首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
A longitudinal study aimed to detect Listeria monocytogenes on a New York State dairy farm was conducted between February 2004 and July 2007. Fecal samples were collected every 6 months from all lactating cows. Approximately 20 environmental samples were obtained every 3 months. Bulk tank milk samples and in-line milk filter samples were obtained weekly. Samples from milking equipment and the milking parlor environment were obtained in May 2007. Fifty-one of 715 fecal samples (7.1%) and 22 of 303 environmental samples (7.3%) were positive for L. monocytogenes. A total of 73 of 108 in-line milk filter samples (67.6%) and 34 of 172 bulk tank milk samples (19.7%) were positive for L. monocytogenes. Listeria monocytogenes was isolated from 6 of 40 (15%) sampling sites in the milking parlor and milking equipment. In-line milk filter samples had a greater proportion of L. monocytogenes than did bulk tank milk samples (P < 0.05) and samples from other sources (P < 0.05). The proportion of L. monocytogenes-positive samples was greater among bulk tank milk samples than among fecal or environmental samples (P < 0.05). Analysis of 60 isolates by pulsed-field gel electrophoresis (PFGE) yielded 23 PFGE types after digestion with AscI and ApaI endonucleases. Three PFGE types of L. monocytogenes were repeatedly found in longitudinally collected samples from bulk tank milk and in-line milk filters.Listeria monocytogenes can cause listeriosis in humans. This illness, despite being underreported, is an important public health concern in the United States (23) and worldwide. According to provisional incidence data provided by the Centers for Disease Control and Prevention (CDC), 762 cases of listeriosis were reported in the United States in 2007. In previous years (2003 to 2006), the number of reported annual listeriosis cases in the United States ranged between 696 and 896 cases per year (5).Exposure to food-borne L. monocytogenes may cause fever, muscle aches, and gastroenteritis (30), but does not usually cause septicemic illness in healthy nonpregnant individuals (7, 30). Elderly and immunocompromised people, however, are susceptible to listeriosis (22, 10), and they may develop more-severe symptoms (10). Listeriosis in pregnant women may cause abortion (22, 30) or neonatal death (22).Dairy products have been identified as the source of several human listeriosis outbreaks (4, 7, 10, 22). Listeria is ubiquitous on dairy farms (26), and it has been isolated from cows'' feces, feed (3, 26), and milk (21, 35). In ruminants, L. monocytogenes infections may be asymptomatic or clinical. Clinical cases typically present with encephalitis and uterine infections, often resulting in abortion (26, 39). Both clinically infected and healthy animals have been reported to excrete L. monocytogenes in their feces (20), which could eventually cause contamination of the bulk tank milk or milk-processing premises (39).On-farm epidemiologic research provides science-based information to improve farming and management practices. The Regional Dairy Quality Management Alliance (RDQMA) launched a combined United States Department of Agriculture (USDA)-RDQMA pilot project in January 2004 to scientifically validate intervention strategies in support of recommended best management practices among northeast dairy farms. The primary goal of the project was to track dynamics of infectious microorganisms on well-characterized dairy farms. Target species included Salmonella spp. (6, 36, 37), Mycobacterium avium subsp. paratuberculosis (13, 24), and L. monocytogenes.The objectives of this study were to describe the presence of L. monocytogenes on a dairy farm over time and to perform molecular subtyping by pulsed-field gel electrophoresis (PFGE) on L. monocytogenes isolates obtained from bulk tank milk, milk filters, milking equipment, feces, and the environmental samples to identify diversity among L. monocytogenes strains, persistence, and potential sources of bulk tank milk contamination.  相似文献   

7.
8.
Planktonic Listeria monocytogenes cells in food-processing environments tend most frequently to adhere to solid surfaces. Under these conditions, they are likely to encounter resident biofilms rather than a raw solid surface. Although metabolic interactions between L. monocytogenes and resident microflora have been widely studied, little is known about the biofilm properties that influence the initial fixation of L. monocytogenes to the biofilm interface. To study these properties, we created a set of model resident Lactococcus lactis biofilms with various architectures, types of matrices, and individual cell surface properties. This was achieved using cell wall mutants that affect bacterial chain formation, exopolysaccharide (EPS) synthesis and surface hydrophobicity. The dynamics of the formation of these biofilm structures were analyzed in flow cell chambers using in situ time course confocal laser scanning microscopy imaging. All the L. lactis biofilms tested reduced the initial immobilization of L. monocytogenes compared to the glass substratum of the flow cell. Significant differences were seen in L. monocytogenes settlement as a function of the genetic background of resident lactococcal biofilm cells. In particular, biofilms of the L. lactis chain-forming mutant resulted in a marked increase in L. monocytogenes settlement, while biofilms of the EPS-secreting mutant efficiently prevented pathogen fixation. These results offer new insights into the role of resident biofilms in governing the settlement of pathogens on food chain surfaces and could be of relevance in the field of food safety controls.Listeria monocytogenes is a food pathogen that has been implicated in numerous food-borne disease outbreaks (5, 58). This organism is found not only in food products but also on surfaces in food-processing plants (18). It is well documented that L. monocytogenes is able to adhere and form persistent biofilms on a variety of solid materials, such as stainless steel, glass, or polymers (18, 48, 51, 52). However, in food-manufacturing plants (and particularly in fermented-food-processing environments), it is most likely that the first contact between a pathogen and a surface will concern a resident microbial biofilm covering the solid surface (10, 35, 46). In this context, such a resident biofilm may be regarded as a “conditioning film” that modifies the topographic and physicochemical characteristics of the surface and hence the adhesion capability of planktonic microorganisms coming into contact with this substratum (6).Once the pathogens are immobilized on the surface, interactions between the pathogens and their environment (physiological interactions with resident flora, nutrient availability, pH, water activity, temperature, and cleaning and disinfection procedures) govern the long-term settlement and persistence of the pathogens on the surface. Various studies have demonstrated the inhibition of L. monocytogenes development by natural “protective” biofilms (10, 66). Competition for nutrients has been demonstrated as a major mechanism underlying the inhibition of pathogen development (25, 27). The production of antimicrobial agents (bacteriocins, acids, and hydrogen peroxide) has also been reported as being of importance to such interactions (13, 20, 36). For example, Lactococcus lactis has been described as being exceptionally efficient in controlling the development of L. monocytogenes on food-processing surfaces by means of competitive exclusion (66) or bacteriocin production (35). It has been reported that treating a surface with a bacterial polysaccharide prevented the adhesion of different nosocomial pathogens (60). Furthermore, alginate-overexpressing Pseudomonas aeruginosa biofilms reduced the retention of Cryptosporidium parvum oocysts (54). Other recent studies have shown that the composition and quantity of specific exopolysaccharides (EPS) in Pseudomonas biofilms can inhibit the fixation of Escherichia coli or Erwinia chrysanthemi planktonic cells in porous media (37, 38).The present study investigated those properties of resident biofilms that could affect the settlement of L. monocytogenes. L. lactis was used as a model resident biofilm strain, as this is widely used in dairy fermentations and its cell wall properties have been the subject of considerable study (22, 23). Cell wall mutants of L. lactis MG1363 were used to create a set of model biofilms that differed in terms of their architecture, EPS synthesis, and cell surface hydrophobicity. These biofilms were used to evaluate the attachment of fluorescent inert polystyrene microbeads and of two reference strains of L. monocytogenes (LO28 and EGDe) using in situ confocal fluorescence imaging.  相似文献   

9.
The majority of Listeria monocytogenes isolates recovered from foods and the environment are strains of serogroup 1/2, especially serotypes 1/2a and 1/2b. However, serotype 4b strains cause the majority of human listeriosis outbreaks. Our investigation of L. monocytogenes biofilms used a simulated food-processing system that consisted of repeated cycles of growth, sanitation treatment, and starvation to determine the competitive fitness of strains of serotypes 1/2a and 4b in pure and mixed-culture biofilms. Selective enumeration of strains of a certain serotype in mixed-culture biofilms on stainless steel coupons was accomplished by using serotype-specific quantitative PCR and propidium monoazide treatment to prevent amplification of extracellular DNA or DNA from dead cells. The results showed that the serotype 1/2a strains tested were generally more efficient at forming biofilms and predominated in the mixed-culture biofilms. The growth and survival of strains of one serotype were not inhibited by strains of the other serotype in mixed-culture biofilms. However, we found that a cocktail of serotype 4b strains survived and grew significantly better in mixed-culture biofilms containing a specific strain of serotype 1/2a (strain SK1387), with final cell densities averaging 0.5 log10 CFU/cm2 higher than without the serotype 1/2a strain. The methodology used in this study contributed to our understanding of how environmental stresses and microbial competition influence the survival and growth of L. monocytogenes in pure and mixed-culture biofilms.A prominent food-borne pathogen, Listeria monocytogenes can cause severe infections in humans, primarily in high-risk populations, though the disease (listeriosis) is relatively rare (11, 30, 43). Outbreaks of listeriosis have resulted from the contamination of a variety of foods by L. monocytogenes, especially meat and dairy products (27). L. monocytogenes is ubiquitous in the environment, able to grow at refrigeration temperature, and tolerant of the low pHs (3 to 4) typical of acidified foods (28, 32, 44). The capacity to produce biofilms confers protection against stresses common in the food-processing environment (13, 33).Biofilms are characterized by dense clusters of bacterial cells embedded in extracellular polymeric substances which are secreted by cells to aid in adhesion to surfaces and to other cells (4, 5). Strains of L. monocytogenes have been known to persist for years in food-processing environments, presumably in biofilms. Of the 13 known serotypes of L. monocytogenes, three (1/2a, 1/2b, and 4b) account for >95% of the isolates from human illness (21). Serotype 1/2a accounts for >50% of the L. monocytogenes isolates recovered from foods and the environment, while most major outbreaks of human listeriosis have been caused by serotype 4b strains (1, 3, 14, 15, 17, 22, 29, 31, 41, 47, 49,). No correlation between L. monocytogenes strain fitness and serotype has been identified (16, 19). Some studies have reported that strains repeatedly isolated from food and environmental samples (defined as persistent strains) had a higher adherence capacity than strains that were sporadically isolated (2, 36), while this phenomenon was not observed by others (7). Serotype 4b strains exhibited a higher capacity for biofilm formation than did serotype 1/2a strains (36), whereas this was not observed by Di Bonaventura and colleagues (6). It has been suggested that serotype 1/2a strains could be more robust than serotype 4b strains in biofilm formation under a variety of environmental conditions. Furthermore, strains of these serotypes differ in terms of the medium that promotes biofilm formation. Biofilm formation by serotype 4b strains was higher in full-strength tryptic soy broth than in diluted medium, whereas the opposite was observed with serotype 1/2a strains, which produced more biofilm in diluted medium (12).There is limited information on microbial competition between strains of different serotypes in biofilms or on how the environmental stresses present in food-processing environments may affect the biofilm formation and survival of L. monocytogenes of different serotypes. In food-processing plants, the environmental stresses encountered by bacteria are more complex and variable than most laboratory systems used for microbial ecology and biofilm studies. A simulated food-processing (SFP) system has been developed to address this issue (38). The SFP system incorporates several stresses that may affect bacteria in biofilms in the food-processing environment, including exposure to sanitizing agents, dehydration, and starvation. When biofilms were subjected to the SFP regimen over a period of several weeks, the cell numbers of L. monocytogenes strains in the biofilms initially were reduced and then increased as the culture adapted (38). The development of resistance to sanitizing agents was specific to the biofilm-associated cells and was not apparent in the detached cells (38). This suggested that extracellular polymeric substances present in the biofilm matrix were responsible for the resistance to sanitizing agents. It was subsequently found that real-time PCR, in combination with propidium monoazide (PMA) treatment of samples prior to DNA isolation, was an effective method for enumerating viable cells in biofilms (37).The objective of this study was to determine if strains of serotype 1/2a or 4b have a selective advantage under stress conditions. We investigated and compared the initial attachment and biofilm formation capabilities of L. monocytogenes strains of these two serotypes and analyzed the survival and growth of bacteria of each serotype in mixed-serotype biofilms in the SFP system by using PMA with quantitative PCR.  相似文献   

10.
Several mycoplasma species feature a membrane protrusion at a cell pole, and unknown mechanisms provide gliding motility in the direction of the pole defined by the protrusion. Mycoplasma gallisepticum, an avian pathogen, is known to form a membrane protrusion composed of bleb and infrableb and to glide. Here, we analyzed the gliding motility of M. gallisepticum cells in detail. They glided in the direction of the bleb at an average speed of 0.4 μm/s and remained attached around the bleb to a glass surface, suggesting that the gliding mechanism is similar to that of a related species, Mycoplasma pneumoniae. Next, to elucidate the cytoskeletal structure of M. gallisepticum, we stripped the envelopes by treatment with Triton X-100 under various conditions and observed the remaining structure by negative-staining transmission electron microscopy. A unique cytoskeletal structure, about 300 nm long and 100 nm wide, was found in the bleb and infrableb. The structure, resembling an asymmetrical dumbbell, is composed of five major parts from the distal end: a cap, a small oval, a rod, a large oval, and a bowl. Sonication likely divided the asymmetrical dumbbell into a core and other structures. The cytoskeletal structures of M. gallisepticum were compared with those of M. pneumoniae in detail, and the possible protein components of these structures were considered.Mycoplasmas are commensal and occasionally pathogenic bacteria that lack a peptidoglycan layer (50). Several species feature a membrane protrusion at a pole; for Mycoplasma mobile, this protrusion is called the head, and for Mycoplasma pneumoniae, it is called the attachment organelle (25, 34-37, 52, 54, 58). These species bind to solid surfaces, such as glass and animal cell surfaces, and exhibit gliding motility in the direction of the protrusion (34-37). This motility is believed to be essential for the mycoplasmas'' pathogenicity (4, 22, 27, 36). Recently, the proteins directly involved in the gliding mechanisms of mycoplasmas were identified and were found to have no similarities to those of known motility systems, including bacterial flagellum, pilus, and slime motility systems (25, 34-37).Mycoplasma gallisepticum is an avian pathogen that causes serious damage to the production of eggs for human consumption (50). The cells are pear-shaped and have a membrane protrusion, consisting of the so-called bleb and infrableb (29), and gliding motility (8, 14, 22). Their putative cytoskeletal structures may maintain this characteristic morphology because M. gallisepticum, like other mycoplasma species, does not have a cell wall (50). In sectioning electron microscopy (EM) studies of M. gallisepticum, an intracellular electron-dense structure in the bleb and infrableb was observed, suggesting the existence of a cytoskeletal structure (7, 24, 29, 37, 58). Recently, the existence of such a structure has been confirmed by scanning EM of the structure remaining after Triton X-100 extraction (13), although the details are still unclear.A human pathogen, M. pneumoniae, has a rod-shaped cytoskeletal structure in the attachment organelle (9, 15, 16, 31, 37, 57). M. gallisepticum is related to M. pneumoniae (63, 64), as represented by 90.3% identity between the 16S rRNA sequences, and it has some open reading frames (ORFs) homologous to the component proteins of the cytoskeletal structures of M. pneumoniae (6, 17, 48). Therefore, the cytoskeletal structures of M. gallisepticum are expected to be similar to those of M. pneumoniae, as scanning EM images also suggest (13).The fastest-gliding species, M. mobile, is more distantly related to M. gallisepticum; it has novel cytoskeletal structures that have been analyzed through negative-staining transmission EM after extraction by Triton X-100 with image averaging (45). This method of transmission EM following Triton X-100 extraction clearly showed a cytoskeletal “jellyfish” structure. In this structure, a solid oval “bell,” about 235 nm wide and 155 nm long, is filled with a 12-nm hexagonal lattice. Connected to this bell structure are dozens of flexible “tentacles” that are covered with particles 20 nm in diameter at intervals of about 30 nm. The particles appear to have 180° rotational symmetry and a dimple at the center. The involvement of this cytoskeletal structure in the gliding mechanism was suggested by its cellular localization and by analyses of mutants lacking proteins essential for gliding.In the present study, we applied this method to M. gallisepticum and analyzed its unique cytoskeletal structure, and we then compared it with that of M. pneumoniae.  相似文献   

11.
Listeria monocytogenes epidemic clone II (ECII) has been responsible for two multistate outbreaks in the United States in 1998-1999 and in 2002, in which contaminated ready-to-eat meat products (hot dogs and turkey deli meats, respectively) were implicated. However, ecological adaptations of ECII strains in the food-processing plant environment remain unidentified. In this study, we found that broad-host-range phages, including phages isolated from the processing plant environment, produced plaques on ECII strains grown at 37°C but not when the bacteria were grown at lower temperatures (30°C or below). ECII strains grown at lower temperatures were resistant to phage regardless of the temperature during infection and subsequent incubation. In contrast, the phage susceptibility of all other tested strains of serotype 4b (including epidemic clone I) and of strains of other serotypes and Listeria species was independent of the growth temperature of the bacteria. This temperature-dependent phage susceptibility of ECII bacteria was consistently observed with all surveyed ECII strains from outbreaks or from processing plants, regardless of the presence or absence of cadmium resistance plasmids. Phages adsorbed similarly on ECII bacteria grown at 25°C and at 37°C, suggesting that resistance of ECII strains grown at 25°C was not due to failure of the phage to adsorb. Even though the underlying mechanisms remain to be elucidated, temperature-dependent phage resistance may represent an important ecological adaptation of L. monocytogenes ECII in processed, cold-stored foods and in the processing plant environment, where relatively low temperatures prevail.Listeria monocytogenes is responsible for an estimated 2,500 cases of serious food-borne illness (listeriosis) and 500 deaths annually in the United States. It affects primarily pregnant women, newborns, the elderly, and adults with weakened immune systems. L. monocytogenes is frequently found in the environment and can grow at low temperatures, thus representing a serious hazard for cold-stored, ready-to-eat foods (18, 31).Two multistate outbreaks of listeriosis in the United States, in 1998-1999 and in 2002, respectively, were caused by contaminated ready-to-eat meats (hot dogs and turkey deli meats, respectively) contaminated by serotype 4b strains that represented a novel clonal group, designated epidemic clone II (ECII) (3, 4). ECII strains have distinct genotypes as determined by pulsed-field gel electrophoresis and various other subtyping tools, and harbor unique genetic markers (6, 8, 11, 19, 34). The genome sequencing of one of the isolates (L. monocytogenes H7858) from the 1998-1999 outbreak revealed the presence of a plasmid of ca. 80 kb (pLM80), which harbored genes mediating resistance to the heavy metal cadmium as well as genes conferring resistance to the quaternary ammonium disinfectant benzalkonium chloride (10, 29).Listeria phages (listeriaphage) have long been used for subtyping purposes (33), and extensive research has focused on the genomic characterization (2, 24, 26, 35), transducing potential (14), and biotechnological applications of selected phages (25). In addition, applications of listeriaphage as biocontrol agents in foods and the processing plant environment have been investigated (12, 15, 22). However, limited information exists on phages from processing plant environments and on the impact of environmental conditions on susceptibility of L. monocytogenes strains representing the major epidemic-associated clonal groups to such phages. We have found that strains harboring ECII-specific genetic markers can indeed be recovered from the environment of turkey-processing plants (9). Furthermore, environmental samples from such processing plants yielded phages with broad host range, which were able to infect L. monocytogenes strains of various serotypes, and different Listeria species (20). In this study, we describe the impact of growth temperature on susceptibility of L. monocytogenes ECII strains to phages, including phages isolated from turkey-processing plant environmental samples.  相似文献   

12.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

13.
14.
The ability to undergo dramatic morphological changes in response to extrinsic cues is conserved in fungi. We have used the model yeast Schizosaccharomyces pombe to determine which intracellular signal regulates the dimorphic switch from the single-cell yeast form to the filamentous invasive growth form. The S. pombe Asp1 protein, a member of the conserved Vip1 1/3 inositol polyphosphate kinase family, is a key regulator of the morphological switch via the cAMP protein kinase A (PKA) pathway. Lack of a functional Asp1 kinase domain abolishes invasive growth which is monopolar, while an increase in Asp1-generated inositol pyrophosphates (PP) increases the cellular response. Remarkably, the Asp1 kinase activity encoded by the N-terminal part of the protein is regulated negatively by the C-terminal domain of Asp1, which has homology to acid histidine phosphatases. Thus, the fine tuning of the cellular response to environmental cues is modulated by the same protein. As the Saccharomyces cerevisiae Asp1 ortholog is also required for the dimorphic switch in this yeast, we propose that Vip1 family members have a general role in regulating fungal dimorphism.Eucaryotic cells are able to define and maintain a particular cellular organization and thus cellular morphology by executing programs modulated by internal and external signals. For example, signals generated within a cell are required for the selection of the growth zone after cytokinesis in the fission yeast Schizosaccharomyces pombe or the emergence of the bud in Saccharomyces cerevisiae (37, 44, 81). Cellular morphogenesis is also subject to regulation by a wide variety of external signals, such as growth factors, temperature, hormones, nutrient limitation, and cell-cell or cell-substrate contact (13, 34, 66, 75, 81). Both types of signals will lead to the selection of growth zones accompanied by the reorganization of the cytoskeleton.The ability to alter the growth form in response to environmental conditions is an important virulence-associated trait of pathogenic fungi which helps the pathogen to spread in and survive the host''s defense system (7, 32). Alteration of the growth form in response to extrinsic signals is not limited to pathogenic fungi but is also found in the model yeasts S. cerevisiae and S. pombe, in which it appears to represent a foraging response (1, 24).The regulation of polarized growth and the definition of growth zones have been studied extensively with the fission yeast S. pombe. In this cylindrically shaped organism, cell wall biosynthesis is restricted to one or both cell ends in a cell cycle-regulated manner and to the septum during cytokinesis (38). This mode of growth requires the actin cytoskeleton to direct growth and the microtubule cytoskeleton to define the growth sites (60). In interphase cells, microtubules are organized in antiparallel bundles that are aligned along the long axis of the cell and grow from their plus ends toward the cell tips. Upon contact with the cell end, microtubule growth will first pause and then undergo a catastrophic event and microtubule shrinkage (21). This dynamic behavior of the microtubule plus end is regulated by a disparate, conserved, microtubule plus end group of proteins, called the +TIPs. The +TIP complex containing the EB1 family member Mal3 is required for the delivery of the Tea1-Tea4 complex to the cell tip (6, 11, 27, 45, 77). The latter complex docks at the cell end and recruits proteins required for actin nucleation (46, 76). Thus, the intricate cross talk between the actin and the microtubule cytoskeleton at specific intracellular locations is necessary for cell cycle-dependent polarized growth of the fission yeast cell.The intense analysis of polarized growth control in single-celled S. pombe makes this yeast an attractive organism for the identification of key regulatory components of the dimorphic switch. S. pombe multicellular invasive growth has been observed for specific strains under specific conditions, such as nitrogen and ammonium limitation and the presence of excess iron (1, 19, 50, 61).Here, we have identified an evolutionarily conserved key regulator of the S. pombe dimorphic switch, the Asp1 protein. Asp1 belongs to the highly conserved family of Vip1 1/3 inositol polyphosphate kinases, which is one of two families that can generate inositol pyrophosphates (PP) (17, 23, 42, 54). The inositol polyphosphate kinase IP6K family, of which the S. cerevisiae Kcs1 protein is a member, is the “classical” family that can phosphorylate inositol hexakisphosphate (IP6) (70, 71). These enzymes generate a specific PP-IP5 (IP7), which has the pyrophosphate at position 5 of the inositol ring (20, 54). The Vip1 family kinase activity was unmasked in an S. cerevisiae strain with KCS1 and DDP1 deleted (54, 83). The latter gene encodes a nudix hydrolase (14, 68). The mammalian and S. cerevisiae Vip1 proteins phosphorylate the 1/3 position of the inositol ring, generating 1/3 diphosphoinositol pentakisphosphate (42). Both enzyme families collaborate to generate IP8 (17, 23, 42, 54, 57).Two modes of action have been described for the high-energy moiety containing inositol pyrophosphates. First, these molecules can phosphorylate proteins by a nonenzymatic transfer of a phosphate group to specific prephosphorylated serine residues (2, 8, 69). Second, inositol pyrophosphates can regulate protein function by reversible binding to the S. cerevisiae Pho80-Pho85-Pho81 complex (39, 40). This cyclin-cyclin-dependent kinase complex is inactivated by inositol pyrophosphates generated by Vip1 when cells are starved of inorganic phosphate (39, 41, 42).Regulation of phosphate metabolism in S. cerevisiae is one of the few roles specifically attributed to a Vip1 kinase. Further information about the cellular function of this family came from the identification of the S. pombe Vip1 family member Asp1 as a regulator of the actin nucleator Arp2/3 complex (22). The 106-kDa Asp1 cytoplasmic protein, which probably exists as a dimer in vivo, acts as a multicopy suppressor of arp3-c1 mutants (22). Loss of Asp1 results in abnormal cell morphology, defects in polarized growth, and aberrant cortical actin cytoskeleton organization (22).The Vip1 family proteins have a dual domain structure which consists of an N-terminal “rimK”/ATP-grasp superfamily domain found in certain inositol signaling kinases and a C-terminal part with homology to histidine acid phosphatases present in phytase enzymes (28, 53, 54). The N-terminal domain is required and sufficient for Vip1 family kinase activity, and an Asp1 variant with a mutation in a catalytic residue of the kinase domain is unable to suppress mutants of the Arp2/3 complex (17, 23, 54). To date, no function has been described for the C-terminal phosphatase domain, and this domain appears to be catalytically inactive (17, 23, 54).Here we describe a new and conserved role for Vip1 kinases in regulating the dimorphic switch in yeasts. Asp1 kinase activity is essential for cell-cell and cell-substrate adhesion and the ability of S. pombe cells to grow invasively. Interestingly, Asp1 kinase activity is counteracted by the putative phosphatase domain of this protein, a finding that allows us to describe for the first time a function for the C-terminal part of Vip1 proteins.  相似文献   

15.
Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water content to spore resistance to germicidal 254-nm and simulated environmental UV exposure (280 to 400 nm, 290 to 400 nm, and 320 to 400 nm). Spores of strains carrying mutations in sspA, sspB, and both sspA and sspB (lacking the major SASP-α and/or SASP-β) were significantly more sensitive to 254-nm and all polychromatic UV exposures, whereas the UV resistance of spores of the sspE strain (lacking SASP-γ) was essentially identical to that of the wild type. Spores of the dacB-defective strain were as resistant to 254-nm UV-C radiation as wild-type spores. However, spores of the dacB strain were significantly more sensitive than wild-type spores to environmental UV treatments of >280 nm. Air-dried spores of the dacB mutant strain had a significantly higher water content than air-dried wild-type spores. Our results indicate that α/β-type SASP and decreased spore core water content play an essential role in spore resistance to environmentally relevant UV wavelengths whereas SASP-γ does not.Spores of Bacillus spp. are highly resistant to inactivation by different physical stresses, such as toxic chemicals and biocidal agents, desiccation, pressure and temperature extremes, and high fluences of UV or ionizing radiation (reviewed in references 33, 34, and 48). Under stressful environmental conditions, cells of Bacillus spp. produce endospores that can stay dormant for extended periods. The reason for the high resistance of bacterial spores to environmental extremes lies in the structure of the spore. Spores possess thick layers of highly cross-linked coat proteins, a modified peptidoglycan spore cortex, a low core water content, and abundant intracellular constituents, such as the calcium chelate of dipicolinic acid and α/β-type small, acid-soluble spore proteins (α/β-type SASP), the last two of which protect spore DNA (6, 42, 46, 48, 52). DNA damage accumulated during spore dormancy is also efficiently repaired during spore germination (33, 47, 48). UV-induced DNA photoproducts are repaired by spore photoproduct lyase and nucleotide excision repair, DNA double-strand breaks (DSB) by nonhomologous end joining, and oxidative stress-induced apurinic/apyrimidinic (AP) sites by AP endonucleases and base excision repair (15, 26-29, 34, 43, 53, 57).Monochromatic 254-nm UV radiation has been used as an efficient and cost-effective means of disinfecting surfaces, building air, and drinking water supplies (31). Commonly used test organisms for inactivation studies are bacterial spores, usually spores of Bacillus subtilis, due to their high degree of resistance to various sporicidal treatments, reproducible inactivation response, and safety (1, 8, 19, 31, 48). Depending on the Bacillus species analyzed, spores are 10 to 50 times more resistant than growing cells to 254-nm UV radiation. In addition, most of the laboratory studies of spore inactivation and radiation biology have been performed using monochromatic 254-nm UV radiation (33, 34). Although 254-nm UV-C radiation is a convenient germicidal treatment and relevant to disinfection procedures, results obtained by using 254-nm UV-C are not truly representative of results obtained using UV wavelengths that endospores encounter in their natural environments (34, 42, 50, 51, 59). However, sunlight reaching the Earth''s surface is not monochromatic 254-nm radiation but a mixture of UV, visible, and infrared radiation, with the UV portion spanning approximately 290 to 400 nm (33, 34, 36). Thus, our knowledge of spore UV resistance has been constructed largely using a wavelength of UV radiation not normally reaching the Earth''s surface, even though ample evidence exists that both DNA photochemistry and microbial responses to UV are strongly wavelength dependent (2, 30, 33, 36).Of recent interest in our laboratories has been the exploration of factors that confer on B. subtilis spores resistance to environmentally relevant extreme conditions, particularly solar UV radiation and extreme desiccation (23, 28, 30, 34 36, 48, 52). It has been reported that α/β-type SASP but not SASP-γ play a major role in spore resistance to 254-nm UV-C radiation (20, 21) and to wet heat, dry heat, and oxidizing agents (48). In contrast, increased spore water content was reported to affect B. subtilis spore resistance to moist heat and hydrogen peroxide but not to 254-nm UV-C (12, 40, 48). However, the possible roles of SASP-α, -β, and -γ and core water content in spore resistance to environmentally relevant solar UV wavelengths have not been explored. Therefore, in this study, we have used B. subtilis strains carrying mutations in the sspA, sspB, sspE, sspA and sspB, or dacB gene to investigate the contributions of SASP and increased core water content to the resistance of B. subtilis spores to 254-nm UV-C and environmentally relevant polychromatic UV radiation encountered on Earth''s surface.  相似文献   

16.
Listeria monocytogenes is a food-borne pathogen capable of forming biofilms and persisting in food processing environments for extended periods of time, thereby potentially contaminating foods. The efficacy of octenidine hydrochloride (OH) for inactivating planktonic cells and preformed biofilms of L. monocytogenes was investigated at 37, 21, 8, and 4°C in the presence and absence of organic matter (rehydrated nonfat dry milk). OH rapidly killed planktonic cells and biofilms of L. monocytogenes at all four temperatures. Moreover, OH was equally effective in killing L. monocytogenes biofilms on polystyrene and stainless steel matrices in the presence and absence of organic matter. The results underscore OH''s ability to prevent establishment of L. monocytogenes biofilms by rapidly killing planktonic cells and to eliminate preformed biofilms, thus suggesting that it could be used as a disinfectant to prevent L. monocytogenes from persisting in food processing environments.Listeria monocytogenes is a major bacterial pathogen (2), accounting for approximately 28% of the deaths resulting from food-borne illnesses in the United States (22). It is widespread in nature and occurs in soil, vegetation, fecal matter, sewage, water, and animal feed (14). Because it is ubiquitous, L. monocytogenes is frequently isolated from foods and food processing environments (13, 23), thereby presenting a significant challenge to the food industry. Several studies have shown that L. monocytogenes is capable of adhering to food contact surfaces, such as glass, stainless steel, rubber, and polystyrene (6, 11, 28). Upon attachment to such surfaces, L. monocytogenes establishes biofilms and persists for long periods of time in the food processing environment (18, 30). This potentially poses a food safety hazard since biofilms are an important source of contamination of food products that come into contact with them. In addition, biofilms also protect the underlying bacteria from desiccation, antimicrobials, and sanitizing agents (7, 16). Thus, eradication of L. monocytogenes biofilms in processing plants is critical for improving food safety.When problems with persistent L. monocytogenes are encountered in food processing facilities, plant hygiene and sanitation are emphasized (31). This involves preventing the establishment of L. monocytogenes biofilms in the food processing environment and reducing contamination of product contact surfaces. A variety of cleaners and disinfectants, including quaternary ammonium compounds and hypochlorite, have been evaluated for this purpose (20). Although these compounds are approved by the Food and Drug Administration for use as disinfectants in processing plants, they are not effective in killing L. monocytogenes (24, 25), especially in the presence of soil or organic matter and at low temperatures. Therefore, there is a need for an effective disinfectant that can eliminate listerial biofilms in the presence of organic matter at a wide range of temperatures. Octenidine hydrochloride (OH) is a positively charged bispyridinamine that exhibits antimicrobial activity against plaque-producing organisms, such as Streptococcus mutans and Streptococcus sanguis (5). Toxicity studies with a variety of species have shown that OH is not absorbed through mucous membranes and the gastrointestinal tract, and there have been no reports of carcinogenicity, genotoxicity, or mutagenicity of this compound (17, 19, 29).The objective of this study was to investigate the efficacy of OH for inactivating planktonic cells and preformed biofilms of L. monocytogenes at 37, 21, 8, and 4°C in the presence and absence of organic matter on two matrices, polystyrene and stainless steel.  相似文献   

17.
Phenoxyalkanoic acid (PAA) herbicides are widely used in agriculture. Biotic degradation of such herbicides occurs in soils and is initiated by α-ketoglutarate- and Fe2+-dependent dioxygenases encoded by tfdA-like genes (i.e., tfdA and tfdAα). Novel primers and quantitative kinetic PCR (qPCR) assays were developed to analyze the diversity and abundance of tfdA-like genes in soil. Five primer sets targeting tfdA-like genes were designed and evaluated. Primer sets 3 to 5 specifically amplified tfdA-like genes from soil, and a total of 437 sequences were retrieved. Coverages of gene libraries were 62 to 100%, up to 122 genotypes were detected, and up to 389 genotypes were predicted to occur in the gene libraries as indicated by the richness estimator Chao1. Phylogenetic analysis of in silico-translated tfdA-like genes indicated that soil tfdA-like genes were related to those of group 2 and 3 Bradyrhizobium spp., Sphingomonas spp., and uncultured soil bacteria. Soil-derived tfdA-like genes were assigned to 11 clusters, 4 of which were composed of novel sequences from this study, indicating that soil harbors novel and diverse tfdA-like genes. Correlation analysis of 16S rRNA and tfdA-like gene similarity indicated that any two bacteria with D > 20% of group 2 tfdA-like gene-derived protein sequences belong to different species. Thus, data indicate that the soil analyzed harbors at least 48 novel bacterial species containing group 2 tfdA-like genes. Novel qPCR assays were established to quantify such new tfdA-like genes. Copy numbers of tfdA-like genes were 1.0 × 106 to 65 × 106 per gram (dry weight) soil in four different soils, indicating that hitherto-unknown, diverse tfdA-like genes are abundant in soils.Phenoxyalkanoic acid (PAA) herbicides such as MCPA (4-chloro-2-methyl-phenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) are widely used to control broad-leaf weeds in agricultural as well as nonagricultural areas (19, 77). Degradation occurs primarily under oxic conditions in soil, and microorganisms play a key role in the degradation of such herbicides in soil (62, 64). Although relatively rapidly degraded in soil (32, 45), both MCPA and 2,4-D are potential groundwater contaminants (10, 56, 70), accentuating the importance of bacterial PAA herbicide-degrading bacteria in soils (e.g., references 3, 5, 6, 20, 41, 59, and 78).Degradation can occur cometabolically or be associated with energy conservation (15, 54). The first step in the degradation of 2,4-D and MCPA is initiated by the product of cadAB or tfdA-like genes (29, 30, 35, 67), which constitutes an α-ketoglutarate (α-KG)- and Fe2+-dependent dioxygenase. TfdA removes the acetate side chain of 2,4-D and MCPA to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, and glyoxylate while oxidizing α-ketoglutarate to CO2 and succinate (16, 17).Organisms capable of PAA herbicide degradation are phylogenetically diverse and belong to the Alpha-, Beta-, and Gammproteobacteria and the Bacteroidetes/Chlorobi group (e.g., references 2, 14, 29-34, 39, 60, 68, and 71). These bacteria harbor tfdA-like genes (i.e., tfdA or tfdAα) and are categorized into three groups on an evolutionary and physiological basis (34). The first group consists of beta- and gammaproteobacteria and can be further divided into three distinct classes based on their tfdA genes (30, 46). Class I tfdA genes are closely related to those of Cupriavidus necator JMP134 (formerly Ralstonia eutropha). Class II tfdA genes consist of those of Burkholderia sp. strain RASC and a few strains that are 76% identical to class I tfdA genes. Class III tfdA genes are 77% identical to class I and 80% identical to class II tfdA genes and linked to MCPA degradation in soil (3). The second group consists of alphaproteobacteria, which are closely related to Bradyrhizobium spp. with tfdAα genes having 60% identity to tfdA of group 1 (18, 29, 34). The third group also harbors the tfdAα genes and consists of Sphingomonas spp. within the alphaproteobacteria (30).Diverse PAA herbicide degraders of all three groups were identified in soil by cultivation-dependent studies (32, 34, 41, 78). Besides CadAB, TfdA and certain TfdAα proteins catalyze the conversion of PAA herbicides (29, 30, 35). All groups of tfdA-like genes are potentially linked to the degradation of PAA herbicides, although alternative primary functions of group 2 and 3 TfdAs have been proposed (30, 35). However, recent cultivation-independent studies focused on 16S rRNA genes or solely on group 1 tfdA sequences in soil (e.g., references 3-5, 13, and 41). Whether group 2 and 3 tfdA-like genes are also quantitatively linked to the degradation of PAA herbicides in soils is unknown. Thus, tools to target a broad range of tfdA-like genes are needed to resolve such an issue. Primers used to assess the diversity of tfdA-like sequences used in previous studies were based on the alignment of approximately 50% or less of available sequences to date (3, 20, 29, 32, 39, 47, 58, 73). Primers specifically targeting all major groups of tfdA-like genes to assess and quantify a broad diversity of potential PAA degraders in soil are unavailable. Thus, the objectives of this study were (i) to develop primers specific for all three groups of tfdA-like genes, (ii) to establish quantitative kinetic PCR (qPCR) assays based on such primers for different soil samples, and (iii) to assess the diversity and abundance of tfdA-like genes in soil.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号