首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eukaryotic peptide release factor 3 (eRF3) is a conserved, essential gene in eukaryotes implicated in translation termination. We have systematically measured the contribution of eRF3 to the rates of peptide release with both saturating and limiting levels of eukaryotic release factor 1 (eRF1). Although eRF3 modestly stimulates the absolute rate of peptide release (∼5-fold), it strongly increases the rate of peptide release when eRF1 is limiting (>20-fold). This effect was generalizable across all stop codons and in a variety of contexts. Further investigation revealed that eRF1 remains associated with ribosomal complexes after peptide release and subunit dissociation and that eRF3 promotes the dissociation of eRF1 from these post-termination complexes. These data are consistent with models where eRF3 principally affects binding interactions between eRF1 and the ribosome, either prior to or subsequent to peptide release. A role for eRF3 as an escort for eRF1 into its fully accommodated state is easily reconciled with its close sequence similarity to the translational GTPase EFTu.  相似文献   

2.
Termination of translation in eukaryotes is governed by the ribosome, a termination codon in the mRNA, and two polypeptide chain release factors (eRF1 and eRF3). We have identified a human protein of 628 amino acids, named eRF3b, which is highly homologous to the known human eRF3 henceforth named eRF3a. At the nucleotide and at the amino acid levels the human eRF3a and eRF3b are about 87% identical. The differences in amino acid sequence are concentrated near the amino terminus. The most important difference in the nucleotide sequence is that eRF3b lacks a GGC repeat close to the initiation codon in eRF3a. We have cloned the cDNA encoding the human eRF3b, purified the eRF3b expressed in Escherichia coli, and found that the protein is active in vitroas a potent stimulator of the release factor activity of human eRFl. Like eRF3a, eRF3b exhibits GTPase activity, which is ribosome- and eRFl-dependent. In vivoassays (based on suppression of readthrough induced by three species of suppressor tRNAs: amber, ochre, and opal) show that the human eRF3b is able to enhance the release factor activity of endogenous and overexpressed eRF1 with all three stop codons.  相似文献   

3.
蛋白质合成终止过程中肽链释放因子负责终止密码子的识别.真核生物第二类肽链释放因子(eRF3)是一类GTP酶,协助第一类肽链释放因子(eRF1)识别终止密码子和水解肽酰 tRNA酯键.之前的研究表明,两类肽链释放因子在细胞核中发挥功能,参与蛋白质合成和纺锤体的组装.本研究根据软件预测结果,构建了一系列八肋游仆虫eRF3的截短型突变体,分析在其N端是否存在引导eRF3的核定位信号.结果表明,在eRF3的N端有两个区域(NLS1:23-36 aa 和 NLS2: 236-272 aa)可以引导eRF3进入细胞核中,而且这两个区域具有典型的核定位信号的氨基酸序列特征. eRF3的核定位与其作为一种穿梭蛋白的功能相一致,即参与细胞有丝分裂纺锤体的形成和无义介导的mRNA降解途径.  相似文献   

4.
以八肋游仆虫第二类肽链释放因子eRF3基因为模板,用PCR的方法获得eRF3的C端(eRF3C)和C端缺失76个氨基酸的突变体eRF3Ct片段,并构建重组表达质粒pGEX-6p-1-eRF3C和pGEX-6p-1-eRF3Ct,转入大肠杆菌BL21(DE3)中获得了可溶性表达。通过Glutathione Sepharose 4B柱亲和层析纯化,重组蛋白GST-eRF3C和GST-eRF3Ct获得纯化。Western blotting分析表明获得的蛋白为目的蛋白。PreScission酶切割后得到eRF3C和eRF3Ct蛋白。体外pull down分析显示eRF3C和eRF3Ct均能与八肋游仆虫第一类释放因子eRF1a相互作用,这表明八肋游仆虫eRF3 C端的76个氨基酸对于释放因子eRF1a的结合不是必需的。  相似文献   

5.
Translation termination in eukaryotes is governed by the concerted action of eRF1 and eRF3 factors. eRF1 recognizes the stop codon in the A site of the ribosome and promotes nascent peptide chain release, and the GTPase eRF3 facilitates this peptide release via its interaction with eRF1. In addition to its role in termination, eRF3 is involved in normal and nonsense-mediated mRNA decay through its association with cytoplasmic poly(A)-binding protein (PABP) via PAM2-1 and PAM2-2 motifs in the N-terminal domain of eRF3. We have studied complex formation between full-length eRF3 and its ligands (GDP, GTP, eRF1 and PABP) using isothermal titration calorimetry, demonstrating formation of the eRF1:eRF3:PABP:GTP complex. Analysis of the temperature dependence of eRF3 interactions with G nucleotides reveals major structural rearrangements accompanying formation of the eRF1:eRF3:GTP complex. This is in contrast to eRF1:eRF3:GDP complex formation, where no such rearrangements were detected. Thus, our results agree with the established active role of GTP in promoting translation termination. Through point mutagenesis of PAM2-1 and PAM2-2 motifs in eRF3, we demonstrate that PAM2-2, but not PAM2-1 is indispensible for eRF3:PABP complex formation.  相似文献   

6.
eRF3 is a GTPase associated with eRF1 in a complex that mediates translation termination in eukaryotes. In mammals, two genes encode two distinct forms of eRF3, eRF3a and eRF3b, which differ in their N-terminal domains. Both bind eRF1 and stimulate its release activity in vitro. However, whether both proteins can function as termination factors in vivo has not been determined. In this study, we used short interfering RNAs to examine the effect of eRF3a and eRF3b depletion on translation termination efficiency in human cells. By measuring the readthrough at a premature nonsense codon in a reporter mRNA, we found that eRF3a silencing induced an important increase in readthrough whereas eRF3b silencing had no significant effect. We also found that eRF3a depletion reduced the intracellular level of eRF1 protein by affecting its stability. In addition, we showed that eRF3b overexpression alleviated the effect of eRF3a silencing on readthrough and on eRF1 cellular levels. These results suggest that eRF3a is the major factor acting in translation termination in mammals and clearly demonstrate that eRF3b can substitute for eRF3a in this function. Finally, our data indicate that the expression level of eRF3a controls the formation of the termination complex by modulating eRF1 protein stability.  相似文献   

7.
Collection of missense mutations in the SUP45 gene of Saccharomyces cerevisiae encoding translation termination factor eRF1 has been obtained by different approaches. It has been shown that most of isolated mutations cause amino acid substitutions in the N-terminal part of eRF1 and do not decrease the eRF1 amount. Most of mutations studied do not abolish eRF1–eRF3 interaction. The role of the N-terminal part of eRF1 in stop codon recognition is discussed.  相似文献   

8.
Eukaryotic translation termination is triggered by peptide release factors eRF1 and eRF3. eRF1 recognizes the stop codon and promotes nascent peptide chain release, while eRF3 facilitates this peptide release in a GTP-dependent manner. In addition to its role in termination, eRF3 is involved in normal and nonsense-mediated mRNA decay. Despite extensive investigation, the complete understanding of eRF3 function have been hampered by the lack of specific anti-eRF3 monoclonal antibodies (Mabs). The purpose of the study was production of recombinant eRF3a/GSPT1, development of anti-eRF3a/GSPT1 Mabs and their utilization for eRF3a/GSPT1 sub-cellular localization. Plasmid encoding C-terminal part of human GSPT1/eRF3a was constructed. Purified protein, which was predominantly present in the inclusion bodies, was used for the development of Mabs. Characterization of the regions recognized by Mabs using GSPT1/eRF3a mutants and its visualization in the 3D space suggested that Mabs recognize different epitopes. Consistent with its function in translational termination, immunostaining of the cells with developed Mabs revealed that the endogenous GSPT1/eRF3a localized in endoplasmic reticulum. Taking into account the important role of eRF3 for the fundamental research one can suggests that developed Mabs have great prospective to be used as a research reagent in a wide range of applications.  相似文献   

9.
编程性翻译移码是mRNA翻译为多肽链时核糖体沿mRNA正向或反向滑动1个碱基才能表达出1个完整多肽链的现象. 人的肽链释放因子eRF1对HIV-1病毒的编程性-1移码有直接的影响. 而且在频繁发生编程性+1移码的单细胞真核生物游仆虫中,肽链释放因子eRF1对编程性移码也有明显的影响. 为进一步研究eRF1中影响编程性翻译移码的关键序列及调控机理,本研究将含有不同终止密码子的移码序列和已报道的游仆虫移码基因Ndr2分别插入双荧光素酶报告基因中,成功建立了可在酵母中进行研究的编程性移码报告检测体系. 利用游仆虫肽链释放因子Eo-eRF1b的N结构域和酵母肽链释放因子Sc eRF1的MC结构域构建了杂合肽链释放因子(Eo/Sc eRF1),检测Eo-eRF1b N结构域中的不同突变位点对移码效率的影响. 结果表明,游仆虫肽链释放因子eRF1b中YCF区的突变能明显促进含终止密码UAA的移码序列的移码,推测这可能是由于eRF1突变体降低了对UAA的识别所导致. 此外,杂合肽链释放因子Eo/Sc eRF1能够有效地提高移码基因Ndr2的移码效率. eRF1b中YCF区的突变同样能明显促进 Ndr2的移码. 因此, 游仆虫肽链释放因子YCF区的特殊序列可能是这种生物中发生编程性移码频率较高的原因之一. 本研究为探讨纤毛虫编程性翻译移码调控机制提供了实验数据.  相似文献   

10.
Eukaryotic translation termination is governed by eRF1 and eRF3. eRF1 recognizes the stop codons and then hydrolyzes peptidyl-tRNA. eRF3, which facilitates the termination process, belongs to the GTPase superfamily. In this study, the effect of the MC domain of eRF1a (eRF1aMC) on the GTPase activity of eRF3 was analyzed using fluorescence spectra and high-performance liquid chromatography. The results indicated eRF1aMC promotes the GTPase activity of eRF3, which is similar to the role of eRF1a. Furthermore, the increased affinity of eRF3 for GTP induced by eRF1aMC was dependent on the concentration of Mg(2+). Changes in the secondary structure of eRF3C after binding GTP/GDP were detected by CD spectroscopy. The results revealed changes of conformation during formation of the eRF3C·GTP complex that were detected in the presence of eRF1a or eRF1aMC. The conformations of the eRF3C·eRF1a·GTP and eRF3C·eRF1aMC·GTP complexes were further altered upon the addition of Mg(2+). By contrast, there was no change in the conformation of GTP bound to free eRF3C or the eRF3C·eRF1aN complex. These results suggest that alterations in the conformation of GTP bound to eRF3 is dependent on eRF1a and Mg(2+), whereas the MC domain of eRF1a is responsible for the change in the conformation of GTP bound to eRF3 in Euplotes octocarinatus.  相似文献   

11.
In eukaryotes, eRF1 and eRF3 are associated in a complex that mediates translation termination. The regulation of the formation of this complex in vivo is far from being understood. In mammalian cells, depletion of eRF3a causes a reduction of eRF1 level by decreasing its stability. Here, we investigate the status of eRF3a when not associated with eRF1. We show that eRF3a forms altered in their eRF1-binding site have a decreased stability, which increases upon cell treatment with the proteasome inhibitor MG132. We also show that eRF3a forms altered in eRF1 binding as well as wild-type eRF3a are polyubiquitinated. These results indicate that eRF3a is degraded by the proteasome when not associated with eRF1 and suggest that proteasomal degradation of eRF3a controls translation termination complex formation by adjusting the eRF3a level to that of eRF1.  相似文献   

12.
第二类肽链释放因子eRF3(eukaryotic polypeptide release factor)是一种GTPase,它促进第一类肽链释放因子eRFl的释放活性,并与细胞周期调控、细胞骨架组装、细胞凋亡和肿瘤形成等过程相关。哺乳动物细胞中eRF3有两种——eRF3a和eRF3b,分别由GSPTl和GSPT2(G1 to Sphase transition 1/2)基因编码。生存素(survivin)是迄今发现的最强有力的凋亡抑制因子,具有独特的结构和复杂的功能,不仅可以抑制细胞凋亡,还参与细胞有丝分裂、血管的生成等过程。eRF3和survivin都与细胞周期和细胞凋亡的调控相关。该实验室的前期研究表明,eRF3和survivin具有相互作用关系。该研究进一步对eRF3a进行截短突变。采用酵母双杂交和pull.down两种分析方法依次验证eRF3a(1.72aa)和eRF3a(1—36aa)与survivin的相互作用关系。结果表明,eRF3a(1.72aa)和eRF3a(1—36aa)均可以与survivin相互作用,由此确定eRF3a与survivinf相互作用的最小结构域位于其N末端1-36aa之间,从而为进一步证实eRF3a的N端结构域与survivin协同作用参与细胞周期和细胞凋亡的调控提供了数据支持。  相似文献   

13.
GTP hydrolysis catalyzed in the ribosome by a complex of two polypeptide release factors, eRF1 and eRF3, is required for fast and efficient termination of translation in eukaryotes. Here, isothermal titration calorimetry is used for the quantitative thermodynamic characterization of eRF3 interactions with guanine nucleotides, eRF1 and Mg2+. We show that (i) eRF3 binds GDP (Kd = 1.9 μM) and this interaction depends only minimally on the Mg2+ concentration; (ii) GTP binds to eRF3 (Kd = 0.5 μM) only in the presence of eRF1 and this interaction depends on the Mg2+ concentration; (iii) GTP displaces GDP from the eRF1•eRF3•GDP complex, and vice versa; (iv) eRF3 in the GDP-bound form improves its ability to bind eRF1; (v) the eRF1•eRF3 complex binds GDP as efficiently as free eRF3; (vi) the eRF1•eRF3 complex is efficiently formed in the absence of GDP/GTP but requires the presence of the C-terminus of eRF1 for complex formation. Our results show that eRF1 mediates GDP/GTP displacement on eRF3. We suggest that after formation of eRF1•eRF3•GTP•Mg2+, this quaternary complex binds to the ribosomal pretermination complex containing P-site-bound peptidyl-tRNA and the A-site-bound stop codon. The guanine nucleotide binding properties of eRF3 and of the eRF3•eRF1 complex profoundly differ from those of prokaryotic RF3.  相似文献   

14.
Ribosome stalling is an important incident enabling the cellular quality control machinery to detect aberrant mRNA. Saccharomyces cerevisiae Hbs1-Dom34 and Ski7 are homologs of the canonical release factor eRF3-eRF1, which recognize stalled ribosomes, promote ribosome release, and induce the decay of aberrant mRNA. Polyadenylated nonstop mRNA encodes aberrant proteins containing C-terminal polylysine segments which cause ribosome stalling due to electrostatic interaction with the ribosomal exit tunnel. Here we describe a novel mechanism, termed premature translation termination, which releases C-terminally truncated translation products from ribosomes stalled on polylysine segments. Premature termination during polylysine synthesis was abolished when ribosome stalling was prevented due to the absence of the ribosomal protein Asc1. In contrast, premature termination was enhanced, when the general rate of translation elongation was lowered. The unconventional termination event was independent of Hbs1-Dom34 and Ski7, but it was dependent on eRF3. Moreover, premature termination during polylysine synthesis was strongly increased in the absence of the ribosome-bound chaperones ribosome-associated complex (RAC) and Ssb (Ssb1 and Ssb2). On the basis of the data, we suggest a model in which eRF3-eRF1 can catalyze the release of nascent polypeptides even though the ribosomal A-site contains a sense codon when the rate of translation is abnormally low.  相似文献   

15.
Termination of translation in eukaryotes is governed by the ribosome, a termination codon in the mRNA, and two polypeptide chain release factors (eRF1 and eRF3). We have identified a human protein of 628 amino acids, named eRF3b, which is highly homologous to the known human eRF3 henceforth named eRF3a. At the nucleotide and at the amino acid levels the human eRF3a and eRF3b are about 87% identical. The differences in amino acid sequence are concentrated near the amino terminus. The most important difference in the nucleotide sequence is that eRF3b lacks a GGC repeat close to the initiation codon in eRF3a. We have cloned the cDNA encoding the human eRF3b, purified the eRF3b expressed in Escherichia coli, and found that the protein is active in vitro as a potent stimulator of the release factor activity of human eRFl. Like eRF3a, eRF3b exhibits GTPase activity, which is ribosome- and eRFl-dependent. In vivo assays (based on suppression of readthrough induced by three species of suppressor tRNAs: amber, ochre, and opal) show that the human eRF3b is able to enhance the release factor activity of endogenous and overexpressed eRFl with all three stop codons.  相似文献   

16.
Eukaryotic translation termination is mediated by two release factors: eRF1 recognizes stop codons and triggers peptidyl-tRNA hydrolysis, whereas eRF3 accelerates this process in a GTP-dependent manner. Here we report kinetic analysis of guanine nucleotide binding to eRF3 performed by fluorescence stopped-flow technique using GTP/GDP derivatives carrying the fluorescent methylanthraniloyl (mant-) group, as well as thermodynamic analysis of eRF3 binding to unlabeled guanine nucleotides. Whereas the kinetics of eRF3 binding to mant-GDP is consistent with a one-step binding model, the double-exponential transients of eRF3 binding to mant-GTP indicate a two-step binding mechanism, in which the initial eRF3.mant-GTP complex undergoes subsequent conformational change. The affinity of eRF3 for GTP (K(d), approximately 70 microM) is about 70-fold lower than for GDP (K(d), approximately 1 microM) and both nucleotides dissociate rapidly from eRF3 (k(-1)(mant-GDP) approximately 2.4 s(-1); k(-2)(mant-GTP) approximately 3.3 s(-1)). Whereas not influencing eRF3 binding to GDP, association of eRF3 with eRF1 at physiological Mg(2+) concentrations specifically changes the kinetics of eRF3/mant-GTP interaction and stabilizes eRF3.GTP binding by two orders of magnitude (K(d) approximately 0.7 microM) due to lowering of the dissociation rate constant approximately 24-fold (k(-1)(mant-GTP) approximately 0.14s(-1) approximately 0.14 s(-1)). Thus, eRF1 acts as a GTP dissociation inhibitor (TDI) for eRF3, promoting efficient ribosomal recruitment of its GTP-bound form. 80 S ribosomes did not influence guanine nucleotide binding/exchange on the eRF1 x eRF3 complex. Guanine nucleotide binding and exchange on eRF3, which therefore depends on stimulation by eRF1, is entirely different from that on prokaryotic RF3 and unusual among GTPases.  相似文献   

17.
Eukaryotic translation termination is triggered by peptide release factors eRF1 and eRF3. Whereas eRF1 recognizes all three termination codons and induces hydrolysis of peptidyl tRNA, eRF3's function remains obscure. Here, we reconstituted all steps of eukaryotic translation in vitro using purified ribosomal subunits; initiation, elongation, and termination factors; and aminoacyl tRNAs. This allowed us to investigate termination using pretermination complexes assembled on mRNA encoding a tetrapeptide and to propose a model for translation termination that accounts for the cooperative action of eRF1 and eRF3 in ensuring fast release of nascent polypeptide. In this model, binding of eRF1, eRF3, and GTP to pretermination complexes first induces a structural rearrangement that is manifested as a 2 nucleotide forward shift of the toeprint attributed to pretermination complexes that leads to GTP hydrolysis followed by rapid hydrolysis of peptidyl tRNA. Cooperativity between eRF1 and eRF3 required the eRF3 binding C-terminal domain of eRF1.  相似文献   

18.
In eukaryotes, eRF3 participates translation termination and belongs to the superfamily of GTPase. In this work, dissociation constants for E. octocarinatus eRF3 binding to nucleosides in presence and absence of eRF1a were determined using fluorescence spectra methods. Furthermore, the GTP hydrolyzing assay of Eo-eRF3 was carried out by HPLC methods and the kinetic parameter for GTP hydrolysis by eRF3 was determined. The results showed eRF1a could promote GTP binding to eRF3 and hydrolyzing GTP activity of eRF3. The observation is consistent with the data from human. Whereas E. octocarinatus eRF3 alone can bind GTP in contrast to no GTP binding observed in the absence of eRF1 in human eRF3. The affinity for Eo-eRF3 binding nucleotides is different from that in human. Structure model and amino acids sequence alignment of potential G domains indicated these different may be due to Valine 317 and Glutamate 452 displacing conserved Glycine and Lysine, which were involved in GTP binding.  相似文献   

19.
Kononenko  A. V.  Dembo  K. A.  Kisselev  L. L.  Volkov  V. V. 《Molecular Biology》2004,38(2):253-260
The integral structural parameters and the shape of the molecule of human translation termination factor eRF1 were determined from the small-angle X-ray scattering in solution. The molecular shapes were found by bead modeling with nonlinear minimization of the root-mean-square deviation of the calculated from the experimental scattering curve. Comparisons of the small-angle scattering curves computed for atomic-resolution structures of eRF1 with the experimental data on scattering from solution testified that the crystal and the solution conformations are close. In the ribosome, the distance between the eRF1 motifs GGQ and NIKS must be shorter than in crystal or solution (75 versus 100–107 Å). Therefore, like its bacterial counterpart RF2, the eukaryotic eRF1 must change its conformation as it binds to the ribosome. The conformational mobility of eukaryotic and prokaryotic class-1 release factors is another feature making them functionally akin to tRNA.  相似文献   

20.
GTP is essential for eukaryotic translation termination, where the release factor 3 (eRF3) complexed with eRF1 is involved as the guanine nucleotide-binding protein. In addition, eRF3 regulates the termination-coupled events, eRF3 interacts with poly(A)-binding protein (Pab1) and the surveillance factor Upf1 to mediate normal and nonsense-mediated mRNA decay. However, the roles of GTP binding to eRF3 in these processes remain largely unknown. Here, we showed in yeast that GTP is essentially required for the association of eRF3 with eRF1, but not with Pab1 and Upf1. A mutation in the GTP-binding motifs of eRF3 impairs the eRF1-binding ability without altering the Pab1- or Upf1-binding activity. Interestingly, the mutation causes not only a defect in translation termination but also delay of normal and nonsense-mediated mRNA decay, suggesting that GTP/eRF3-dependent termination exerts its influence on the subsequent mRNA degradation. The termination reaction itself is not sufficient, but eRF3 is essential for triggering mRNA decay. Thus, eRF3 is a key mediator that transduces termination signal to mRNA decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号