首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The proper development and maturation of neuronal circuits require precise migration of component neurons from their birthplace (germinal zone) to their final positions. Little is known about the effects of aberrant neuronal position on the functioning of organized neuronal groups, especially in mammals. Here, we investigated the formation and properties of brainstem respiratory neurons in looptail (Lp) mutant mice in which facial motor neurons closely apposed to some respiratory neurons fail to migrate due to loss of function of the Wnt/Planar Cell Polarity (PCP) protein Vangl2. Using calcium imaging and immunostaining on embryonic hindbrain preparations, we found that respiratory neurons constituting the embryonic parafacial oscillator (e-pF) settled at the ventral surface of the medulla in Vangl2Lp/+ and Vangl2Lp/Lp embryos despite the failure of tangential migration of its normally adjacent facial motor nucleus. Anatomically, the e-pF neurons were displaced medially in Lp/+ embryos and rostro-medially Lp/Lp embryos. Pharmacological treatments showed that the e-pF oscillator exhibited characteristic network properties in both Lp/+ and Lp/Lp embryos. Furthermore, using hindbrain slices, we found that the other respiratory oscillator, the preBötzinger complex, was also anatomically and functionally established in Lp mutants. Importantly, the displaced e-pF oscillator established functional connections with the preBötC oscillator in Lp/+ mutants. Our data highlight the robustness of the developmental processes that assemble the neuronal networks mediating an essential physiological function.  相似文献   

2.
3.
Neurons in the mammalian neocortex arise from asymmetric divisions of progenitors residing in the ventricular zone. While in most progenitor divisions, the mitotic spindle is parallel to the ventricular surface, some progenitors reorient the spindle and divide in oblique orientations. Here, we use conditional deletion and overexpression of mouse Inscuteable (mInsc) to analyze the relevance of spindle reorientation in cortical progenitors. Mutating mInsc almost abolishes oblique and vertical mitotic spindles, while mInsc overexpression has the opposite effect. Our data suggest that oblique divisions are essential for generating the correct numbers of neurons in all cortical layers. Using clonal analysis, we demonstrate that spindle orientation affects the rate of indirect neurogenesis, a process where progenitors give rise to basal progenitors, which in turn divide symmetrically into two differentiating neurons. Our results indicate that the orientation of progenitor cell divisions is important for correct lineage specification in the developing mammalian brain.  相似文献   

4.
The epidermis is a multilayered epithelium that requires asymmetric divisions for stratification. A conserved cortical protein complex, including LGN, nuclear mitotic apparatus (NuMA), and dynein/dynactin, plays a key role in establishing proper spindle orientation during asymmetric divisions. The requirements for the cortical recruitment of these proteins, however, remain unclear. In this work, we show that NuMA is required to recruit dynactin to the cell cortex of keratinocytes. NuMA''s cortical recruitment requires LGN; however, LGN interactions are not sufficient for this localization. Using fluorescence recovery after photobleaching, we find that the 4.1-binding domain of NuMA is important for stabilizing its interaction with the cell cortex. This is functionally important, as loss of 4.1/NuMA interaction results in spindle orientation defects, using two distinct assays. Furthermore, we observe an increase in cortical NuMA localization as cells enter anaphase. Inhibition of Cdk1 or mutation of a single residue in NuMA mimics this effect. NuMA''s anaphase localization is independent of LGN and 4.1 interactions, revealing two distinct mechanisms responsible for NuMA cortical recruitment at different stages of mitosis. This work highlights the complexity of NuMA localization and reveals the importance of NuMA cortical stability for productive force generation during spindle orientation.  相似文献   

5.

Background

Mutations in the Planar Cell Polarity (PCP) core gene Vangl2 cause the most severe neural tube defects (NTD) in mice and humans. Genetic studies show that the Vangl2 gene genetically interacts with a close homologue Vangl1. How precisely Vangl2 and Vangl1 proteins interact and crosstalk has remained a difficult issue to address, with the main obstacle being the accurate discrimination of the two proteins, which share close sequence homology. Experimental evidence previously presented has been sparse and addressed with ectopically expressed proteins or with antibodies unable to biochemically discriminate Vangl1 from Vangl2, therefore giving rise to unclear results.

Methodology and Main Findings

A highly specific monoclonal anti-Vangl2 antibody was generated and rigorously tested on both recombinant and extracted Vangl2 using surface plasmon resonance (SPR) analysis, western blot, and immunoprecipitation experiments. This antibody efficiently affinity-purified Vangl2 from cell lysates and allowed the unambiguous identification of endogenous Vangl2 by proteomic analysis. Vangl1 was also present in Vangl2 immunoprecipitates, establishing the first biochemical evidence for the existence of Vangl2/Vangl1 heterodimers at an endogenous level. Epitope-tagged Vangl2 and Vangl1 confirmed that both proteins interact and colocalize at the plasma membrane. The Vangl2 antibody is able to acutely assess differential expression levels of Vangl2 protein in culture cell lines, as corroborated with gene expression analysis. We characterised Vangl2 expression in the cochlea of homozygous and heterozygous Lp mutant mice bearing a point mutation within the C-terminal Vangl2 region that leads to profound PCP defects. Our antibody could detect much lower levels of Vangl2Lp protein in mutant mice compared to the wild type mice.

Conclusion

Our results provide an in-depth biochemical characterisation of the interaction observed between Vangl paralogues.  相似文献   

6.

Planar cell polarity (PCP) signaling controls a number of morphogenetic processes including convergent extension during gastrulation and neural tube formation. Defects in this pathway cause neural tube defects (NTD), the most common malformations of the central nervous system. The Looptail (Lp) mutant mouse was the first mammalian mutant implicating a PCP gene (Vangl2) in the pathogenesis of NTD. We report on a novel chemically induced mutant allele at Vangl2 called Curly Bob that causes a missense mutation p.Ile268Asn (I268N) in the Vangl2 protein. This mutant segregates in a semi-dominant fashion with heterozygote mice displaying a looped tail appearance, bobbing head, and a circling behavior. Homozygote mutant embryos suffer from a severe form of NTD called craniorachischisis, severe PCP defects in the inner hair cells of the cochlea and posterior cristae, and display a distinct defect in retinal axon guidance. This mutant genetically interacts with the Lp allele (Vangl2 S464N) in neural tube development and inner ear hair cell polarity. The Vangl2I268N protein variant is expressed at very low levels in affected neural and retinal tissues of mutant homozygote embryos. Biochemical studies show that Vangl2I268N exhibits impaired targeting to the plasma membrane and accumulates in the endoplasmic reticulum. The Vangl2I268N variant no longer physically interacts with its PCP partner DVL3 and has a reduced protein half-life. This mutant provides an important model for dissecting the role of Vangl2 in the development of the neural tube, establishment of polarity of sensory cells of the auditory and vestibular systems, and retinal axon guidance.

  相似文献   

7.
In many cell types, mitotic spindle orientation relies on the canonical “LGN complex” composed of Pins/LGN, Mud/NuMA, and Gαi subunits. Membrane localization of this complex recruits motor force generators that pull on astral microtubules to orient the spindle. Drosophila Pins shares highly conserved functional domains with its two vertebrate homologs LGN and AGS3. Whereas the role of Pins and LGN in oriented divisions is extensively documented, involvement of AGS3 remains controversial. Here, we show that AGS3 is not required for planar divisions of neural progenitors in the mouse neocortex. AGS3 is not recruited to the cell cortex and does not rescue LGN loss of function. Despite conserved interactions with NuMA and Gαi in vitro, comparison of LGN and AGS3 functional domains in vivo reveals unexpected differences in the ability of these interactions to mediate spindle orientation functions. Finally, we find that Drosophila Pins is unable to substitute for LGN loss of function in vertebrates, highlighting that species‐specific modulations of the interactions between components of the Pins/LGN complex are crucial in vivo for spindle orientation.  相似文献   

8.
Cell polarity, mitotic spindle orientation and asymmetric division play a crucial role in the self-renewal/differentiation of epithelial cells, yet little is known about these processes and the molecular programs that control them in embryonic lung distal epithelium. Herein, we provide the first evidence that embryonic lung distal epithelium is polarized with characteristic perpendicular cell divisions. Consistent with these findings, spindle orientation-regulatory proteins Insc, LGN (Gpsm2) and NuMA, and the cell fate determinant Numb are asymmetrically localized in embryonic lung distal epithelium. Interfering with the function of these proteins in vitro randomizes spindle orientation and changes cell fate. We further show that Eya1 protein regulates cell polarity, spindle orientation and the localization of Numb, which inhibits Notch signaling. Hence, Eya1 promotes both perpendicular division as well as Numb asymmetric segregation to one daughter in mitotic distal lung epithelium, probably by controlling aPKCζ phosphorylation. Thus, epithelial cell polarity and mitotic spindle orientation are defective after interfering with Eya1 function in vivo or in vitro. In addition, in Eya1(-/-) lungs, perpendicular division is not maintained and Numb is segregated to both daughter cells in mitotic epithelial cells, leading to inactivation of Notch signaling. As Notch signaling promotes progenitor cell identity at the expense of differentiated cell phenotypes, we test whether genetic activation of Notch could rescue the Eya1(-/-) lung phenotype, which is characterized by loss of epithelial progenitors, increased epithelial differentiation but reduced branching. Indeed, genetic activation of Notch partially rescues Eya1(-/-) lung epithelial defects. These findings uncover novel functions for Eya1 as a crucial regulator of the complex behavior of distal embryonic lung epithelium.  相似文献   

9.
The orientation of cell division has a crucial role in early embryo body plan specification, axis determination and cell fate diversity generation, as well as in the morphogenesis of tissues and organs. In many instances, cell division orientation is regulated by the planar cell polarity (PCP) pathways: the Wnt/Frizzled non-canonical pathway or the Fat/Dachsous/Four-jointed pathway. Firstly, using asymmetric cell division in both Drosophila and C. elegans, we describe the central role of the Wnt/Frizzled pathway in the regulation of asymmetric cell division orientation, focusing on its cooperation with either the Src kinase pathway or the heterotrimeric G protein pathway. Secondly, we describe our present understanding of the mechanisms by which the planar cell polarity pathways drive tissue morphogenesis by regulating the orientation of symmetric cell division within a field of cells. Finally, we will discuss the important avenues that need to be explored in the future to better understand how planar cell polarity pathways control embryo body plan determination, cell fate specification or tissue morphogenesis by mitotic spindle orientation.  相似文献   

10.
Spindle positioning is believed to be governed by the interaction between astral microtubules and the cell cortex and involve cortically anchored motor protein dynein. How dynein is recruited to and regulated at the cell cortex to generate forces on astral microtubules is not clear. Here we show that mammalian homologue of Drosophila Pins (Partner of Inscuteable) (LGN), a Gαi-binding protein that is critical for spindle positioning in different systems, associates with cytoplasmic dynein heavy chain (DYNC1H1) in a Gαi-regulated manner. LGN is required for the mitotic cortical localization of DYNC1H1, which, in turn, also modulates the cortical accumulation of LGN. Using fluorescence recovery after photobleaching analysis, we show that cortical LGN is dynamic and the turnover of LGN relies, at least partially, on astral microtubules and DYNC1H1. We provide evidence for dynein- and astral microtubule–mediated transport of Gαi/LGN/nuclear mitotic apparatus (NuMA) complex from cell cortex to spindle poles and show that actin filaments counteract such transport by maintaining Gαi/LGN/NuMA and dynein at the cell cortex. Our results indicate that astral microtubules are required for establishing bipolar, symmetrical cortical LGN distribution during metaphase. We propose that regulated cortical release and transport of LGN complex along astral microtubules may contribute to spindle positioning in mammalian cells.  相似文献   

11.
Proper spindle orientation is required for asymmetric cell division and the establishment of complex tissue architecture. In the developing epidermis, spindle orientation requires a conserved cortical protein complex of LGN/NuMA/dynein-dynactin. However, how microtubule dynamics are regulated to interact with this machinery and properly position the mitotic spindle is not fully understood. Furthermore, our understanding of the processes that link spindle orientation during asymmetric cell division to cell fate specification in distinct tissue contexts remains incomplete. We report a role for the microtubule catastrophe factor KIF18B in regulating microtubule dynamics to promote spindle orientation in keratinocytes. During mitosis, KIF18B accumulates at the cell cortex, colocalizing with the conserved spindle orientation machinery. In vivo we find that KIF18B is required for oriented cell divisions within the hair placode, the first stage of hair follicle morphogenesis, but is not essential in the interfollicular epidermis. Disrupting spindle orientation in the placode, using mutations in either KIF18B or NuMA, results in aberrant cell fate marker expression of hair follicle progenitor cells. These data functionally link spindle orientation to cell fate decisions during hair follicle morphogenesis. Taken together, our data demonstrate a role for regulated microtubule dynamics in spindle orientation in epidermal cells. This work also highlights the importance of spindle orientation during asymmetric cell division to dictate cell fate specification.  相似文献   

12.
During development, facial branchiomotor (FBM) neurons, which innervate muscles in the vertebrate head, migrate caudally and radially within the brainstem to form a motor nucleus at the pial surface. Several components of the Wnt/planar cell polarity (PCP) pathway, including the transmembrane protein Vangl2, regulate caudal migration of FBM neurons in zebrafish, but their roles in neuronal migration in mouse have not been investigated in detail. Therefore, we analyzed FBM neuron migration in mouse looptail (Lp) mutants, in which Vangl2 is inactivated. In Vangl2(Lp/+) and Vangl2(Lp/Lp) embryos, FBM neurons failed to migrate caudally from rhombomere (r) 4 into r6. Although caudal migration was largely blocked, many FBM neurons underwent normal radial migration to the pial surface of the neural tube. In addition, hindbrain patterning and FBM progenitor specification were intact, and FBM neurons did not transfate into other non-migratory neuron types, indicating a specific effect on caudal migration. Since loss-of-function in some zebrafish Wnt/PCP genes does not affect caudal migration of FBM neurons, we tested whether this was also the case in mouse. Embryos null for Ptk7, a regulator of PCP signaling, had severe defects in caudal migration of FBM neurons. However, FBM neurons migrated normally in Dishevelled (Dvl) 1/2 double mutants, and in zebrafish embryos with disrupted Dvl signaling, suggesting that Dvl function is essentially dispensable for FBM neuron caudal migration. Consistent with this, loss of Dvl2 function in Vangl2(Lp/+) embryos did not exacerbate the Vangl2(Lp/+) neuronal migration phenotype. These data indicate that caudal migration of FBM neurons is regulated by multiple components of the Wnt/PCP pathway, but, importantly, may not require Dishevelled function. Interestingly, genetic-interaction experiments suggest that rostral FBM neuron migration, which is normally suppressed, depends upon Dvl function.  相似文献   

13.
During mammalian development, neuroepithelial cells function as mitotic progenitors, which self-renew and generate neurons. Although spindle orientation is important for such polarized cells to undergo symmetric or asymmetric divisions, its role in mammalian neurogenesis remains unclear. Here we show that control of spindle orientation is essential in maintaining the population of neuroepithelial cells, but dispensable for the decision to either proliferate or differentiate. Knocking out LGN, (the G protein regulator), randomized the orientation of normally planar neuroepithelial divisions. The resultant loss of the apical membrane from daughter cells frequently converted them into abnormally localized progenitors without affecting neuronal production rate. Furthermore, overexpression of Inscuteable to induce vertical neuroepithelial divisions shifted the fate of daughter cells. Our results suggest that planar mitosis ensures the self-renewal of neuroepithelial progenitors by one daughter inheriting both apical and basal compartments during neurogenesis.  相似文献   

14.
Neural tube defects (NTDs) are among the commonest and most severe forms of developmental defect, characterized by disruption of the early embryonic events of central nervous system formation. NTDs have long been known to exhibit a strong genetic dependence, yet the identity of the genetic determinants remains largely undiscovered. Initiation of neural tube closure is disrupted in mice homozygous for mutations in planar cell polarity (PCP) pathway genes, providing a strong link between NTDs and PCP signaling. Recently, missense gene variants have been identified in PCP genes in humans with NTDs, although the range of phenotypes is greater than in the mouse mutants. In addition, the sequence variants detected in affected humans are heterozygous, and can often be detected in unaffected individuals. It has been suggested that interactions between multiple heterozygous gene mutations cause the NTDs in humans. To determine the phenotypes produced in double heterozygotes, we bred mice with all three pairwise combinations of Vangl2Lp, ScribCrc and Celsr1Crsh mutations, the most intensively studied PCP mutants. The majority of double-mutant embryos had open NTDs, with the range of phenotypes including anencephaly and spina bifida, therefore reflecting the defects observed in humans. Strikingly, even on a uniform genetic background, variability in the penetrance and severity of the mutant phenotypes was observed between the different double-heterozygote combinations. Phenotypically, Celsr1Crsh;Vangl2Lp;ScribCrc triply heterozygous mutants were no more severe than doubly heterozygous or singly homozygous mutants. We propose that some of the variation between double-mutant phenotypes could be attributed to the nature of the protein disruption in each allele: whereas ScribCrc is a null mutant and produces no Scrib protein, Celsr1Crsh and Vangl2Lp homozygotes both express mutant proteins, consistent with dominant effects. The variable outcomes of these genetic interactions are of direct relevance to human patients and emphasize the importance of performing comprehensive genetic screens in humans.KEY WORDS: Neural tube defects, Planar cell polarity, Genetic interactions, Craniorachischisis, Multiple heterozygosity  相似文献   

15.
The development and maintenance of polarized epithelial tissue requires a tightly controlled orientation of mitotic cell division relative to the apical polarity axis. Hepatocytes display a unique polarized architecture. We demonstrate that mitotic hepatocytes asymmetrically segregate their apical plasma membrane domain to the nascent daughter cells. The non-polarized nascent daughter cell can form a de novo apical domain with its new neighbor. This asymmetric segregation of apical domains is facilitated by a geometrically distinct “apicolateral” subdomain of the lateral surface present in hepatocytes. The polarity protein partitioning-defective 1/microtubule-affinity regulating kinase 2 (Par1b/MARK2) translates this positional landmark to cortical polarity by promoting the apicolateral accumulation of Leu-Gly-Asn repeat-enriched protein (LGN) and the capture of nuclear mitotic apparatus protein (NuMA)–positive astral microtubules to orientate the mitotic spindle. Proliferating hepatocytes thus display an asymmetric inheritance of their apical domains via a mechanism that involves Par1b and LGN, which we postulate serves the unique tissue architecture of the developing liver parenchyma.  相似文献   

16.
Mutations of the huntingtin protein (HTT) gene underlie both adult-onset and juvenile forms of Huntington’s disease (HD). HTT modulates mitotic spindle orientation and cell fate in mouse cortical progenitors from the ventricular zone. Using human embryonic stem cells (hESC) characterized as carrying mutations associated with adult-onset disease during pre-implantation genetic diagnosis, we investigated the influence of human HTT and of an adult-onset HD mutation on mitotic spindle orientation in human neural stem cells (NSCs) derived from hESCs. The RNAi-mediated silencing of both HTT alleles in neural stem cells derived from hESCs disrupted spindle orientation and led to the mislocalization of dynein, the p150Glued subunit of dynactin and the large nuclear mitotic apparatus (NuMA) protein. We also investigated the effect of the adult-onset HD mutation on the role of HTT during spindle orientation in NSCs derived from HD-hESCs. By combining SNP-targeting allele-specific silencing and gain-of-function approaches, we showed that a 46-glutamine expansion in human HTT was sufficient for a dominant-negative effect on spindle orientation and changes in the distribution within the spindle pole and the cell cortex of dynein, p150Glued and NuMA in neural cells. Thus, neural derivatives of disease-specific human pluripotent stem cells constitute a relevant biological resource for exploring the impact of adult-onset HD mutations of the HTT gene on the division of neural progenitors, with potential applications in HD drug discovery targeting HTT-dynein-p150Glued complex interactions.  相似文献   

17.
Mitotic spindle orientation and plane of cleavage in mammals is a determinant of whether division yields progenitor expansion and/or birth of new neurons during radial glial progenitor cell (RGPC) neurogenesis, but its role earlier in neuroepithelial stem cells is poorly understood. Here we report that Lis1 is essential for precise control of mitotic spindle orientation in both neuroepithelial stem cells and radial glial progenitor cells. Controlled gene deletion of Lis1 in vivo in neuroepithelial stem cells, where cleavage is uniformly vertical and symmetrical, provokes rapid apoptosis of those cells, while radial glial progenitors are less affected. Impaired cortical microtubule capture via loss of cortical dynein causes astral and cortical microtubules to be greatly reduced in Lis1-deficient cells. Increased expression of the LIS/dynein binding partner NDEL1 restores cortical microtubule and dynein localization in Lis1-deficient cells. Thus, control of symmetric division, essential for neuroepithelial stem cell proliferation, is mediated through spindle orientation determined via LIS1/NDEL1/dynein-mediated cortical microtubule capture.  相似文献   

18.
Zhu J  Wen W  Zheng Z  Shang Y  Wei Z  Xiao Z  Pan Z  Du Q  Wang W  Zhang M 《Molecular cell》2011,43(3):418-431
Asymmetric cell division requires the establishment of cortical cell polarity and the orientation of the mitotic spindle along the axis of cell polarity. Evidence from invertebrates demonstrates that the Par3/Par6/aPKC and NuMA/LGN/Gαi complexes, which are thought to be physically linked by the adaptor protein mInscuteable (mInsc), play indispensable roles in this process. However, the molecular basis for the binding of LGN to NuMA and mInsc is poorly understood. The high-resolution structures of the LGN/NuMA and LGN/mInsc complexes presented here provide mechanistic insights into the distinct and highly specific interactions of the LGN TPRs with mInsc and NuMA. Structural comparisons, together with biochemical and cell biology studies, demonstrate that the interactions of NuMA and mInsc with LGN are mutually exclusive, with mInsc binding preferentially. Our results suggest that the Par3/mInsc/LGN and NuMA/LGN/Gαi complexes play sequential and partially overlapping roles in asymmetric cell division.  相似文献   

19.
Targeting of G proteins to the cell cortex and their activation is one of the triggers of both asymmetric and symmetric cell division. Resistance to inhibitors of cholinesterase 8 (RIC8), a guanine nucleotide exchange factor, activates a certain subgroup of G protein α-subunits in a receptor independent manner. RIC8 controls the asymmetric cell division in Caenorhabditis elegans and Drosophila melanogaster, and symmetric cell division in cultured mammalian cells, where it regulates the mitotic spindle orientation. Although intensely studied in mitosis, the function of RIC8 in mammalian meiosis has remained unknown. Here we demonstrate that the expression and subcellular localization of RIC8 changes profoundly during mouse oogenesis. Immunofluorescence studies revealed that RIC8 expression is dependent on oocyte growth and cell cycle phase. During oocyte growth, RIC8 is abundantly present in cytoplasm of oocytes at primordial, primary and secondary preantral follicle stages. Later, upon oocyte maturation RIC8 also populates the germinal vesicle, its localization becomes cell cycle dependent, and it associates with chromatin and the meiotic spindle. After fertilization, RIC8 protein converges to the pronuclei and is also detectable at high levels in the nucleolus precursor bodies of both maternal and paternal pronucleus. During first cleavage of zygote RIC8 localizes in the mitotic spindle and cell cortex of forming blastomeres. In addition, we demonstrate that RIC8 co-localizes with its interaction partners Gαi1/2:GDP and LGN in meiotic/mitotic spindle, cell cortex and polar bodies of maturing oocytes and zygotes. Downregulation of Ric8 by siRNA leads to interferred translocation of Gαi1/2 to cortical region of maturing oocytes and reduction of its levels. RIC8 is also expressed at high level in female reproductive organs e.g. oviduct. Therefore we suggest a regulatory function for RIC8 in mammalian gametogenesis and fertility.  相似文献   

20.
Mitotic spindle orientation relies on a complex dialog between the spindle microtubules and the cell cortex, in which F-actin has been recently implicated. Here, we report that the membrane–actin linkers ezrin/radixin/moesin (ERMs) are strongly and directly activated by the Ste20-like kinase at mitotic entry in mammalian cells. Using microfabricated adhesive substrates to control the axis of cell division, we found that the activation of ERMs plays a key role in guiding the orientation of the mitotic spindle. Accordingly, impairing ERM activation in apical progenitors of the mouse embryonic neocortex severely disturbed spindle orientation in vivo. At the molecular level, ERM activation promotes the polarized association at the mitotic cortex of leucine-glycine-asparagine repeat protein (LGN) and nuclear mitotic apparatus (NuMA) protein, two essential factors for spindle orientation. We propose that activated ERMs, together with Gαi, are critical for the correct localization of LGN–NuMA force generator complexes and hence for proper spindle orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号