首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phytohormone auxin is important in various aspects of organism growth and development. Aux/IAA genes encoding short-lived nuclear proteins are responsive primarily to auxin induction. Despite their physiological importance, systematic analysis of Aux/IAA genes in maize have not yet been reported. In this paper, we presented the isolation and characterization of maize Aux/IAA genes in whole-genome scale. A total of 31 maize Aux/IAA genes (ZmIAA1 to ZmIAA31) were identified. ZmIAA genes are distributed in all the maize chromosomes except chromosome 2. Aux/IAA genes expand in the maize genome partly due to tandem and segmental duplication events. Multiple alignment and motif display results revealed major maize Aux/IAA proteins share all the four conserved domains. Phylogenetic analysis indicated Aux/IAA family can be divided into seven subfamilies. Putative cis-acting regulatory DNA elements involved in auxin response, light signaling transduction and abiotic stress adaption were observed in the promoters of ZmIAA genes. Expression data mining suggested maize Aux/IAA genes have temporal and spatial expression pattern. Collectively, these results will provide molecular insights into the auxin metabolism, transport and signaling research.  相似文献   

2.
3.
4.
5.
6.
7.
8.
The hormone auxin is implicated in regulating a diverse range of developmental processes in plants. Auxin acts in part by inducing the Aux/IAA genes. The associated pathway comprises multiple negative feedback loops (whereby Aux/IAA proteins can repress Aux/IAA genes) that are disrupted by auxin mediating the turnover of Aux/IAA protein. In this paper, we develop a mathematical model of a single Aux/IAA negative feedback loop in a population of identical cells. The model has a single steady-state. We explore parameter space to uncover a number of dynamical regimes. In particular, we identify the ratio between the Aux/IAA protein and mRNA turnover rates as a key parameter in the model. When this ratio is sufficiently small, the system can evolve to a stable limit cycle, corresponding to an oscillation in Aux/IAA expression levels. Otherwise, the steady-state is either a stable-node or a stable-spiral. These observations may shed light on recent experimental results.  相似文献   

9.
Auxin is one of the most important phytohormones involved in plant growth and development. Here, we identified a total of 26 Aux/IAA genes displaying high sequence identity within the conserved domains I, II, III, and IV by screening the grapevine genome proteome 12× database. The Vitis vinifera Aux/IAA proteins can be classified into two groups (A and B) on the basis of their phylogenetic relationships. A search for cis-regulatory elements in the promoter sequences of VvAux/IAA genes revealed that the majority of these proteins may be regulated by light, phytohormones, and abiotic stresses. We also report the isolation and expression analysis of the cDNA of VvAux/IAA4, the most highly expressed VvAux/IAA gene from V. vinifera cv. Sultanine, according to ESTs in the NCBI database. The VvAux/IAA4 gene contains a full-length open reading frame of 1,080 bp, and its predicted amino acid sequence is highly similar to those of Aux/IAA proteins from other plants, including the presence of an AuxIAA/ARF dimerization motif in the C-terminal region. The expression of VvAux/IAA4 was found to be elevated during berry development, and slowly decrease from the initiation of ripening to the overripening stage. VvAux/IAA4 was highly expressed in young leaves and roots, and expressed at low levels in pollen and tendrils. Finally, the expression of VvAux/IAA4 was rapidly induced in response to NAA treatment, but was decreased by salt, drought, and SA treatments. Our results provide evidence of crosstalk between phytohormone and abiotic stresses, and support a role for auxin in stress responses.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号