首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To date, most new vaccines against Mycobacterium tuberculosis, including new recombinant versions of the current BCG vaccine, have usually been screened against the laboratory strains H37Rv or Erdman. In this study we took advantage of our recent work in characterizing an increasingly large panel of newly emerging clinical isolates [from the United States or from the Western Cape region of South Africa], to determine to what extent vaccines would protect against these [mostly high virulence] strains. We show here that both BCG Pasteur and recombinant BCG Aeras-422 [used here as a good example of the new generation BCG vaccines] protected well in both mouse and guinea pig low dose aerosol infection models against the majority of clinical isolates tested. However, Aeras-422 was not effective in a long term survival assay compared to BCG Pasteur. Protection was very strongly expressed against all of the Western Cape strains tested, reinforcing our viewpoint that any attempt at boosting BCG would be very difficult to achieve statistically. This observation is discussed in the context of the growing argument made by others that the failure of a recent vaccine trial disqualifies the further use of animal models to predict vaccine efficacy. This viewpoint is in our opinion completely erroneous, and that it is the fitness of prevalent strains in the trial site area that is the centrally important factor, an issue that is not being addressed by the field.  相似文献   

2.
3.
4.
5.
Invariant natural killer T (iNKT) cells are activated during infection, but how they limit microbial growth is unknown in most cases. We investigated how iNKT cells suppress intracellular Mycobacterium tuberculosis (Mtb) replication. When co-cultured with infected macrophages, iNKT cell activation, as measured by CD25 upregulation and IFNγ production, was primarily driven by IL-12 and IL-18. In contrast, iNKT cell control of Mtb growth was CD1d-dependent, and did not require IL-12, IL-18, or IFNγ. This demonstrated that conventional activation markers did not correlate with iNKT cell effector function during Mtb infection. iNKT cell control of Mtb replication was also independent of TNF and cell-mediated cytotoxicity. By dissociating cytokine-driven activation and CD1d-restricted effector function, we uncovered a novel mediator of iNKT cell antimicrobial activity: GM-CSF. iNKT cells produced GM-CSF in vitro and in vivo in a CD1d-dependent manner during Mtb infection, and GM-CSF was both necessary and sufficient to control Mtb growth. Here, we have identified GM-CSF production as a novel iNKT cell antimicrobial effector function and uncovered a potential role for GM-CSF in T cell immunity against Mtb.  相似文献   

6.
7.
8.
The co‐catabolism of multiple host‐derived carbon substrates is required by Mycobacterium tuberculosis (Mtb) to successfully sustain a tuberculosis infection. However, the metabolic plasticity of this pathogen and the complexity of the metabolic networks present a major obstacle in identifying those nodes most amenable to therapeutic interventions. It is therefore critical that we define the metabolic phenotypes of Mtb in different conditions. We applied metabolic flux analysis using stable isotopes and lipid fingerprinting to investigate the metabolic network of Mtb growing slowly in our steady‐state chemostat system. We demonstrate that Mtb efficiently co‐metabolises either cholesterol or glycerol, in combination with two‐carbon generating substrates without any compartmentalisation of metabolism. We discovered that partitioning of flux between the TCA cycle and the glyoxylate shunt combined with a reversible methyl citrate cycle is the critical metabolic nodes which underlie the nutritional flexibility of Mtb. These findings provide novel insights into the metabolic architecture that affords adaptability of bacteria to divergent carbon substrates and expand our fundamental knowledge about the methyl citrate cycle and the glyoxylate shunt.  相似文献   

9.
10.
Uracil phosphoribosyltransferase (UPRT) catalyzes the conversion of uracil and 5-phosphoribosyl-α-1-pyrophosphate (PRPP) to uridine 5′-monophosphate (UMP) and pyrophosphate (PPi). UPRT plays an important role in the pyrimidine salvage pathway since UMP is a common precursor of all pyrimidine nucleotides. Here we describe cloning, expression and purification to homogeneity of upp-encoded UPRT from Mycobacterium tuberculosis (MtUPRT). Mass spectrometry and N-terminal amino acid sequencing unambiguously identified the homogeneous protein as MtUPRT. Analytical ultracentrifugation showed that native MtUPRT follows a monomer-tetramer association model. MtUPRT is specific for uracil. GTP is not a modulator of MtUPRT ativity. MtUPRT was not significantly activated or inhibited by ATP, UTP, and CTP. Initial velocity and isothermal titration calorimetry studies suggest that catalysis follows a sequential ordered mechanism, in which PRPP binding is followed by uracil, and PPi product is released first followed by UMP. The pH-rate profiles indicated that groups with pK values of 5.7 and 8.1 are important for catalysis, and a group with a pK value of 9.5 is involved in PRPP binding. The results here described provide a solid foundation on which to base upp gene knockout aiming at the development of strategies to prevent tuberculosis.  相似文献   

11.
12.
ESX-3 is one of the five type VII secretion systems encoded by the Mycobacterium tuberculosis genome. We recently showed the essentiality of ESX-3 for M. tuberculosis viability and proposed its involvement in iron and zinc metabolism. In this study we confirmed the role of ESX-3 in iron uptake and its involvement in the adaptation to low zinc environment in M. tuberculosis. Moreover, we unveiled functional differences between the ESX-3 roles in M. tuberculosis and M. smegmatis showing that in the latter ESX-3 is only involved in the adaptation to iron and not to zinc restriction. Finally, we also showed that in M. tuberculosis this secretion system is essential for iron and zinc homeostasis not only in conditions in which the concentrations of these metals are limiting but also in metal sufficient conditions.  相似文献   

13.

Background

Isoniazid (INH) is a highly effective antibiotic central for the treatment of Mycobacterium tuberculosis (MTB). INH-resistant MTB clinical isolates are frequently mutated in the katG gene and the inhA promoter region, but 10 to 37% of INH-resistant clinical isolates have no detectable alterations in currently known gene targets associated with INH-resistance. We aimed to identify novel genes associated with INH-resistance in these latter isolates.

Methodology/Principal Findings

INH-resistant clinical isolates of MTB were pre-screened for mutations in the katG, inhA, kasA and ndh genes and the regulatory regions of inhA and ahpC. Twelve INH-resistant isolates with no mutations, and 17 INH-susceptible MTB isolates were subjected to whole genome sequencing. Phylogenetically related variants and synonymous mutations were excluded and further analysis revealed mutations in 60 genes and 4 intergenic regions associated with INH-resistance. Sanger sequencing verification of 45 genes confirmed that mutations in 40 genes were observed only in INH-resistant isolates and not in INH-susceptible isolates. The ratios of non-synonymous to synonymous mutations (dN/dS ratio) for the INH-resistance associated mutations identified in this study were 1.234 for INH-resistant and 0.654 for INH-susceptible isolates, strongly suggesting that these mutations are indeed associated with INH-resistance.

Conclusion

The discovery of novel targets associated with INH-resistance described in this study may potentially be important for the development of improved molecular detection strategies.  相似文献   

14.
Tuberculosis associates with a wide spectrum of disease outcomes. The Beijing (Bj) lineage of Mycobacterium tuberculosis (Mtb) is suggested to be more virulent than other Mtb lineages and prone to elicit non-protective immune responses. However, highly heterogeneous immune responses were reported upon infection of innate immune cells with Bj strains or stimulation with their glycolipids. Using both in vitro and in vivo mouse models of infection, we here report that the molecular mechanism for this heterogeneity may be related to distinct TLR activations. Among this Mtb lineage, we found strains that preferentially activate TLR2, and others that also activate TLR4. Recognition of Mtb strains by TLR4 resulted in a distinct cytokine profile in vitro and in vivo, with specific production of type I IFN. We also uncover a novel protective role for TLR4 activation in vivo. Thus, our findings contribute to the knowledge of the molecular basis underlying how host innate immune cells handle different Mtb strains, in particular the intricate host-pathogen interaction with strains of the Mtb Bj lineage.  相似文献   

15.
Tuberculosis, the second leading infectious disease killer after HIV, remains a top public health priority. The causative agent of tuberculosis, Mycobacterium tuberculosis (Mtb), which can cause both acute and clinically latent infections, reprograms metabolism in response to the host niche. Phosphoenolpyruvate carboxykinase (Pck) is the enzyme at the center of the phosphoenolpyruvate-pyruvate-oxaloacetate node, which is involved in regulating the carbon flow distribution to catabolism, anabolism, or respiration in different states of Mtb infection. Under standard growth conditions, Mtb Pck is associated with gluconeogenesis and catalyzes the metal-dependent formation of phosphoenolpyruvate. In non-replicating Mtb, Pck can catalyze anaplerotic biosynthesis of oxaloacetate. Here, we present insights into the regulation of Mtb Pck activity by divalent cations. Through analysis of the X-ray structure of Pck-GDP and Pck-GDP-Mn2+ complexes, mutational analysis of the GDP binding site, and quantum mechanical (QM)-based analysis, we explored the structural determinants of efficient Mtb Pck catalysis. We demonstrate that Mtb Pck requires presence of Mn2+ and Mg2+ cations for efficient catalysis of gluconeogenic and anaplerotic reactions. The anaplerotic reaction, which preferably functions in reducing conditions that are characteristic for slowed or stopped Mtb replication, is also effectively activated by Fe2+ in the presence of Mn2+ or Mg2+ cations. In contrast, simultaneous presence of Fe2+ and Mn2+ or Mg2+ inhibits the gluconeogenic reaction. These results suggest that inorganic ions can contribute to regulation of central carbon metabolism by influencing the activity of Pck. Furthermore, the X-ray structure determination, biochemical characterization, and QM analysis of Pck mutants confirmed the important role of the Phe triad for proper binding of the GDP-Mn2+ complex in the nucleotide binding site and efficient catalysis of the anaplerotic reaction.  相似文献   

16.
Mycobacterium tuberculosis bacilli display two signature features: acid-fast staining and the capacity to induce long-term latent infections in humans. However, the mechanisms governing these two important processes remain largely unknown. Ser/Thr phosphorylation has recently emerged as an important regulatory mechanism allowing mycobacteria to adapt their cell wall structure/composition in response to their environment. Herein, we evaluated whether phosphorylation of KasB, a crucial mycolic acid biosynthetic enzyme, could modulate acid-fast staining and virulence. Tandem mass spectrometry and site-directed mutagenesis revealed that phosphorylation of KasB occurred at Thr334 and Thr336 both in vitro and in mycobacteria. Isogenic strains of M. tuberculosis with either a deletion of the kasB gene or a kasB_T334D/T336D allele, mimicking constitutive phosphorylation of KasB, were constructed by specialized linkage transduction. Biochemical and structural analyses comparing these mutants to the parental strain revealed that both mutant strains had mycolic acids that were shortened by 4–6 carbon atoms and lacked trans-cyclopropanation. Together, these results suggested that in M. tuberculosis, phosphorylation profoundly decreases the condensing activity of KasB. Structural/modeling analyses reveal that Thr334 and Thr336 are located in the vicinity of the catalytic triad, which indicates that phosphorylation of these amino acids would result in loss of enzyme activity. Importantly, the kasB_T334D/T336D phosphomimetic and deletion alleles, in contrast to the kasB_T334A/T336A phosphoablative allele, completely lost acid-fast staining. Moreover, assessing the virulence of these strains indicated that the KasB phosphomimetic mutant was attenuated in both immunodeficient and immunocompetent mice following aerosol infection. This attenuation was characterized by the absence of lung pathology. Overall, these results highlight for the first time the role of Ser/Thr kinase-dependent KasB phosphorylation in regulating the later stages of mycolic acid elongation, with important consequences in terms of acid-fast staining and pathogenicity.  相似文献   

17.
In chronic infection, Mycobacterium tuberculosis bacilli are thought to enter a metabolic program that provides sufficient energy for maintenance of the protonmotive force, but is insufficient to meet the demands of cellular growth. We sought to understand this metabolic downshift genetically by targeting succinate dehydrogenase, the enzyme which couples the growth processes controlled by the TCA cycle with the energy production resulting from the electron transport chain. M. tuberculosis contains two operons which are predicted to encode succinate dehydrogenase enzymes (sdh-1 and sdh-2); we found that deletion of Sdh1 contributes to an inability to survive long term stationary phase. Stable isotope labeling and mass spectrometry revealed that Sdh1 functions as a succinate dehydrogenase during aerobic growth, and that Sdh2 is dispensable for this catalysis, but partially overlapping activities ensure that the loss of one enzyme can incompletely compensate for loss of the other. Deletion of Sdh1 disturbs the rate of respiration via the mycobacterial electron transport chain, resulting in an increased proportion of reduced electron carrier (menaquinol) which leads to increased oxygen consumption. The loss of respiratory control leads to an inability to recover from stationary phase. We propose a model in which succinate dehydrogenase is a governor of cellular respiration in the adaptation to low oxygen environments.  相似文献   

18.
Prokaryotic ubiquitin-like protein (Pup) in Mycobacterium tuberculosis (Mtb) is the first known post-translational small protein modifier in prokaryotes, and targets several proteins for degradation by a bacterial proteasome in a manner akin to ubiquitin (Ub) mediated proteolysis in eukaryotes. To determine the extent of pupylation in Mtb, we used tandem affinity purification to identify its “pupylome”. Mass spectrometry identified 55 out of 604 purified proteins with confirmed pupylation sites. Forty-four proteins, including those with and without identified pupylation sites, were tested as substrates of proteolysis in Mtb. Under steady state conditions, the majority of the test proteins did not accumulate in degradation mutants, suggesting not all targets of pupylation are necessarily substrates of the proteasome under steady state conditions. Four proteins implicated in Mtb pathogenesis, Icl (isocitrate lyase), Ino1 (inositol-1-phosphate synthase), MtrA (Mtb response regulator A) and PhoP (phosphate response regulator P), showed altered levels in degradation defective Mtb. Icl, Ino1 and MtrA accumulated in Mtb degradation mutants, suggesting these proteins are targeted to the proteasome. Unexpectedly, PhoP was present in wild type Mtb but undetectable in the degradation mutants. Taken together, these data demonstrate that pupylation regulates numerous proteins in Mtb and may not always lead to degradation.  相似文献   

19.
Mycobacterium tuberculosis virulence is highly metal‐dependent with metal availability modulating the shift from the dormant to active states of M. tuberculosis infection. Rv0045c from M. tuberculosis is a proposed metabolic serine hydrolase whose folded stability is dependent on divalent metal concentration. Herein, we measured the divalent metal inhibition profile of the enzymatic activity of Rv0045c and found specific divalent transition metal cations (Cu2+ ≥ Zn2+ > Ni2+ > Co2+) strongly inhibited its enzymatic activity. The metal cations bind allosterically, largely affecting values for k cat rather than K M. Removal of the artificial N‐terminal 6xHis‐tag did not change the metal‐dependent inhibition, indicating that the allosteric inhibition site is native to Rv0045c. To isolate the site of this allosteric regulation in Rv0045c, the structures of Rv0045c were determined at 1.8 Å and 2.0 Å resolution in the presence and absence of Zn2+ with each structure containing a previously unresolved dynamic loop spanning the binding pocket. Through the combination of structural analysis with and without zinc and targeted mutagenesis, this metal‐dependent inhibition was traced to multiple chelating residues (H202A/E204A) on a flexible loop, suggesting dynamic allosteric regulation of Rv0045c by divalent metals. Although serine hydrolases like Rv0045c are a large and diverse enzyme superfamily, this is the first structural confirmation of allosteric regulation of their enzymatic activity by divalent metals.  相似文献   

20.
Cyclic di-AMP is a recently discovered signaling molecule which regulates various aspects of bacterial physiology and virulence. Here we report the characterization of c-di-AMP synthesizing and hydrolyzing proteins from Mycobacterium tuberculosis. Recombinant Rv3586 (MtbDisA) can synthesize c-di-AMP from ATP through the diadenylate cyclase activity. Detailed biochemical characterization of the protein revealed that the diadenylate cyclase (DAC) activity is allosterically regulated by ATP. We have identified the intermediates of the DAC reaction and propose a two-step synthesis of c-di-AMP from ATP/ADP. MtbDisA also possesses ATPase activity which is suppressed in the presence of the DAC activity. Investigations by liquid chromatography -electrospray ionization mass spectrometry have detected multimeric forms of c-di-AMP which have implications for the regulation of c-di-AMP cellular concentration and various pathways regulated by the dinucleotide. We have identified Rv2837c (MtbPDE) to have c-di-AMP specific phosphodiesterase activity. It hydrolyzes c-di-AMP to 5′-AMP in two steps. First, it linearizes c-di-AMP into pApA which is further hydrolyzed to 5′-AMP. MtbPDE is novel compared to c-di-AMP specific phosphodiesterase, YybT (or GdpP) in being a soluble protein and hydrolyzing c-di-AMP to 5′-AMP. Our results suggest that the cellular concentration of c-di-AMP can be regulated by ATP concentration as well as the hydrolysis by MtbPDE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号