共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《基因组蛋白质组与生物信息学报(英文版)》2016,(3):155-165
The DNA damage response(DDR) is a complex biological system activated by different types of DNA damage.Mutations in certain components of the DDR machinery can lead to genomic instability disorders that culminate in tissue degeneration,premature aging,and various types of cancers.Intriguingly,malfunctioning DDR plays a role in the etiology of late onset brain degenerative disorders such as Parkinson's,Alzheimer's,and Huntington's diseases.For many years,brain degenerative disorders were thought to result from aberrant neural death.Here we discuss the evidence that supports our novel hypothesis that brain degenerative diseases involve dysfunction of glial cells(astrocytes,microglia,and oligodendrocytes).Impairment in the functionality of glial cells results in pathological neuro-glial interactions that,in turn,generate a ‘‘hostile\" environment that impairs the functionality of neuronal cells.These events can lead to systematic neural demise on a scale that appears to be proportional to the severity of the neurological deficit. 相似文献
3.
4.
G4 DNA motifs, which can form stable secondary structures called G-quadruplexes, are ubiquitous in eukaryotic genomes, and have been shown to cause genomic instability. Specialized helicases that unwind G-quadruplexes in vitro have been identified, and they have been shown to prevent genetic instability in vivo. In the absence of these helicases, G-quadruplexes can persist and cause replication fork stalling and collapse. Translesion synthesis (TLS) and homologous recombination (HR) have been proposed to play a role in the repair of this damage, but recently it was found in the nematode Caenorhabditis elegans that G4-induced genome alterations are generated by an error-prone repair mechanism that is dependent on the A-family polymerase Theta (Pol θ). Current data point towards a scenario where DNA replication blocked at G-quadruplexes causes DNA double strand breaks (DSBs), and where the choice of repair pathway that can act on these breaks dictates the nature of genomic alterations that are observed in various organisms. 相似文献
5.
Chromatin modulation and the DNA damage response 总被引:1,自引:0,他引:1
Costelloe T Fitzgerald J Murphy NJ Flaus A Lowndes NF 《Experimental cell research》2006,312(14):2677-2686
The ability to sense and respond appropriately to genetic lesions is vitally important to maintain the integrity of the genome. Emerging evidence indicates that various modulations to chromatin structure are centrally important to many aspects of the DNA damage response (DDR). Here, we discuss recently described roles for specific post-translational covalent modifications to histone proteins, as well as ATP-dependent chromatin remodelling, in DNA damage signalling and repair of DNA double strand breaks. 相似文献
6.
《Cell cycle (Georgetown, Tex.)》2013,12(17)
Comment on: Gatti M, et al. Cell Cycle 2012; 11:2538-44. 相似文献
7.
Structure meets function--centrosomes, genome maintenance and the DNA damage response 总被引:1,自引:0,他引:1
Centrosomes are cytoplasmic organelles playing a fundamental role in organizing both the interphase cytoskeleton and the bipolar mitotic spindle. In addition, the centrosome has recently come into focus as part of the network that integrates cell cycle arrest and repair signals in response to genotoxic stress--the DNA damage response. One important mediator of this response, the checkpoint kinase Chk1, has been shown to negatively regulate the G(2)/M transition via its centrosomal localization. Moreover, there is growing evidence that a centrosome inactivation checkpoint exists, which utilizes DNA damage-induced centrosome fragmentation or amplification to provoke a mitotic catastrophe and eliminate damaged cells. Candidate regulators of this centrosomal checkpoint include the checkpoint kinase Chk2 and its upstream regulators ATM and ATR. In addition, a growing number of other proteins have been implicated in centrosomal regulation of the DNA damage response, e.g. the tumor suppressor p53, the breast cancer susceptibility gene product BRCA1 and mitotic regulators such as Aurora A, Nek2 and the Polo-like kinases Plk1 and Plk3. However, many missing links and discrepancies between different model systems remain. 相似文献
8.
Tao Luo Shijun Cui Chunjing Bian Xiaochun Yu 《Biochemical and biophysical research communications》2013
Emerging evidence shows that Uhrf1 plays an important role in DNA damage response for maintaining genomic stability. Interestingly, Uhrf1 has a paralog Uhrf2 in mammals. Uhrf1 and Uhrf2 share similar domain architectures. However, the role of Uhrf2 in DNA damage response has not been studied yet. During the analysis of the expression level of Uhrf2 in different tissues, we found that Uhrf2 is highly expressed in aorta and aortic vascular smooth muscle cells. Thus, we studied the role of Uhrf2 in DNA damage response in aortic vascular smooth muscle cells. Using laser microirradiation, we found that like Uhrf1, Uhrf2 was recruited to the sites of DNA damage. We dissected the functional domains of Uhrf2 and found that the TTD, PHD and SRA domains are important for the relocation of Uhrf2 to the sites of DNA damage. Moreover, depletion of Uhrf2 suppressed DNA damage-induced H2AX phosphorylation and DNA damage repair. Taken together, our results demonstrate the function of Uhrf2 in DNA damage response. 相似文献
9.
10.
11.
P Fortini C Ferretti B Pascucci L Narciso D Pajalunga E M R Puggioni R Castino C Isidoro M Crescenzi E Dogliotti 《Cell death and differentiation》2012,19(11):1741-1749
DNA single-strand breaks (SSB) formation coordinates the myogenic program, and defects in SSB repair in post-mitotic cells have been associated with human diseases. However, the DNA damage response by SSB in terminally differentiated cells has not been explored yet. Here we show that mouse post-mitotic muscle cells accumulate SSB after alkylation damage, but they are extraordinarily resistant to the killing effects of a variety of SSB-inducers. We demonstrate that, upon SSB induction, phosphorylation of H2AX occurs in myotubes and is largely ataxia telangiectasia mutated (ATM)-dependent. However, the DNA damage signaling cascade downstream of ATM is defective as shown by lack of p53 increase and phosphorylation at serine 18 (human serine 15). The stabilization of p53 by nutlin-3 was ineffective in activating the cell death pathway, indicating that the resistance to SSB inducers is due to defective p53 downstream signaling. The induction of specific types of damage is required to activate the cell death program in myotubes. Besides the topoisomerase inhibitor doxorubicin known for its cardiotoxicity, we show that the mitochondria-specific inhibitor menadione is able to activate p53 and to kill effectively myotubes. Cell killing is p53-dependent as demonstrated by full protection of myotubes lacking p53, but there is a restriction of p53-activated genes. This new information may have important therapeutic implications in the prevention of muscle cell toxicity. 相似文献
12.
组蛋白翻译后修饰是细胞DNA损伤早期应答反应的重要内涵,一方面是松弛、开放染色质结构的必要分子调节事件,以便DNA损伤响应蛋白能接近DNA损伤位点;另一方面直接参与DNA损伤修复蛋白招募过程的调控。综述了在DNA损伤信号激发下,发生的组蛋白主要修饰类型,异组蛋白H2AX、H2A.Z在DNA损伤部位与组蛋白置换,及其对DNA损伤响应蛋白招募的调节作用和机制。 相似文献
13.
Landsverk HB Mora-Bermúdez F Landsverk OJ Hasvold G Naderi S Bakke O Ellenberg J Collas P Syljuåsen RG Küntziger T 《EMBO reports》2010,11(11):868-875
The function of protein phosphatase 1 nuclear-targeting subunit (PNUTS)--one of the most abundant nuclear-targeting subunits of protein phosphatase 1 (PP1c)--remains largely uncharacterized. We show that PNUTS depletion by small interfering RNA activates a G2 checkpoint in unperturbed cells and prolongs G2 checkpoint and Chk1 activation after ionizing-radiation-induced DNA damage. Overexpression of PNUTS-enhanced green fluorescent protein (EGFP)--which is rapidly and transiently recruited at DNA damage sites--inhibits G2 arrest. Finally, γH2AX, p53-binding protein 1, replication protein A and Rad51 foci are present for a prolonged period and clonogenic survival is decreased in PNUTS-depleted cells after ionizing radiation treatment. We identify the PP1c regulatory subunit PNUTS as a new and integral component of the DNA damage response involved in DNA repair. 相似文献
14.
Hong-Jen Lee Li Lan Guang Peng Wei-Chao Chang Ming-Chuan Hsu Ying-Nai Wang Chien-Chia Cheng Leizhen Wei Satoshi Nakajima Shih-Shin Chang Hsin-Wei Liao Chung-Hsuan Chen Martin Lavin K Kian Ang Shiaw-Yih Lin Mien-Chie Hung 《Cell research》2015,25(2):225-236
Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition. 相似文献
15.
16.
由于体内外因素的影响,DNA损伤是生物生命周期中的常见现象,如果得不到及时的修复,DNA损伤的积累将导致基因组的不稳定及染色质的异常,并可能导致肿瘤的发生发展。SUMO化修饰是体内一个重要的蛋白质翻译后修饰,越来越多的研究发现SUMO化修饰与多个参与DNA损伤反应、维持基因组稳定的蛋白质相关,有可能参与肿瘤的发生。本文将阐述SUMO化修饰与DNA损伤修复的关系。 相似文献
17.
Zhong-Wei Zhou Alicia Tapias Christopher Bruhn Ralph Gruber Mikhail Sukchev Zhao-Qi Wang 《DNA Repair》2013,12(8):645-655
MCPH1 encodes BRCT-containing protein MCPH1/Microcephalin/BRIT1, mutations of which in humans cause autosomal recessive disorder primary microcephaly type 1 (MCPH1), characterized by a congenital reduction of brain size particularly in the cerebral cortex. We have shown previously that a deletion of Mcph1 in mice results in microcephaly because of a premature switch from symmetric to asymmetric division of the neuroprogenitors, which is regulated by MCPH1's function in the centrosome. Because MCPH1 has been implicated in ATM and ATR-mediated DNA damage response (DDR) and defective DDR is often associated with neurodevelopmental diseases, we wonder whether the DDR-related function of MCPH1 prevents microcephaly. Here, we show that a deletion of Mcph1 results in a specific reduction of the cerebral cortex at birth, which is persistent through life. Due to an effect on premature neurogenic production, Mcph1-deficient progenitors give rise to a high level of early-born neurons that form deep layers (IV–VI), while generate less late-born neurons that form a thinner outer layer (II–III) of the cortex. However, neuronal migration seems to be unaffected by Mcph1 deletion. Ionizing radiation (IR) induces a massive apoptosis in the Mcph1-null neocortex and also embryonic lethality. Finally, Mcph1 deletion compromises homologous recombination repair and increases genomic instability. Altogether, our data suggest that MCPH1 ensures proper neuroprogenitor expansion and differentiation not only through its function in the centrosome, but also in the DDR. 相似文献
18.
《DNA Repair》2016
Cells are constantly exposed to assaults that cause DNA damage, which must be detected and repaired to prevent genome instability. The DNA damage response is mediated by key kinases that activate various signaling pathways. In Saccharomyces cerevisiae, one of these kinases is Mec1, which phosphorylates numerous targets, including H2A and the DNA damage protein Rtt107. In addition to being phosphorylated, Rtt107 contains six BRCA1 C-terminal (BRCT) domains, which typically recognize phospho-peptides. Thus Rtt107 represented an opportunity to study complementary aspects of the phosphorylation cascades within one protein. Here we sought to describe the functional roles of the multiple BRCT domains in Rtt107. Rtt107 BRCT5/6 facilitated recruitment to sites of DNA lesions via its interaction with phosphorylated H2A. Rtt107 BRCT3/4 also contributed to Rtt107 recruitment, but BRCT3/4 was not sufficient for recruitment when BRCT5/6 was absent. Intriguingly, both mutations that affected Rtt107 recruitment also abrogated its phosphorylation. Pointing to its modular nature, replacing Rtt107 BRCT5/6 with the BRCT domains from the checkpoint protein Rad9 was able to sustain Rtt107 function. Although Rtt107 physically interacts with both the endonuclease Slx4 and the DNA replication and repair protein Dpb11, only Slx4 was dependent on Rtt107 for its recruitment to DNA lesions. Fusing Rtt107 BRCT5/6 to Slx4, which presumably allows artificial recruitment of Slx4 to DNA lesions, alleviated some phenotypes of rtt107Δ mutants, indicating the functional importance of Slx4 recruitment. Together this data revealed a key function of the Rtt107 BRCT domains for targeting of both itself and its interaction partners to DNA lesions. 相似文献
19.
Exogenous and endogenous insults continuously damage DNA. DNA damage must be detected in order to prevent loss of vital genetic information. Cells respond to DNA damage by activating checkpoint pathways that delay the progression through the cell cycle, promote DNA repair or induce cell death. A regulatory network of proteins has been identified that participate in DNA damage checkpoint pathways. Central to this network are ATM, ATR and the Mre11/Rad50/Nbs1 (MRN) complex. Detailed biochemical analysis of ATM, ATR and the MRN dependent DNA damage responses has taken advantage of several in vitro model systems to understand the detailed mechanisms underlying their function. Here we describe some recent findings obtained analysing these pathways using in vitro model systems. In particular we focus on the studies performed in the Xenopus laevis egg cell free extract, which recapitulates the DNA damage response in the context of the cell cycle. 相似文献
20.
Yucai Wang Xiao Han Fangming Wu Justin W Leung Megan G Lowery Huong Do Junjie Chen Chaowei Shi Changlin Tian Lei Li Weimin Gong 《Cell research》2013,23(10):1215-1228
The FANCM/FAAP24 heterodimer has distinct functions in protecting cells from complex DNA lesions such as interstrand crosslinks. These functions rely on the biochemical activity of FANCM/FAAP24 to recognize and bind to damaged DNA or stalled replication forks. However, the DNA-binding activity of this complex was not clearly defined. We investigated how FAAP24 contributes to the DNA-interacting functions of the FANCM/FAAP24 complex by acquiring the N-terminal and C-terminal solution structures of human FAAP24. Modeling of the FAAP24 structure indicates that FAAP24 may possess a high affinity toward single-stranded DNA (ssDNA). Testing of various FAAP24 mutations in vitro and in vivo validated this prediction derived from structural analyses. We found that the DNA-binding and FANCM-interacting functions of FAAP24, although both require the C-terminal (HhH)2 domain, can be distinguished by segregation-of-function mutations. These results demonstrate dual roles of FAAP24 in DNA damage response against crosslinking lesions, one through the formation of FANCM/FAAP24 heterodimer and the other via its ssDNA-binding activity required in optimized checkpoint activation. 相似文献