首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caloric restriction (CR) extends the life span of organisms ranging from yeast to primates. Here, we show that the thiol-dependent peroxiredoxin Tsa1 and its partner sulfiredoxin, Srx1, are required for CR to extend the replicative life span of yeast cells. Tsa1 becomes hyperoxidized/inactive during aging, and CR mitigates such oxidation by elevating the levels of Srx1, which is required to reduce/reactivate hyperoxidized Tsa1. CR, by lowering cAMP-PKA activity, enhances Gcn2-dependent SRX1 translation, resulting in increased resistance to H(2)O(2) and life span extension. Moreover, an extra copy of the SRX1 gene is sufficient to extend the life span of cells grown in high glucose concentrations by 20% in?a Tsa1-dependent and Sir2-independent manner. The data demonstrate that Tsa1 is required to ensure yeast longevity and that CR extends yeast life span, in part, by counteracting age-induced hyperoxidation of this peroxiredoxin.  相似文献   

2.
Peroxiredoxins (Prxs) constitute a family of thiol-specific peroxidases that utilize cysteine (Cys) as the primary site of oxidation during the reduction of peroxides. To gain more insight into the physiological role of the five Prxs in budding yeast Saccharomyces cerevisiae, we performed a comparative study and found that Tsa1 was distinguished from the other Prxs in that by itself it played a key role in maintaining genome stability and in sustaining aerobic viability of rad51 mutants that are deficient in recombinational repair. Tsa2 and Dot5 played minor but distinct roles in suppressing the accumulation of mutations in cooperation with Tsa1. Tsa2 was capable of largely complementing the absence of Tsa1 when expressed under the control of the Tsa1 promoter. The presence of peroxidatic cysteine (Cys47) was essential for Tsa1 activity, while Tsa1C170S lacking the resolving Cys was partially functional. In the absence of Tsa1 activity (tsa1 or tsa1CCS lacking the peroxidatic and resolving Cys) and recombinational repair (rad51), dying cells displayed irregular cell size/shape, abnormal cell cycle progression, and significant increase of phosphatidylserine externalization, an early marker of apoptosis-like cell death. The tsa1CCS rad51– or tsa1 rad51–induced cell death did not depend on the caspase Yca1 and Ste20 kinase, while the absence of the checkpoint protein Rad9 accelerated the cell death processes. These results indicate that the peroxiredoxin Tsa1, in cooperation with appropriate DNA repair and checkpoint mechanisms, acts to protect S. cerevisiae cells against toxic levels of DNA damage that occur during aerobic growth.  相似文献   

3.
Sulfiredoxin catalyzes the ATP-dependent reduction of overoxidized eukaryotic 2-Cys peroxiredoxin PrxSO2 into sulfenic PrxSOH. Recent mechanistic studies on sulfiredoxins have validated a catalytic mechanism that includes formation of a phosphoryl intermediate on the sulfinyl moiety of PrxSO2, followed by an attack of the catalytic cysteine of sulfiredoxin on the phosphoryl intermediate that leads to formation of a thiosulfinate intermediate PrxSO-S-sulfiredoxin. Formation of this intermediate implies the recycling of sulfiredoxin into the reduced form. In this study, we have investigated how the reductase activity of the Saccharomyces cerevisiae sulfiredoxin is regenerated. The results show that an oxidized sulfiredoxin under disulfide state is formed between the catalytic Cys84 and Cys48. This oxidized sulfiredoxin species is shown to be catalytically competent along the sulfiredoxin-recycling process and is reduced selectively by thioredoxin. The lack of Cys48 in the mammalian sulfiredoxins and the low efficiency of reduction of the thiosulfinate intermediate by thioredoxin suggest a recycling mechanism in mammals different from that of sulfiredoxin from Saccharomyces cerevisiae.  相似文献   

4.
Thioredoxin peroxidase (Tpx), also named peroxiredoxin (Prx), is an important peroxidase that can protect organisms against stressful environments. AccTpx4, a 1-Cys thioredoxin peroxidase gene from the Chinese honey bee Apis cerana cerana, was cloned and characterized. The AccTpx4 gene encodes a protein that is predicted to contain the conserved PVCTTE motif from 1-Cys peroxiredoxin. Quantitative real-time PCR (Q-PCR) and Western blotting revealed that AccTpx4 was induced by various oxidative stresses, such as cold, heat, insecticides, H2O2, and HgCl2. The in vivo peroxidase activity assay showed that recombinant AccTpx4 protein could efficiently degrade H2O2 in the presence of DL-dithiothreitol (DTT). In addition, disc fusion assays revealed that AccTpx4 could function to protect cells against oxidative stresses. These results indicate that AccTpx4 plays an important role in oxidative stress responses and may contribute to the conservation of honeybees.  相似文献   

5.
6.
The thiol (-SH) of the active cysteine residue in peroxiredoxin (Prx) is known to be reversibly hyperoxidized to cysteine sulfinic acid (-SO(2)H), which can be reduced back to thiol by sulfiredoxin/sestrin. However, hyperoxidized Prx of an irreversible nature has not been reported yet. Using an antibody developed against the sulfonylated (-SO(3)H) yeast Prx (Tsa1p) active-site peptide (AFTFVCPTEI), we observed an increase in the immunoblot intensity in proportion to the H(2)O(2) concentrations administered to the yeast cells. We identified two species of hyperoxidized Tsa1p: one can be reduced back (reversible) with sulfiredoxin, and the other cannot (irreversible). Irreversibly hyperoxidized Tsa1p was identified as containing the active-site cysteine sulfonic acid (Tsa1p-SO(3)H) by mass spectrometry. Tsa1p-SO(3)H was not an autoxidation product of Tsa1p-SO(2)H and was maintained in yeast cells even after two doubling cycles. Tsa1p-SO(3)H self-assembled into a ring-shaped multimeric form was shown by electron microscopy. Although the Tsa1p-SO(3)H multimer lost its peroxidase activity, it gained approximately 4-fold higher chaperone activity compared with Tsa1p-SH. In this study, we identify an irreversibly hyperoxidized Prx, Tsa1p-SO(3)H, with enhanced molecular chaperone activity and suggest that Tsa1p-SO(3)H is a marker of cumulative oxidative stress in cells.  相似文献   

7.
H2O2 production by coupled mitochondrial fractions from the protozoan, Crithidia fasciculata, has been measured spectrophotometrically by the formation of the stable enzyme-substrate complex with yeast cytochrome c peroxidase. H2O2 formation was observed with succinate, l-α-glycerophosphate, l-proline, α-ketoglutarate, and with endogenous substrate. The maximum rate of H2O2 generation obtained with each substrate in the presence of antimycin A was about 10% of the state 4 rate of O2 respiration, and only 1–2% of the carbonylcyanide m-fluorophenylhydrazone-uncoupled respiratory rate. Therefore, excess O2 uptake due to the formation of H2O2 cannot satisfactorily account for the low ADP:O ratios previously reported.Cytochrome c peroxidase activity was measured in mitochondrial preparations by recording the decrease in absorbance at 550 nm during the oxidation of horse heart ferrocytochrome c which was observed after addition of H2O2. The distribution of activity after sonic disruption of mitochondrial preparations was that expected for a soluble enzyme. The activity was proportional to the amount of enzyme protein added, and was abolished by heating at 100 °C for 3 min. Total cytochrome c peroxidase activity in mitochondrial fractions isolated from C. fasciculata was calculated to be 0.3% that of isolated yeast mitochondria, but it is suggested that the in vivo activity may be considerably higher than this estimate.  相似文献   

8.
Mitochondria from whole potatoes (Solanum tuberosum) ordinarily fail to oxidize respiratory substrates and to consume molecular O2 in the presence of cyanide. Mitochondrial preparations obtained from tubers previously held for 24 hours in ethylene (10 microliters per liter) in air are only partially inhibited by cyanide. Application of ethylene in 100% O2 led to an additional increase in the resistance of the mitochondrial respiration to cyanide. The resistance to cyanide was accompanied by a decrease in the respiratory control but no change in oxidative phosphorylation as shown by the measurement of ATP synthesis.  相似文献   

9.
The ability to detect and respond to acute oxygen (O2) shortages is indispensable to aerobic life. The molecular mechanisms and circuits underlying this capacity are poorly understood. Here, we characterize the behavioral responses of feeding Caenorhabditis elegans to approximately 1% O2. Acute hypoxia triggers a bout of turning maneuvers followed by a persistent switch to rapid forward movement as animals seek to avoid and escape hypoxia. While the behavioral responses to 1% O2 closely resemble those evoked by 21% O2, they have distinct molecular and circuit underpinnings. Disrupting phosphodiesterases (PDEs), specific G proteins, or BBSome function inhibits escape from 1% O2 due to increased cGMP signaling. A primary source of cGMP is GCY-28, the ortholog of the atrial natriuretic peptide (ANP) receptor. cGMP activates the protein kinase G EGL-4 and enhances neuroendocrine secretion to inhibit acute responses to 1% O2. Triggering a rise in cGMP optogenetically in multiple neurons, including AIA interneurons, rapidly and reversibly inhibits escape from 1% O2. Ca2+ imaging reveals that a 7% to 1% O2 stimulus evokes a Ca2+ decrease in several neurons. Defects in mitochondrial complex I (MCI) and mitochondrial complex I (MCIII), which lead to persistently high reactive oxygen species (ROS), abrogate acute hypoxia responses. In particular, repressing the expression of isp-1, which encodes the iron sulfur protein of MCIII, inhibits escape from 1% O2 without affecting responses to 21% O2. Both genetic and pharmacological up-regulation of mitochondrial ROS increase cGMP levels, which contribute to the reduced hypoxia responses. Our results implicate ROS and precise regulation of intracellular cGMP in the modulation of acute responses to hypoxia by C. elegans.

The ability to detect and respond to acute oxygen shortages is indispensable to aerobic life, but the molecular mechanisms underlying this capacity are poorly understood. This study reveals that high levels of cGMP and reactive oxygen species (ROS) prevent the nematode Caenorhabditis elegans from escaping hypoxia.  相似文献   

10.
Mitochondrial reactive oxygen species are implicated in the etiology of multiple neurodegenerative diseases, including Parkinson disease. Mitochondria are known to be net producers of ROS, but recently we have shown that brain mitochondria can consume mitochondrial hydrogen peroxide (H2O2) in a respiration-dependent manner predominantly by the thioredoxin/peroxiredoxin system. Here, we sought to determine the mechanism linking mitochondrial respiration with H2O2 catabolism in brain mitochondria and dopaminergic cells. We hypothesized that nicotinamide nucleotide transhydrogenase (Nnt), which utilizes the proton gradient to generate NADPH from NADH and NADP+, provides the link between mitochondrial respiration and H2O2 detoxification through the thioredoxin/peroxiredoxin system. Pharmacological inhibition of Nnt in isolated brain mitochondria significantly decreased their ability to consume H2O2 in the presence, but not absence, of respiration substrates. Nnt inhibition in liver mitochondria, which do not require substrates to detoxify H2O2, had no effect. Pharmacological inhibition or lentiviral knockdown of Nnt in N27 dopaminergic cells (a) decreased H2O2 catabolism, (b) decreased NADPH and increased NADP+ levels, and (c) decreased basal, spare, and maximal mitochondrial oxygen consumption rates. Nnt-deficient cells possessed higher levels of oxidized mitochondrial Prx, which rendered them more susceptible to steady-state increases in H2O2 and cell death following exposure to subtoxic levels of paraquat. These data implicate Nnt as the critical link between the metabolic and H2O2 antioxidant function in brain mitochondria and suggests Nnt as a potential therapeutic target to improve the redox balance in conditions of oxidative stress associated with neurodegenerative diseases.  相似文献   

11.
Ozone effects on lung mitochondrial oxidative metabolism were examined after short-term exposure of rats and monkeys to O3. Exposure of animals to 2 ppm O3 for 8 hr or to 4 ppm O3 for 4 hr caused a 15–27% (P < 0.05) depression of lung mitochondrial O2 consumption, using 2-oxoglutarate, succinate, and glycerol-1-phosphate. but not ascorbate plus Wurster's blue as substrates. Under these exposure conditions (4 ppm 4 hr) the ADP:O ratios dropped 25–36% (P < 0.05) and the respiratory control indices decreased 27–33% (P < 0.02) for oxidation of all substrates examined. Lung mitochondria from control animals were relatively impermeable to added NADH, but those from O3-exposed animals showed an increased permeability as judged from NADH oxidation at a rate 3-fold higher than the control. Likewise, added cytochrome c caused a 22% (P < 0.01) stimulation of succinate oxidation in exposed lung mitochondria as against 5% (nonsignificant) in controls. Ozone exposure also caused a 20% (P < 0.01) oxidation of thiol groups in lung mitochondria, but no lipid peroxidation products were detectable in O3-exposed lung tissue. The depression of substrate utilization, coupled phosphorylation and respiratory control observed in lung mitochondria of O3-exposed animals might be related to alteration of membrane permeability, and inhibition of respiratory enzymes (dehydrogenases) due to oxidation of functional thiol groups.  相似文献   

12.
13.
Adequate methods to measure the rate of mitochondrial oxygen radical generation are needed since oxygen radicals are involved in many pathologies. A fluorometric method appropriate to measure the rate of generation of H2O2 in intact mitochondria is described. Just after isolation of functional mitochondria from fresh tissues, rates of generation of H2O2 are kinetically measured by fluorometry in the presence of homovanillic acid and horseradish peroxidase. The method is specific for H2O2 and is sensitive enough to assay mitochondrial H2O2 generation in the presence of respiratory substrate without inhibitors of the respiratory chain. Simultaneous measurement of mitochondrial oxygen consumption allows calculation of the free radical leak: the percentage of electrons out of sequence which reduce oxygen to oxygen radicals along the mitochondrial respiratory chain instead of reducing oxygen to water at the terminal cytochrome oxidase. The method shows instantaneous response to H2O2. This makes it appropriate to study the quick effects of different inhibitors and modulators on the rate of mitochondrial oxygen radical production. Its application to the localization of the sites where caloric restriction decreases mitochondrial oxygen radical generation in heart mitochondria is described.  相似文献   

14.
《Free radical research》2013,47(6):684-693
Abstract

The Fe-S cluster of mitochondrial aconitase is rapidly and selectively inactivated by oxidants, yielding an inactive enzyme that can be reactivated by reductants and iron in vivo. In order to elucidate the metabolic impact of oxidant-dependent aconitase inhibition over the citric acid cycle, the respiratory chain reactions, and reactive species formation, we performed a metabolic analysis using isolated mitochondria from different rat tissues. Titrations with fluorocitrate showed IC50 for aconitase inhibition ranging from 7 to 24 μM. The aconitase inhibition threshold in mitochondrial oxygen consumption was determined to range from 63 to 98%. Of the tissues examined, brain and heart exhibited the highest values in the flux control coefficient (> 0.95). Aconitase-specific activity varied widely among tissues examined from ?60 mU/mg in liver to 321 mU/mg in kidney at 21% O2. In brain and heart, aconitase-specific activity increased by 42 and 12%, respectively, at 2% O2 reflecting aconitase inactivation by oxygen-derived oxidants at 21% O2. Both mitochondrial membrane potential and hydrogen peroxide production significantly decreased upon aconitase inhibition in heart and brain mitochondria. These results indicate that aconitase can exert control over respiration (with tissue specificity) and support the hypothesis that inactivation of aconitase may provide a control mechanism to prevent O2●? and H2O2 formation by the respiratory chain.  相似文献   

15.
Dopamine oxidation products such as H2O2 and reactive quinones have been held responsible for various toxic actions of dopamine, which have implications in the aetiopathogenesis of Parkinson's disease. This study has shown that N-acetylcysteine (0.25–1 mm) is a potent scavenger of both H2O2 and toxic quinones derived from dopamine and it further prevents dopamine mediated inhibition of Na+,K+-ATPase activity and mitochondrial respiratory chain function. The quinone scavenging ability of N-acetylcysteine is presumably related to its protective effect against dopamine mediated inhibition of mitochondrial respiratory chain activity. However, both H2O2 scavenging and quinone scavenging properties of N-acetylcysteine probably account for its protective effect against Na+,K+-ATPase inhibition induced by dopamine. The results have important implications in the neuroprotective therapy of sporadic Parkinson's disease since inactivation of mitochondrial respiratory activity and Na+,K+-ATPase may trigger intracellular damage pathways leading to the death of nigral dopaminergic neurons.  相似文献   

16.
Mitochondrial reactive oxygen species (ROS) play an important role in both physiological cell signaling processes and numerous pathological states, including neurodegenerative disorders such as Parkinson disease. While mitochondria are considered the major cellular source of ROS, their role in ROS removal remains largely unknown. Using polarographic methods for real-time detection of steady-state H2O2 levels, we were able to quantitatively measure the contributions of potential systems toward H2O2 removal by brain mitochondria. Isolated rat brain mitochondria showed significant rates of exogenous H2O2 removal (9–12 nmol/min/mg of protein) in the presence of substrates, indicating a respiration-dependent process. Glutathione systems showed only minimal contributions: 25% decrease with glutathione reductase inhibition and no effect by glutathione peroxidase inhibition. In contrast, inhibitors of thioredoxin reductase, including auranofin and 1-chloro-2,4-dinitrobenzene, attenuated H2O2 removal rates in mitochondria by 80%. Furthermore, a 50% decrease in H2O2 removal was observed following oxidation of peroxiredoxin. Differential oxidation of glutathione or thioredoxin proteins by copper (II) or arsenite, respectively, provided further support for the thioredoxin/peroxiredoxin system as the major contributor to mitochondrial H2O2 removal. Inhibition of the thioredoxin system exacerbated mitochondrial H2O2 production by the redox cycling agent, paraquat. Additionally, decreases in H2O2 removal were observed in intact dopaminergic neurons with thioredoxin reductase inhibition, implicating this mechanism in whole cell systems. Therefore, in addition to their recognized role in ROS production, mitochondria also remove ROS. These findings implicate respiration- and thioredoxin-dependent ROS removal as a potentially important mitochondrial function that may contribute to physiological and pathological processes in the brain.  相似文献   

17.
18.
Mitochondrial peroxiredoxin 3 (Prx 3) is rapidly oxidized in cells exposed to phenethyl isothiocyanate (PEITC) and auranofin (AFN), but the mechanism of oxidation is unclear. Using HL-60 cells deplete of mitochondrial DNA we show that peroxiredoxin 3 oxidation and cytotoxicity requires a functional respiratory chain. Thioredoxin reductase (TrxR) could be inhibited by up to 90% by auranofin without direct oxidation of peroxiredoxin 3. However, inhibition of thioredoxin reductase promoted peroxiredoxin 3 oxidation and cytotoxicity in combination with phenethyl isothiocyanate or antimycin A. We conclude that rapid peroxiredoxin 3 oxidation occurs as a consequence of increased oxidant production from the mitochondrial respiratory chain.  相似文献   

19.
Zinc deficiency causes oxidative stress in many organisms including the yeast Saccharomyces cerevisiae. Previous studies of this yeast indicated that the Tsa1 peroxiredoxin is required for optimal growth in low zinc because of its role in degrading H2O2. In this report, we assessed the importance of other antioxidant genes to zinc-limited growth. Our results indicated that the cytosolic superoxide dismutase Sod1 is also critical for growth under zinc-limiting conditions. We also found that Ccs1, the copper-delivering chaperone required for Sod1 activity is essential for optimal zinc-limited growth. To our knowledge, this is the first demonstration of the important roles these proteins play under this condition. It has been proposed previously that a loss of Sod1 activity due to inefficient metallation is one source of reactive oxygen species (ROS) under zinc-limiting conditions. Consistent with this hypothesis, we found that both the level and activity of Sod1 is diminished in zinc-deficient cells. However, under conditions in which Sod1 was overexpressed in zinc-limited cells and activity was restored, we observed no decrease in ROS levels. Thus, these data indicate that while Sod1 activity is critical for low zinc growth, diminished Sod1 activity is not a major source of the elevated ROS observed under these conditions.  相似文献   

20.
Treatment of intact potato (Solanum tuberosum L.) tubers with acetaldehyde, ethanol or acetic-acid vapors led to a respiratory upsurge which was further increased when the volatiles were applied in 100% O2. Mitochondria from tubers held in 100% O2 (O2 control) displayed a substrate state, state 3, and state 4 in respiration, whereas in mitochondria from the volatile-treated tubers the respiratory rate of the different states was virtually indistinguishable. This respiratory pattern was companied by the development of a cyanide-resistant respiration since these mitochondria exhibited resistance to CN and sensitivity to CN+salicylhydroxamic acid. Acetaldehyde-treated potatoes showed a time-course development (up to 36 h) of cyanide resistance and concomitant sensitivity to salicylhydroxamic acid, indicating the onset of synthetic processes leading to the observed changes in mitochondrial respiration.Abbreviations V total respiration rate - Vcyt velocity of O2 uptake attributable to cytochrome oxidase - Valt velocity of O2 uptake attributable to the alternate oxidase - RCR respiratory control ratio - SHAM salicylhydroxamic acid Paper of the Journal Series, New Jersey Agricultural Experiment Station, Cook College, Rutgers University, New Brunswick, N.J., USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号