首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 338 毫秒
1.
Cells with non-functional poly(ADP-ribose) polymerase (PARP-1) show increased levels of sister chromatid exchange, suggesting a hyper recombination phenotype in these cells. To further investigate the involvement of PARP-1 in homologous recombination (HR) we investigated how PARP-1 affects nuclear HR sites (Rad51 foci) and HR repair of an endonuclease-induced DNA double-strand break (DSB). Several proteins involved in HR localise to Rad51 foci and HR-deficient cells fail to form Rad51 foci in response to DNA damage. Here, we show that PARP-1 mainly does not localise to Rad51 foci and that Rad51 foci form in PARP-1–/– cells, also in response to hydroxyurea. Furthermore, we show that homology directed repair following induction of a site-specific DSB is normal in PARP-1-inhibited cells. In contrast, inhibition or loss of PARP-1 increases spontaneous Rad51 foci formation, confirming a hyper recombination phenotype in these cells. Our data suggest that PARP-1 controls DNA damage recognised by HR and that it is not involved in executing HR as such.  相似文献   

2.
DNA interstrand crosslinks (ICL) present a major threat to cell viability and genome integrity. In eukaryotic cells, the ICLs have been suggested to be repaired by a complex process involving Xpf/Ercc1-mediated endonucleolytic incision and homologous recombination (HR). However, the entire feature of the ICL tolerating mechanism is still poorly understood. Here we studied chromosome aberrations (CA) and sister chromatid exchanges (SCE) by the use of the crosslinking agent mitomycin C (MMC), in chicken DT40 cells with the HR genes disrupted by targeted replacement. The disruption of the Rad54, Rad51B, Rad51C, Rad51D, Xrcc2 and Xrcc3 genes resulted in a dramatic reduction of spontaneous and MMC-induced SCEs. Interestingly, while HR-deficient cells were hypersensitive to cell killing by MMC, MMC-induced CAs were also suppressed in the HR-deficient cells except for Rad51D-, Xrcc2- and Xrcc3-deficient cells. These observations indicate that DNA double strand breaks (DSB) at stalled replication forks and those arising as repair intermediates present strong signals to cell death but can be tolerated by the HR repair pathway, where Rad54, Rad51B and Rad51C have an initiative role and repair can be completed by their paralogs Rad51D, Xrcc2 and Xrcc3. The impairment of the HR pathway, which otherwise leads to cell death, may be somewhat substituted by an alternative mechanism such as the Mre11/Rad50/Nbs1 pathway, resulting in reduced frequencies of SCEs and CAs.  相似文献   

3.
The mammalian Rad51 protein is involved in homologous recombination and in DNA damage repair. Its nuclear distribution after DNA damage is highly dynamic, and distinct foci of Rad51 protein, distributed throughout the nuclear volume, are induced within a few hours after γ irradiation; these foci then coalesce into larger clusters. Rad51-positive cells do not undergo DNA replication. Rad51 foci colocalize with both replication protein A and sites of unscheduled DNA repair synthesis and may represent a nuclear domain for recombinational DNA repair. By 24 h postirradiation, most foci are sequestered into micronuclei or assembled into Rad51-coated DNA fibers. These micronuclei and DNA fibers display genome fragmentation typical of apoptotic cell death. Other repair proteins, such as Rad52 and Gadd45, are not eliminated from the nucleus. DNA double strand breaks in repair-deficient cells or induced by the clastogen etoposide are also accompanied by the sequestering of Rad51 protein before cell death. The spindle poison colcemid causes cell cycle arrest and Rad51-foci formation without directly damaging DNA. Collectively, these observations suggest that mammalian Rad51 protein associates with damaged DNA and/or with DNA that is temporarily or irreversibly unable to replicate and these foci may subsequently be eliminated from the nucleus.  相似文献   

4.
DNA polymerase (Pol) β null mouse embryonic fibroblasts provide a useful cell system to investigate the effects of alterations in base excision repair (BER) on genome stability. These cells are characterized by hypersensitivity to the cytotoxic effects of methyl methanesulfonate (MMS) and by decreased repair of the MMS-induced DNA single strand breaks (SSB). Here, we show that, in the absence of Pol β, SSB accumulate in G1 phase cells, accompanied by the formation of proliferating cell nuclear antigen foci in the nuclei. When replicating Pol β null cells are treated with MMS, a rapid phosphorylation of histone H2AX is detected in the nuclei of S phase cells, indicating that double strand breaks (DSB) are formed in response to unrepaired SSB. This is followed by relocalization within the nuclei of Rad51 protein, which is essential for homologous recombination (HR). These findings are compatible with a model where, in mammalian cells, unrepaired SSB produced during BER are substrates for the HR pathway via DSB formation. This is an example of a coordinated effort of two different repair pathways, BER and HR, to protect mammalian cells from alkylation-induced cytotoxicity.  相似文献   

5.
Topoisomerase II (Top2) is a nuclear enzyme involved in several metabolic processes of DNA. Chemotherapy agents that poison Top2 are known to induce persistent protein-mediated DNA double strand breaks (DSB). In this report, by using knock down experiments, we demonstrated that Top2α was largely responsible for the induction of γH2AX and cytotoxicity by the Top2 poisons idarubicin and etoposide in normal human cells. As DSB resulting from Top2 poisons-mediated damage may be repaired by non-homologous end joining (NHEJ) or homologous recombination (HR), we aimed to analyze both DNA repair pathways. We found that DNA-PKcs was rapidly activated in human cells, as evidenced by autophosphorylation at serine 2056, following Top2-mediated DNA damage. The chemical inhibition of DNA-PKcs by wortmannin and vanillin resulted in an increased accumulation of DNA DSB, as evaluated by the comet assay. This was supported by a hypersensitive phenotype to Top2 poisons of Ku80- and DNA-PKcs- defective Chinese hamster cell lines. We also showed that Rad51 protein levels, Rad51 foci formation and sister chromatid exchanges were increased in human cells following Top2-mediated DNA damage. In support, BRCA2- and Rad51C- defective Chinese hamster cells displayed hypersensitivity to Top2 poisons. The analysis by immunofluorescence of the DNA DSB repair response in synchronized human cell cultures revealed activation of DNA-PKcs throughout the cell cycle and Rad51 foci formation in S and late S/G2 cells. Additionally, we found an increase of DNA-PKcs-mediated residual repair events, but not Rad51 residual foci, into micronucleated and apoptotic cells. Therefore, we conclude that in human cells both NHEJ and HR are required, with cell cycle stage specificity, for the repair of Top2-mediated reversible DNA damage. Moreover, NHEJ-mediated residual repair events are more frequently associated to irreversibly damaged cells.  相似文献   

6.
The RAD52 epistasis group of proteins, including Rad51, Rad52, and Rad54, plays an important role in the homologous recombination repair of double strand breaks. A well characterized feature associated with the ability of these proteins to repair double strand breaks is inducible nuclear foci formation at the sites of damage. How the process is functionally regulated in response to DNA damage, however, remains elusive. We show here that c-Abl tyrosine kinase associates with and phosphorylates Rad52 on tyrosine 104. Importantly, the very same site of Rad52 is phosphorylated on exposure of cells to ionizing radiation (IR). The functional significance of c-Abl-dependent phosphorylation of Rad52 is underscored by our findings that cells that express the phosphorylation-resistant Rad52 mutant, in which tyrosine 104 is replaced by phenylalanine, exhibit compromised nuclear foci formation in response to IR. Furthermore, IR-induced Rad52 nuclear foci formation is markedly suppressed by the expression of dominant-negative c-Abl. Together our data support a mode of post-translational regulation of Rad52 mediated by the c-Abl tyrosine kinase.  相似文献   

7.
Overexpression of DNA polymerase β (polβ), an error-prone DNA repair enzyme, has been shown to result in mutagenesis, aneuploidy and tumorigenesis. To further investigate the molecular basis leading to cancer-associated genetic changes, we examined whether the DNA polβ could affect homologous recombination (HR). Using mammalian cells carrying an intrachromosomal recombination marker we showed that the DNA polβ overexpression increased the HR mostly by enhancing gene conversion. Concomitantly, we observed the generation of DNA strand breaks as well as a DNA polβ-dependent formation of Rad51 foci. The stimulation of HR was abolished by the coexpression of a dominant negative form of Rad51, suggesting that the Rad51 was involved in the increased HR events. The expression of different DNA polβ mutants lacking polymerase activity did not result in HR stimulation, indicating that the DNA synthesis activity of DNA polβ was related to this phenotype. These results provide new insights into the molecular mechanisms of the genetic instability observed in DNA polβ overexpressing tumour cells.  相似文献   

8.
In mammalian and budding yeast cells treated with genotoxic agents, different proteins implicated in detecting, signalling or repairing DNA lesions form nuclear foci. We studied foci formed by proteins involved in these processes in living fission yeast cells, which is amenable to genetic and molecular analysis. Using fluorescent tags, we analysed subnuclear localisations of the DNA damage checkpoint protein Rad9, of the homologous recombination protein Rad22 and of PCNA, which are implicated in many aspects of DNA metabolism. After inducing double strand breaks (DSBs) with ionising radiations, Rad22, Rad9 and PCNA form a low number of nuclear foci. Rad9 recruitment to foci depends on the presence of Rad1, Hus1 and Rad17, but is independent of downstream checkpoint effectors and of homologous recombination proteins. Likewise, Rad22 and PCNA form foci despite inactive homologous recombination repair and impaired DNA damage checkpoint. Rad22 and Rad9 foci co-localise completely, whereas PCNA co-localises with Rad22 and Rad9 only partially. Foci do not disassemble in cells unable to repair DNA by homologous recombination. Thus, in fission yeast, DSBs are detected by the DNA damage checkpoint and are repaired by homologous recombination at a few spatially confined subnuclear compartments where Rad22, Rad9 and PCNA concentrate independently.  相似文献   

9.
Recruitment of the homologous recombination machinery to sites of double‐strand breaks is a cell cycle‐regulated event requiring entry into S phase and CDK1 activity. Here, we demonstrate that the central recombination protein, Rad52, forms foci independent of DNA replication, and its recruitment requires B‐type cyclin/CDK1 activity. Induction of the intra‐S‐phase checkpoint by hydroxyurea (HU) inhibits Rad52 focus formation in response to ionizing radiation. This inhibition is dependent upon Mec1/Tel1 kinase activity, as HU‐treated cells form Rad52 foci in the presence of the PI3 kinase inhibitor caffeine. These Rad52 foci colocalize with foci formed by the replication clamp PCNA. These results indicate that Mec1 activity inhibits the recruitment of Rad52 to both sites of DNA damage and stalled replication forks during the intra‐S‐phase checkpoint. We propose that B‐type cyclins promote the recruitment of Rad52 to sites of DNA damage, whereas Mec1 inhibits spurious recombination at stalled replication forks.  相似文献   

10.
CRISPR technologies greatly foster genome editing in mammalian cells through site-directed DNA double strand breaks (DSBs). However, precise editing outcomes, as mediated by homologous recombination (HR) repair, are typically infrequent and outnumbered by undesired genome alterations. By using knockdown and overexpression studies in Chinese hamster ovary (CHO) cells as well as characterizing repaired DNA junctions, we found that efficient HR-mediated genome editing depends on alternative end-joining (alt-EJ) DNA repair activities, a family of incompletely characterized DNA repair pathways traditionally considered to oppose HR. This dependency was influenced by the CRISPR nuclease type and the DSB-to-mutation distance, but not by the DNA sequence surrounding the DSBs or reporter cell line. We also identified elevated Mre11 and Pari, and low Rad51 expression levels as the most rate-limiting factors for HR in CHO cells. Counteracting these three bottlenecks improved precise genome editing by up to 75%. Altogether, our study provides novel insights into the complex interplay of alt-EJ and HR repair pathways, highlighting their relevance for developing improved genome editing strategies.  相似文献   

11.
The consequences of Rad51 overexpression for normal and tumor cells   总被引:2,自引:0,他引:2  
Klein HL 《DNA Repair》2008,7(5):686-693
The Rad51 recombinase is an essential factor for homologous recombination and the repair of DNA double strand breaks, binding transiently to both single stranded and double stranded DNA during the recombination reaction. The use of a homologous recombination mechanism to repair DNA damage is controlled at several levels, including the binding of Rad51 to single stranded DNA to form the Rad51 nucleofilament, which is controlled through the action of DNA helicases that can counteract nucleofilament formation. Overexpression of Rad51 in different organisms and cell types has a wide assortment of consequences, ranging from increased homologous recombination and increased resistance to DNA damaging agents to disruption of the cell cycle and apoptotic cell death. Rad51 expression is increased in p53-negative cells, and since p53 is often mutated in tumor cells, there is a tendency for Rad51 to be overexpressed in tumor cells, leading to increased resistance to DNA damage and drugs used in chemotherapies. As cells with increased Rad51 levels are more resistant to DNA damage, there is a selection for tumor cells to have higher Rad51 levels. While increased Rad51 can provide drug resistance, it also leads to increased genomic instability and may contribute to carcinogenesis.  相似文献   

12.
S Visp  C Cazaux  C Lesca    M Defais 《Nucleic acids research》1998,26(12):2859-2864
Rad51 proteins share both structural and functional homologies with the bacterial recombinase RecA. The human Rad51 (HsRad51) is able to catalyse strand exchange between homologous DNA molecules in vitro . However the biological functions of Rad51 in mammals are largely unknown. In order to address this question, we have cloned hamster Rad51 cDNA and overexpressed the corresponding protein in CHO cells. We found that 2-3-fold overexpression of the protein stimulated the homologous recombination between integrated genes by 20-fold indicating that Rad51 is a functional and key enzyme of an intrachromosomal recombination pathway. Cells overexpressing Rad51 were resistant to ionizing radiation when irradiated in late S/G2phase of the cell cycle. This suggests that Rad51 participate in the repair of double-strand breaks most likely by homologous recombination involving sister chromatids formed after the S phase.  相似文献   

13.
Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination.  相似文献   

14.
Xrcc3 is recruited to DNA double strand breaks early and independent of Rad51   总被引:11,自引:0,他引:11  
Rad51-mediated homologous recombination (HR) is essential for maintenance of genome integrity. The Xrcc3 protein functions in HR DNA repair, and studies suggest it has multiple roles at different stages in this pathway. Defects in vertebrate XRCC3 result in elevated levels of spontaneous and DNA damage-induced chromosomal abnormalities, as well as increased sensitivity to DNA damaging agents. Formation of DNA damaged-induced nuclear Rad51 foci requires Xrcc3 and the other Rad51 paralog proteins (Rad51B, Rad51C, Rad51D, Xrcc2), thus supporting a model in which an early function of Xrcc3 involves promoting assembly of active Rad51 repair complexes. However, it is not known whether Xrcc3 or other Rad51 paralog proteins accumulate at DNA breaks, and if they do whether their stable association with breaks requires Rad51. Here we report for the first time that Xrcc3 forms distinct foci in human cells and that nuclear Xrcc3 begins to localize at sites of DNA damage within 10 min after radiation treatment. RNAi-mediated knock down of Rad51 has no effect on the DNA damage-induced localization of Xrcc3 to DNA breaks. Our data are consistent with a model in which Xrcc3 associates directly with DNA breaks independent of Rad51, and subsequently facilitates formation of the Rad51 nucleoprotein filament.  相似文献   

15.
Rad52 is a key protein in homologous recombination (HR), a DNA repair pathway dedicated to double strand breaks and recovery of blocked or collapsed replication forks. Rad52 allows Rad51 loading on single strand DNA, an event required for strand invasion and D-loop formation. In addition, Rad52 functions also in Rad51 independent pathways because of its ability to promote single strand annealing (SSA) that leads to loss of genetic material and to promote D-loops formation that are cleaved by Mus81 endonuclease. We have previously reported that fission yeast Rad52 is phosphorylated in a Sty1 dependent manner upon oxidative stress and in cells where the early step of HR is impaired because of lack of Rad51. Here we show that Rad52 is also constitutively phosphorylated in mus81 null cells and that Sty1 partially impinges on such phosphorylation. As upon oxidative stress, the Rad52 phosphorylation in rad51 and mus81 null cells appears to be independent of Tel1, Rad3 and Cdc2. Most importantly, we show that mutating serine 365 to glycine (S365G) in Rad52 leads to loss of the constitutive Rad52 phosphorylation observed in cells lacking Rad51 and to partial loss of Rad52 phosphorylation in cells lacking Mus81. Contrariwise, phosphorylation of Rad52-S365G protein is not affected upon oxidative stress. These results indicate that different Rad52 residues are phosphorylated in a Sty1 dependent manner in response to these distinct situations. Analysis of spontaneous HR at direct repeats shows that mutating serine 365 leads to an increase in spontaneous deletion-type recombinants issued from mitotic recombination that are Mus81 dependent. In addition, the recombination rate in the rad52-S365G mutant is further increased by hydroxyurea, a drug to which mutant cells are sensitive.  相似文献   

16.
The efficient and accurate repair of DNA double strand breaks (DSBs) is critical to cell survival, and defects in this process can lead to genome instability and cancers. In eukaryotes, the Rad52 group of proteins dictates the repair of DSBs by the error-free process of homologous recombination (HR). A critical step in eukaryotic HR is the formation of the initial Rad51-single-stranded DNA presynaptic nucleoprotein filament. This presynaptic filament participates in a homology search process that leads to the formation of a DNA joint molecule and recombinational repair of the DSB. Recently, we showed that the Rad54 protein functions as a mediator of Rad51 binding to single-stranded DNA, and here, we find that this activity does not require ATP hydrolysis. We also identify a novel Rad54-dependent chromatin remodeling event that occurs in vivo during the DNA strand invasion step of HR. This ATP-dependent remodeling activity of Rad54 appears to control subsequent steps in the HR process.  相似文献   

17.
Homologous recombination (HR) plays a critical role in facilitating replication fork progression when the polymerase complex encounters a blocking DNA lesion, and it also serves as the primary mechanism for error-free repair of DNA double strand breaks. Rad51 is the central catalyst of HR in all eukaryotes, and to this point studies of human Rad51 have focused exclusively on events occurring within the nucleus. However, substantial amounts of HR proteins exist in the cytoplasm, yet the function of these protein pools has not been addressed. Here, we provide the first demonstration that Rad51 and the related HR proteins Rad51C and Xrcc3 exist in human mitochondria. We show stress-induced increases in both the mitochondrial levels of each protein and, importantly, the physical interaction between Rad51 and mitochondrial DNA (mtDNA). Depletion of Rad51, Rad51C, or Xrcc3 results in a dramatic decrease in mtDNA copy number as well as the complete suppression of a characteristic oxidative stress-induced copy number increase. Our results identify human mtDNA as a novel Rad51 substrate and reveal an important role for HR proteins in the maintenance of the human mitochondrial genome.  相似文献   

18.
Double-strand breaks (DSBs) are repaired by two distinct pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). The endonuclease Artemis and the PIK kinase Ataxia-Telangiectasia Mutated (ATM), mutated in prominent human radiosensitivity syndromes, are essential for repairing a subset of DSBs via NHEJ in G1 and HR in G2. Both proteins have been implicated in DNA end resection, a mandatory step preceding homology search and strand pairing in HR. Here, we show that during S-phase Artemis but not ATM is dispensable for HR of radiation-induced DSBs. In replicating AT cells, numerous Rad51 foci form gradually, indicating a Rad51 recruitment process that is independent of ATM-mediated end resection. Those DSBs decorated with Rad51 persisted through S- and G2-phase indicating incomplete HR resulting in unrepaired DSBs and a pronounced G2 arrest. We demonstrate that in AT cells loading of Rad51 depends on functional ATR/Chk1. The ATR-dependent checkpoint response is most likely activated when the replication fork encounters radiation-induced single-strand breaks leading to generation of long stretches of single-stranded DNA. Together, these results provide new insight into the role of ATM for initiation and completion of HR during S- and G2-phase. The DSB repair defect during S-phase significantly contributes to the radiosensitivity of AT cells.  相似文献   

19.
The BRCA2 breast cancer tumor suppressor is involved in the repair of double strand breaks and broken replication forks by homologous recombination through its interaction with DNA repair protein Rad51. Cells defective in BRCA2.FANCD1 are extremely sensitive to mitomycin C (MMC) similarly to cells deficient in any of the Fanconi anemia (FA) complementation group proteins (FANC). These observations suggest that the FA pathway and the BRCA2 and Rad51 repair pathway may be linked, although a functional connection between these pathways in DNA damage signaling remains to be determined. Here, we systematically investigated the interaction between these pathways. We show that in response to DNA damage, BRCA2-dependent Rad51 nuclear focus formation was normal in the absence of FANCD2 and that FANCD2 nuclear focus formation and mono-ubiquitination appeared normal in BRCA2-deficient cells. We report that the absence of BRCA2 substantially reduced homologous recombination repair of DNA breaks, whereas the absence of FANCD2 had little effect. Furthermore, we established that depletion of BRCA2 or Rad51 had a greater effect on cell survival in response to MMC than depletion of FANCD2 and that depletion of BRCA2 in FANCD2 mutant cells further sensitized these cells to MMC. Our results suggest that FANCD2 mediates double strand DNA break repair independently of Rad51-associated homologous recombination.  相似文献   

20.
A possible role for structure‐specific recognition protein 1 (SSRP1) in replication‐associated repair processes has previously been suggested based on its interaction with several DNA repair factors and the replication defects observed in SSRP1 mutants. In this study, we investigated the potential role of SSRP1 in association with DNA repair mediated by homologous recombination (HR), one of the pathways involved in repairing replication‐associated DNA damage, in mammalian cells. Surprisingly, over‐expression of SSRP1 reduced the number of hprt+ recombinants generated via HR both spontaneously and upon hydroxyurea (HU) treatment, whereas knockdown of SSRP1 resulted in an increase of HR events in response to DNA double‐strand break formation. In correlation, we found that the depletion of SSRP1 in HU‐treated human cells elevated the number of Rad51 and H2AX foci, while over‐expression of the wild‐type SSRP1 markedly reduced HU‐induced Rad51 foci formation. We also found that SSRP1 physically interacts with a key HR repair protein, Rad54 both in vitro and in vivo. Further, branch migration studies demonstrated that SSRP1 inhibits Rad54‐promoted branch migration of Holliday junctions in vitro. Taken together, our data suggest a functional role for SSRP1 in spontaneous and replication‐associated DNA damage response by suppressing avoidable HR repair events. J. Cell. Biochem. 108: 508–518, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号