstrated in leaf nuclei after 24 h Cd2+ treatments, but continuous Cd2+ treatments for 2 weeks resulted in an increase in leaf DNA damage. This increase may be however associated with necrotic and apoptotic DNA fragmentation, as the affected plants had inhibited growth and distorted yellowish leaves. For comparison, the monofunctional alkylating agent ethyl methanesulphonate, and γ-rays were assessed for induced DNA damage. Analysis of the accumulation of cadmium by inductively coupled plasma optical emission spectrometry demonstrates that roots accumulate almost 9-fold more cadmium than aboveground parts of the rooted potato cuttings. This may explain the absence of Cd2+ genotoxicity in leaves after short-term treatments.  相似文献   

4.
Low- and high-linear energy transfer (LET) ionising radiation are effective cancer therapies, but produce structurally different forms of DNA damage. Isolated DNA damage is repaired efficiently; however, clustered lesions may be more difficult to repair, and are considered as significant biological endpoints. We investigated the formation and repair of DNA double-strand breaks (DSBs) and clustered lesions in human fibroblasts after exposure to sparsely (low-LET; delivered by photons) and densely (high-LET; delivered by carbon ions) ionising radiation. DNA repair factors (pKu70, 53BP1, γH2AX, and pXRCC1) were detected using immunogold-labelling and electron microscopy, and spatiotemporal DNA damage patterns were analysed within the nuclear ultrastructure at the nanoscale level. By labelling activated Ku-heterodimers (pKu70) the number of DSBs was determined in electron-lucent euchromatin and electron-dense heterochromatin. Directly after low-LET exposure (5 min post-irradiation), single pKu70 dimers, which reflect isolated DSBs, were randomly distributed throughout the entire nucleus with a linear dose correlation up to 30 Gy. Most euchromatic DSBs were sensed and repaired within 40 min, whereas heterochromatic DSBs were processed with slower kinetics. Essentially all DNA lesions induced by low-LET irradiation were efficiently rejoined within 24 h post-irradiation. High-LET irradiation caused localised energy deposition within the particle tracks, and generated highly clustered DNA lesions with multiple DSBs in close proximity. The dimensions of these clustered lesions along the particle trajectories depended on the chromatin packing density, with huge DSB clusters predominantly localised in condensed heterochromatin. High-LET irradiation-induced clearly higher DSB yields than low-LET irradiation, with up to ∼500 DSBs per μm3 track volume, and large fractions of these heterochromatic DSBs remained unrepaired. Hence, the spacing and quantity of DSBs in clustered lesions influence DNA repair efficiency, and may determine the radiobiological outcome.  相似文献   

5.
Nanoparticles (NPs) have been shown to enhance X-ray radiotherapy and proton therapy of cancer. The effectiveness of radiation damage is enhanced in the presence of high atomic number (high-Z) NPs due to increased production of low energy, higher linear energy transfer (LET) secondary electrons when NPs are selectively internalized by tumour cells. This work quantifies the local dose enhancement produced by the high-Z ceramic oxide NPs Ta2O5 and CeO2, in the target tumour, for the first time in proton therapy, by means of Geant4 simulations. The dose enhancement produced by the ceramic oxides is compared against gold NPs. The energy deposition on a nanoscale around a single nanoparticle of 100 nm diameter is investigated using the Geant4-DNA extension to model particle interactions in the water medium. Enhancement of energy deposition in nano-sized shells of water, local to the NP boundary, ranging between 14% and 27% was observed for proton energies of 5 MeV and 50 MeV, depending on the NP material. Enhancement of electron production and energy deposition can be correlated to the direct DNA damage mechanism if the NP is in close proximity to the nucleus.  相似文献   

6.
Planning of the deep-space exploration missions raises a number of questions on the radiation protection of astronauts. One of the medical concerns is associated with exposure of a crew to highly energetic particles of galactic cosmic rays. Among many other health disorders, irradiation with these particles has a substantial impact on the central nervous system (CNS). Although radiation damage to CNS has been addressed extensively during the last years, the mechanisms underlying observed impairments remain mostly unknown. The present study reveals neurochemical and behavioural alterations induced in rats by 1 Gy of 500 MeV/u 12C particles with a relatively moderate linear energy transfer (10.6 keV/μm). It is found that exposure to carbon ions leads to significant modification of the normal monoamine metabolism dynamics as well as the locomotor, exploratory, and anxiety-like behaviours during a two-month period. The obtained results indicate an abnormal redistribution of monoamines and their metabolites in different brain regions after exposure. The most pronounced impairments are detected in the prefrontal cortex, nucleus accumbens, and hypothalamus that illustrate the sensitivity of these brain regions to densely ionizing radiations. It is also shown that exposure to 12C particles enhances the anxiety in animals and accelerates the age-related reduction in their exploratory capability. The observed monoamine metabolism pattern may indicate the presence of certain compensatory mechanisms being induced in response to irradiation and capable of partial restoration of monoaminergic systems’ functions. Overall, these findings support a possibility of CNS damage by space-born particles of a relatively moderate linear energy transfer.  相似文献   

7.
The radioprotective effect of a non-toxic bioactive component in plant milk thistle, silibinin against genotoxicity induced by γ-irradiation was investigated in vivo/in vitro. Under in vitro conditions of irradiation, silibinin protected plasmid pBR322 DNA against γ-radiation-induced strand breaks in a concentration dependent manner (0–200 μM). Under cellular conditions of radiation exposure (3 Gy), silibinin offered protection to lymphocyte DNA as evidenced from reduction in DNA damage and micronuclei formation, which showed correlation to the extent of intracellular reactive oxygen species reduction. Our extended animal studies suggest that oral administration of silibinin (70 mg/kg for 3 days) to mice prior to whole-body γ-exposure (7.5 Gy) resulted in significant protection to radiation-induced mortality and DNA damage in blood leukocytes. However, silibinin treatment after irradiation was not as effective as pre-administration. In conclusion, present study indicated that silibinin has a strong potential to prevent radiation-induced DNA damage under both in vitro and in vivo.  相似文献   

8.
Cancer risk and radiation sensitivity are often associated with alterations in DNA repair, cell cycle, or apoptotic pathways. Interindividual variability in mutagen or radiation sensitivity and in cancer susceptibility may also be traced back to polymorphisms of genes affecting e.g. DNA repair capacity. We studied possible associations between 70 polymorphisms of 12 DNA repair genes with basal and initial DNA damage and with repair thereof. We investigated DNA damage induced by ionizing radiation in lymphocytes isolated from 177 young lung cancer patients and 169 cancer-free controls. We also sought replication of our findings in an independent sample of 175 families (in total 798 individuals). DNA damage was assessed by the Olive tail moment (OTM) of the comet assay. DNA repair capacity (DRC) was determined for 10, 30 and, 60 min of repair.Genes involved in the single-strand-repair pathway (SSR; like XRCC1 and MSH2) as well as genes involved in the double-strand-repair pathway (DSR; like RAD50, XRCC4, MRE11 and ATM) were found to be associated with DNA damage. The most significant association was observed for marker rs3213334 (p = 0.005) of XRCC1 with basal DNA damage (B), in both cases and controls. A clear additive effect on the logarithm of OTM was identified for the marker rs1001581 of the same LD-block (p = 0.039): BCC = −1.06 (95%-CI: −1.16 to −0.96), BCT = −1.02 (95%-CI: −1.11 to −0.93) and BTT = −0.85 (95%-CI: −1.01 to −0.68). In both cases and controls, we observed significantly higher DNA basal damage (p = 0.007) for carriers of the genotype AA of marker rs2237060 of RAD50 (involved in DSR). However, this could not be replicated in the sample of families (p = 0.781). An alteration to DRC after 30 min of repair with respect to cases was observed as borderline significant for marker rs611646 of ATM (involved in DSR; p = 0.055), but was the most significant finding in the sample of families (p = 0.009).Our data indicate that gene variation impacts measurably on DNA damage and repair, suggesting at least a partial contribution to radiation sensitivity and lung cancer susceptibility.  相似文献   

9.
Little work has been done on the mechanism of low dose hyper-radiosensitivity (HRS) and later appeared radioresistance (termed induced radioresistance (IRR)) after irradiation with medium and high linear energy transfer (LET) particles. The aim of this study was to find out whether ATR pathway is involved in the mechanism of HRS induced by high LET radiation. GM0639 cells and two ATM deficient/mutant cells, AT5BIVA and AT2KY were irradiated by carbon ion beam. Thymidine block technique was developed to enrich the G2-phase population. Radiation induced early G2/M checkpoint was quantitatively assess with dual-parameter flow cytometry by detecting the cells positive for phospho-histone H3. The involvement of ATR pathway in HRS/IRR response was detected with pretreatment of specific inhibitors prior to carbon ion beam. The link between the early G2/M checkpoint and HRS/IRR under carbon ion beam was first confirmed in GM0639 cells, through the enrichment of cell population in G2-phase or with Aurora kinase inhibitor that attenuates the transition from G2 to M phase. Interestingly, the early G2/M arrest could still be observed in ATM deficient/mutant cells with an effect of ATR signaling, which was discovered to function in an LET-dependent manner, even as low as 0.2 Gy for carbon ion radiation. The involvement of ATR pathway in heavy particles induced HRS/IRR was determined with the specific ATR inhibitor in GM0639 cells, which affected the HRS/IRR occurrence similarly as ATM inhibitor. These data demonstrate that ATR pathway may cooperate with ATM in the mechanism of low dose hypersensitivity induced by carbon ion beam.  相似文献   

10.
Embryonic stem cells (ESCs) are the progenitors of all adult cells; consequently, genomic abnormalities in them may be catastrophic for the developing organism. ESCs are characterized by high proliferation activity and do not stop in checkpoints upon DNA-damage executing only G2/M delay after DNA damage. ATM and ATR kinases are key sensors of double-strand DNA breaks and activate downstream signaling pathways involving checkpoints, DNA repair, and apoptosis. We examined activation of ATM/ATR signaling in human ESCs and revealed that irradiation induced ATM, ATR, and Chk2 phosphorylation, and γH2AX foci formation and their colocalization with 53BP1 and Rad51 proteins. Interestingly, human ESCs exhibit noninduced γH2AX foci colocalized with Rad51 and marking single-strand DNA breaks. Next, we revealed the significant contribution of ATM, Chk1, and Chk2 kinases to G2/M block after irradiation and ATM-dependent activation (phosphorylation) of p53 in human ESCs. However, p53 activation and subsequent induction of p21 Waf1 gene expression after DNA damage do not result in p21Waf1 protein accumulation due to its proteasomal degradation.  相似文献   

11.
Multiple myeloma (MM) is characterized by multiple chromosomal aberrations. To assess the contribution of DNA repair to this phenotype, ionizing radiation was used to induce DNA double strand breaks in three MM cell lines. Clonogenic survival assays showed U266 (SF4 = 15.3 + 6.4%) and RPMI 8226 (SF4 = 12.6.0 + 1.7%) were radiation sensitive while OPM2 was resistant (SF4 = 78.9 + 4.1%). Addition of the DNA-PK inhibitor NU7026 showed the expected suppression in radiation survival in OPM2 but increased survival in both radiation sensitive cell lines. To examine non-homologous end joining (NHEJ) repair in these lines, the ability of protein extracts to support in vitro DNA repair was measured. Among the three MM cell lines analyzed, RPMI 8226 demonstrated impaired blunt ended DNA ligation using a ligation-mediated PCR technique. In a bacterial based functional assay to rejoin a DNA break within the β-galactosidase gene, RPMI 8226 demonstrated a 4-fold reduction in rejoining fidelity compared to U266, with OPM2 showing an intermediate capacity. Ionizing radiation induced a robust γ-H2AX response in OPM2 but only a modest increase in each radiation sensitive cell line perhaps related to the high level of γ-H2AX in freshly plated cells. Examination of γ-H2AX foci in RPMI 8226 cells confirmed data from Western blots where a significant number of foci were present in freshly plated untreated cells which diminished over 24 h of culture. Based on the clonogenic survival and functional repair assays, all three cell lines exhibited corrupt NHEJ repair. We conclude that suppression of aberrant NHEJ function using the DNA-PK inhibitor NU7026 may facilitate access of DNA ends to an intact homologous recombination repair pathway, paradoxically increasing survival after irradiation. These data provide insight into the deregulation of DNA repair at the site of DNA breaks in MM that may underpin the characteristic genomic instability of this disease.  相似文献   

12.
In Saccharomyces cerevisiae, destabilizing telomeres, via inactivation of telomeric repeat binding factor Cdc13, induces a cell cycle checkpoint that arrests cells at the metaphase to anaphase transition—much like the response to an unrepaired DNA double strand break (DSB). Throughout the cell cycle, the multi-domain adaptor protein Rad9 is required for the activation of checkpoint effector kinase Rad53 in response to DSBs and is similarly necessary for checkpoint signaling in response to telomere uncapping. Rad53 activation in G1 and S phase depends on Rad9 association with modified chromatin adjacent to DSBs, which is mediated by Tudor domains binding histone H3 di-methylated at K79 and BRCT domains to histone H2A phosphorylated at S129. Nonetheless, Rad9 Tudor or BRCT mutants can initiate a checkpoint response to DNA damage in nocodazole-treated cells. Mutations affecting di-methylation of H3 K79, or its recognition by Rad9 enhance 5′ strand resection upon telomere uncapping, and potentially implicate Rad9 chromatin binding in the checkpoint response to telomere uncapping. Indeed, we report that Rad9 binds to sub-telomeric chromatin, upon telomere uncapping, up to 10 kb from the telomere. Rad9 binding occurred within 30 min after inactivating Cdc13, preceding Rad53 phosphorylation. In turn, Rad9 Tudor and BRCT domain mutations blocked chromatin binding and led to attenuated checkpoint signaling as evidenced by decreased Rad53 phosphorylation and impaired cell cycle arrest. Our work identifies a role for Rad9 chromatin association, during mitosis, in the DNA damage checkpoint response to telomere uncapping, suggesting that chromatin binding may be an initiating event for checkpoints throughout the cell cycle.  相似文献   

13.
Hyperthermia is widely used to treat patients with cancer, especially in combination with other treatments such as radiation therapy. Heat treatment per se activates DNA damage responses mediated by the ATR-Chk1 and ATM-Chk2 pathways but it is not fully understood how these DNA damage responses are activated and affect heat tolerance. By performing a genetic analysis of human HeLa cells and chicken B lymphoma DT40 cells, we found that heat-induced Chk1 Ser345 phosphorylation by ATR was largely dependent on Rad9, Rad17, TopBP1 and Claspin. Activation of the ATR-Chk1 pathway by heat, however, was not associated with FancD2 monoubiquitination or RPA32 phosphorylation, which are known as downstream events of ATR kinase activation when replication forks are stalled. Downregulation of ATR, Rad9, Rad17, TopBP1 or Claspin drastically reduced clonogenic cell viability upon hyperthermia, while gene knockout or inhibition of ATM kinase reduced clonogenic viability only modestly. Suppression of the ATR-Chk1 pathway activation enhanced heat-induced phosphorylation of Chk2 Thr68 and simultaneous inhibition of ATR and ATM kinases rendered severe heat cytotoxicity. These data indicate that essential factors for activation of the ATR-Chk1 pathway at stalled replication forks are also required for heat-induced activation of ATR kinase, which predominantly contributes to heat tolerance in a non-overlapping manner with ATM kinase.  相似文献   

14.
This study was initiated following conclusions from earlier experimental work, performed in a low-energy carbon ion beam, indicating a significant LET dependence of the response of a PTW-60019 microDiamond detector. The purpose of this paper is to present a comparison between the response of the same PTW-60019 microDiamond detector and an IBA Roos-type ionization chamber as a function of depth in a 62 MeV proton beam. Even though proton beams are considered as low linear energy transfer (LET) beams, the LET value increases slightly in the Bragg peak region. Contrary to the observations made in the carbon ion beam, in the 62 MeV proton beam good agreement is found between both detectors in both the plateau and the distal edge region. No significant LET dependent response of the PTW-60019 microDiamond detector is observed consistent with other findings for proton beams in the literature, despite this particular detector exhibiting a substantial LET dependence in a carbon ion beam.  相似文献   

15.
DNA double strand break (DSB) repair pathway choice following ionizing radiation (IR) is currently an appealing research topic, which is still largely unclear. Our recent paper indicated that the complexity of DSBs is a critical factor that enhances DNA end resection. It has been well accepted that the RPA-coated single strand DNA produced by resection is a signaling structure for ATR activation. Therefore, taking advantage of high linear energy transfer (LET) radiation to effectively produce complex DSBs, we investigated how the complexity of DSB influences the function of ATR pathway on the G2/M checkpoint regulation. Human skin fibroblast cells with or without ATM were irradiated with X rays or heavy ion particles, and dual-parameter flow cytometry was used to quantitatively assess the mitotic entry at early period post radiation by detecting the cells positive for phosphor histone H3. In ATM-deficient cells, ATR pathway played a pivotal role and functioned in a dose- and LET-dependent way to regulate the early G2/M arrest even as low as 0.2 Gy for heavy ion radiation, which indicated that ATR pathway could be rapidly activated and functioned in an ATM-independent, but DSB complexity-dependent manner following exposure to IR. Furthermore, ATR pathway also functioned more efficiently in ATM-proficient cells to block G2 to M transition at early period of particle radiation exposure. Accordingly, in contrast to ATM inhibitor, ATR inhibitor had a more effective radiosensitizing effect on survival fraction following heavy ion beams as compared with X ray radiation. Taken together, our results reveal that the complexity of DSBs is a crucial factor for the activation of ATR pathway for G2/M checkpoint regulation, and ATM-dependent end resection is not essential for the activation.  相似文献   

16.
PurposeEvidence from in vivo studies suggests there are enhanced radiation effects in abscopal regions after local head gamma ray irradiation. Splenocyte apoptosis and T lymphocyte micronuclei were induced at higher rates than what would be estimated given the dose at a shielded, distant position. In addition, we evaluated the radio-protective effects of ascorbic acid, acting as a radical scavenger on enhanced radiation effects in the shielded spleen following local head irradiation.Methods and materialsThe heads of C3H mice were exposed to γ-rays (10–20 Gy), while the other parts of the body were shielded with a 5 cm-thick lead block. The effective dose for the spleen was calculated at 1.0–2.0 Gy. Splenocytes were isolated 24 h after cranial irradiation and their apoptosis was measured with an Elisa kit (Roche). The induction of T lymphocyte micronuclei was studied using the cytokinesis-block micronucleus assay. The ascorbic acid glucoside, 2-O-alpha-d-glucopyranosyl-l-ascorbic acid (AA-2G), was orally administered to mice 1 h before whole body irradiation. The radio protective effects of AA-2G were estimated by comparing the induction of splenocyte damage (by apoptosis) and micronucleus induction.ResultsThe splenocyte damage, as measured by the above two methods, was more excessive than what would be expected given exposure to 1.0–2.0 Gy of radiation. Our results suggest that the effects were enhanced in a distant, non-irradiated organ after localized irradiation. Plasma ascorbic acid concentrations were increased 8–10× over control. Treatment with ascorbic acid slightly protected mouse splenocytes from the induction of apoptosis by the enhanced effects of radiation in the abscopal region. However, ascorbic acid significantly inhibited micronucleus induction in splenic T lymphocytes following local head irradiation.ConclusionsOur results suggest that ascorbic acid effectively scavenged radiation-induced radicals and protected against the enhanced effects of radiation in an abscopal region after local head gamma ray irradiation.  相似文献   

17.
DNA damage response (DDR) to double strand breaks is coordinated by 3 phosphatidylinositol 3-kinase-related kinase (PIKK) family members: the ataxia-telangiectasia mutated kinase (ATM), the ATM and Rad3-related (ATR) kinase and the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs). ATM and ATR are central players in activating cell cycle checkpoints and function as an active barrier against genome instability and tumorigenesis in replicating cells. Loss of ATM function is frequently reported in various types of tumors, thus placing more reliance on ATR for checkpoint arrest and cell survival following DNA damage. To investigate the role of ATR in the G2/M checkpoint regulation in response to ionizing radiation (IR), particularly when ATM is deficient, cell lines deficient of ATM, ATR, or both were generated using a doxycycline-inducible lentiviral system. Our data suggests that while depletion of ATR or ATM alone in wild-type human mammary epithelial cell cultures (HME-CCs) has little effect on radiosensitivity or IR-induced G2/M checkpoint arrest, depletion of ATR in ATM-deficient cells causes synthetic lethality following IR, which correlates with severe G2/M checkpoint attenuation. ATR depletion also inhibits IR-induced autophagy, regardless of the ATM status, and enhances IR-induced apoptosis particularly when ATM is deficient. Collectively, our results clearly demonstrate that ATR function is required for the IR-induced G2/M checkpoint activation and subsequent survival of cells with ATM deficiency. The synthetic lethal interaction between ATM and ATR in response to IR supports ATR as a therapeutic target for improved anti-cancer regimens, especially in tumors with a dysfunctional ATM pathway.  相似文献   

18.
Polymeric nanoparticles (NPs) comprised of hydrophilic poly(γ-glutamic acid) in the main chain and hydrophobic phenylalanine in the side chain (γ-PGA-Phe) are a promising vaccine carrier for various kinds of diseases. However, little is known about the fate of subcutaneously administered γ-PGA-Phe NPs. Therefore, we newly synthesized γ-PGA graft phenylalanine and tyrosine conjugates (γ-PGA-Phe-Tyr), and then γ-PGA-Phe-Tyr NPs were labeled with 125I for monitoring their biodistribution (γ-PGA-Phe-Tyr(125I) NPs). Dynamic light scattering (DLS) measurements showed that γ-PGA-Phe-Tyr(125I) NPs showed 200 nm in diameter and a negative ζ-potential, which was comparable to those of their precursors. γ-scintigraphic images showed that in mice, subcutaneously injected γ-PGA-Phe-Tyr(125I) NPs were mainly observed at the site of injection (SOI), but not other organs 1 h after administration. However, γ-PGA-PheTyr(125I) NPs were almost undetectable at the SOI and other organs at 11 days postinjection. Similar results were observed when γ-PGA-Phe-Tyr(125I) NPs were subcutaneously injected into rats. Furthermore, at 11 days postinjection, 73 ± 3% of the injected dose of γ-PGA-Phe-Tyr(125I) NPs was detected in the feces (14 ± 1%) and urine (59 ± 1%). These results clearly showed that subcutaneously injected γ-PGA-Phe-Tyr(125I) NPs were cleared from the body, and γ-PGA-Phe NPs were safe and effective vaccine carriers.  相似文献   

19.
20.
PurposeTo measure the environmental doses from stray neutrons in the vicinity of a solid slab phantom as a function of beam energy, field size and modulation width, using the proton pencil beam scanning (PBS) technique.MethodMeasurements were carried out using two extended range WENDI-II rem-counters and three tissue equivalent proportional counters. Detectors were suitably placed at different distances around the RW3 slab phantom. Beam irradiation parameters were varied to cover the clinical ranges of proton beam energies (100–220 MeV), field sizes ((2 × 2)–(20 × 20) cm2) and modulation widths (0–15 cm).ResultsFor pristine proton peak irradiations, large variations of neutron H1(10)/D were observed with changes in beam energy and field size, while these were less dependent on modulation widths. H1(10)/D for pristine proton pencil beams varied between 0.04 μSv Gy−1 at beam energy 100 MeV and a (2 × 2) cm2 field at 2.25 m distance and 90° angle with respect to the beam axis, and 72.3 μSv Gy−1 at beam energy 200 MeV and a (20 × 20) cm2 field at 1 m distance along the beam axis.ConclusionsThe obtained results will be useful in benchmarking Monte Carlo calculations of proton radiotherapy in PBS mode and in estimating the exposure to stray radiation of the patient. Such estimates may be facilitated by the obtained best-fitted simple analytical formulae relating the stray neutron doses at points of interest with beam irradiation parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号