首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了番木瓜果皮l-氨基环丙烷-l-羧酸(ACC)氧化酶的部分纯化,底物(O2和ACC)浓度、辅助因子(CO2和Fe2+)和抑制剂(Co2+和α-氨基异丁酸)对体外乙烯产生速率的影响.通过DEAE-Sepharose和Phenyl-Sepharose柱层析后,番木瓜果皮ACC氧化酶被纯化了19.5倍.在乙烯产生中,ACC氧化酶对O2的Km值主要取决于ACC的浓度,随着ACC水平的增加而下降;当O2的浓度增加时,酶对ACC的Km值降低.CO2显著地增加酶的活性以及对O2和ACC的Km值.Fe2+提高酶的活性,Co2+抑制酶的活性;Fe2+能够拮抗Co2+对酶活性的抑制作用.这些动力学资料表明ACC氧化酶遵循一种顺序结合机制,首先与02结合,然后与ACC结合.  相似文献   

2.
Undifferentiated pleomorphic sarcoma (UPS) is an aggressive mesenchymal malignancy requiring novel therapeutic approaches to improve clinical outcome. Patient-derived cancer cell lines are an essential tool for investigating molecular mechanisms underlying cancer initiation and development; however, there is a lack of patient-derived cell lines of UPS available for research. The objective of this study was to develop a patient-derived cell model of UPS. A cell line designated NCC-UPS2-C1 was established from the primary tumor tissue of an 84-yr-old female patient with UPS. The short tandem repeat pattern of NCC-UPS2-C1 cells was identical to that of the original tumor and distinct from that of any other cell lines deposited in public cell banks. NCC-UPS2-C1 cells were maintained as a monolayer culture for over 80 passages during 30 mo and exhibited spindle-like morphology, continuous growth, and ability for spheroid formation and invasion. Proteomic profiling using mass spectrometry and functional treemap analysis revealed that the original tumor and the derived NCC-UPS2-C1 cells had similar but distinct protein expression patterns. Our results indicate that a novel UPS cell line was successfully established and could be used to study UPS development and effects of anti-cancer drugs. However, the revealed difference between proteomes of the original tumor and NCC-UPS2-C1 cells should be further investigated to determine the appropriate applications of this cell line in UPS research.  相似文献   

3.
Acetyl-CoA carboxylases ACC1 and ACC2 catalyze the carboxylation of acetyl-CoA to malonyl-CoA, regulating fatty-acid synthesis and oxidation, and are potential targets for treatment of metabolic syndrome. Expression of ACC1 in rodent lipogenic tissues and ACC2 in rodent oxidative tissues, coupled with the predicted localization of ACC2 to the mitochondrial membrane, have suggested separate functional roles for ACC1 in lipogenesis and ACC2 in fatty acid oxidation. We find, however, that human adipose tissue, unlike rodent adipose, expresses more ACC2 mRNA relative to the oxidative tissues muscle and heart. Human adipose, along with human liver, expresses more ACC2 than ACC1. Using RT-PCR, real-time PCR, and immunoprecipitation we report a novel isoform of ACC2 (ACC2.v2) that is expressed at significant levels in human adipose. The protein generated by this isoform has enzymatic activity, is endogenously expressed in adipose, and lacks the N-terminal sequence. Both ACC2 isoforms are capable of de novo lipogenesis, suggesting that ACC2, in addition to ACC1, may play a role in lipogenesis. The results demonstrate a significant difference in ACC expression between human and rodents, which may introduce difficulties for the use of rodent models for development of ACC inhibitors.  相似文献   

4.
Reuber hepatoma cells are useful cultured lines for the study of insulin action, lipid and lipoprotein metabolism, and the regulation of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid biosynthesis. During investigations in different clonal lines of these cells, we have uncovered marked intercellular variability in the activity, enzyme content, and insulin regulation of ACC paralleled by differences in cellular neutral lipid (triglyceride) content. Two contrasting clonal lines, Fao and H356A-1, have been studied in detail. Several features distinguish these two lines, including differences in ACC activity and enzyme kinetics, the content of the two major hepatic ACC isozymes (Mr 280,000 and 265,000 Da) and their heteroisozymic complex, the extent of ACC phosphorylation, and the ability of ACC to be activated on stimulation by insulin and insulinomimetic agonists. As studied by Nile Red staining and fluorescence-activated cell sorting, these two lines also display marked differences in neutral lipid content, which correlates with both basal levels of ACC activity and inhibition of ACC by the fatty acid analog, 5-(tetradecyloxy)-2-furoic acid (TOFA). These results emphasize the importance of characterization of any particular clonal line of Reuber cells for studies of enzyme regulation, substrate metabolism, and hormone action. With respect to ACC, studies in contrasting clonal lines of Reuber cells could provide valuable clues to understanding both the complex mechanisms of intracellular ACC regulation in the absence and presence of hormones and its regulatory role(s) in overall hepatic lipid metabolism.  相似文献   

5.
Electroporation-based treatments and other therapies that permeabilize the plasma membrane have been shown to be more devastating to malignant cells than to normal cells. In this study, we asked if a difference in repair capacity could explain this observed difference in sensitivity. Membrane repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique, providing a sensitive index of repair capacity. The normal primary cell line of all tested cell lines exhibited the slowest rate of dye entry after laser disruption and lowest level of dye uptake. Significantly, more rapid dye uptake and a higher total level of dye uptake occurred in six of the seven tested cancer cell lines (p < 0.05) as well as the immortalized cell line (p < 0.001). This difference in sensitivity was also observed when a viability assay was performed one day after plasma membrane permeabilization by electroporation. Viability in the primary normal cell line (98 % viable cells) was higher than in the three tested cancer cell lines (81–88 % viable cells). These data suggest more effective membrane repair in normal, primary cells and supplement previous explanations why electroporation-based therapies and other therapies permeabilizing the plasma membrane are more effective on malignant cells compared to normal cells in cancer treatment.  相似文献   

6.
The p21-activated kinase 3 (PAK3) and the serum and glucocorticoid-induced kinase 2 (SGK2) have been previously proposed as essential kinases for human papillomavirus positive (HPV+) cervical cancer cell survival. This was established using a shRNA knockdown approach. To validate PAK3 and SGK2 as potential targets for HPV+ cervical cancer therapy, the relationship between shRNA-induced phenotypes in HPV+ cervical cancer cells and PAK3 or SGK2 knockdown was carefully examined. We observed that the phenotypes of HPV+ cervical cancer cells induced by various PAK3 and SGK2 shRNAs could not be rescued by complement expression of respective cDNA constructs. A knockdown-deficient PAK3 shRNA with a single mismatch was sufficient to inhibit HeLa cell growth to a similar extent as wild-type PAK3 shRNA. The HPV+ cervical cancer cells were also susceptible to several non-human target shRNAs. The discrepancy between PAK3 and SGK2 shRNA-induced apoptosis and gene expression knockdown, as well as cell death stimulation, suggested that these shRNAs killed HeLa cells through different pathways that may not be target-specific. These data demonstrated that HPV+ cervical cancer cell death was not associated with RNAi-induced PAK3 and SGK2 knockdown but likely through off-target effects.  相似文献   

7.
8.
Induction and rejoining of DNA double-strand breaks in bladder tumor cells   总被引:8,自引:0,他引:8  
The induction and rejoining of radiation-induced double-strand breaks (DSBs) in cells of six bladder tumor cell lines (T24, UM-UC-3, TCC-SUP, RT112, J82, HT1376) were measured using the neutral comet assay. Radiation dose-response curves (0-60 Gy) showed damage (measured as mean tail moment) for five of the cell lines in the same rank order as cell survival (measured over 0-10 Gy), with the least damage in the most radioresistant cell line. Damage induction correlated well with clonogenic survival at high doses (SF10) for all six cell lines. At the clinically relevant dose of 2 Gy, correlation was good for four cell lines but poor for two (TCC-SUP and T24). The rejoining process had a fast and slow component for all cell lines. The rate of these two components of DNA repair did not correlate with cell survival. However, the time taken to reduce the amount of DNA damage to preirradiated control levels correlated positively with cell survival at 10 Gy but not 2 Gy; radioresistant cells rejoined the induced DSBs to preirradiation control levels more quickly than the radiosensitive cells. Although the results show good correlation between SF10 and DSBs for all six cell lines, the lack of correlation with SF2 for TCC-SUP and T24 cells would suggest that a predictive test should be carried out at the clinically relevant dose. At present the neutral comet assay cannot achieve this.  相似文献   

9.
Focal adhesion kinase (FAK) and Src have been shown to be overexpressed in colon cancer. We have studied the role of these two kinases in resistance to apoptosis. Adenovirus-containing FAK-CD (Ad-FAK-CD), a dominant-negative, COOH-terminal portion of FAK, was used to inhibit FAK and cause apoptosis. Colon cancer cell lines were more resistant to Ad-FAK-CD-induced detachment and apoptosis than the breast cancer cell line, BT474. Colon cancer cell lines overexpressed highly active Src and FAK. Ad-FAK-CD-induced apoptosis was significantly increased by PP2, an inhibitor of Src family kinases. Activation of caspase-3, down-regulation of FAK, and Src and AKT activities were demonstrated in Ad-FAK-CD + PP2-treated colon cancer cells undergoing apoptosis. The results suggest that FAK and Src are both important survival factors, playing a role in protecting colon cancer cell lines from Ad-FAK-CD-induced apoptosis. Dual inhibition of these kinases may be important for therapies designed to enhance the apoptosis in colon cancers.  相似文献   

10.
Cell cycle progression is tightly controlled by cyclins and cyclin-dependent kinases (CDKs). CDK2 plays a crucial role in regulating cell cycle progression, but how CDK2 is regulated is still incompletely understood. In this study, we report the identification and characterization of a novel gene CAC1 that regulates CDK2 activity. The open reading frame sequence of this gene encodes a protein of 369 amino acids which contains a Cullin domain, and this protein is physically associated with CDK2. As such, we have designated it Cdk-Associated Cullin1, or CAC1. CAC1 is highly expressed in cancer tissues and cancer cell lines. Interestingly, CAC1 is expressed in a cell cycle-dependent manner and its expression is high in late G1 to S phase. Knockdown of CAC1 by RNAi inhibits cell proliferation and induces G1/S arrest. Since CAC1 interacts with CDK2 and promotes the kinase activity of CDK2 protein, we propose that CAC1 is a novel cell cycle associated protein capable of promoting cell proliferation. Our data provide insight into the mechanism by which CDK2 is regulated and the molecular basis of cell cycle progression in cancer.  相似文献   

11.
12.
The production of transgenic broccoli (Brassica oleracea) with increased shelf-life using an Agrobacterium rhizogenes-mediated co-transformation protocol is reported. An Agrobacterium rhizogenes Ri vector, pRi1855:GFP was constructed to allow expression of the green fluorescent protein to identify insertion of Ri TL-DNA into plant cells. The Brassica oleracea ACC synthase 1 and ACC oxidase 1 and 2 cDNAs in sense and antisense orientations were co-transformed into GDDH33, a doubled haploid calabrese-broccoli cultivar. Transformation efficiency was 3.26%, producing 150 transgenic root lines, of which 18 were regenerated into mature plants. The floral buds from T0 broccoli heads were assayed for post-harvest production of ethylene and chlorophyll levels. Buds from T0 lines transformed with ACC oxidase 1 and 2 constructs produced significantly less post-harvest ethylene at 20 °C than the untransformed plants and chlorophyll loss was significantly reduced over a 96 h post-harvest period. The T0 plants transformed with sense and antisense ACC synthase 1 had a significantly reduced 24 h post-harvest ethylene peak and delayed chlorophyll loss. A positive correlation between post-harvest bud ethylene production and chlorophyll loss was described by a regression. This demonstrates that the shelf-life of a very perishable vegetable may be increased up to 2 days at 20 °C by reducing post-harvest ethylene production.  相似文献   

13.
Thymoquinone (TQ) has been reported as an anti-tumour drug widely studied in various tumours, and its mechanism and effect of which has become a focus of current research. However, previous studies from our laboratory and other groups found that TQ showed weak anti-tumour effects in many cancer cell lines and animal models. Therefore, it is necessary to modify and optimize the structure of TQ to obtain new chemical entities with high efficiency and low toxicity as candidates for development of new drugs in treating cancer. Therefore, we designed and synthesized several TQ derivatives. Systematic analysis, including in vitro and in vivo, was conducted on a panel of triple-negative breast cancer (TNBC) cells and mouse model to demonstrate whether TQFL12, a new TQ derivative, is more efficient than TQ. We found that the anti-proliferative effect of TQFL12 against TNBC cells is significantly stronger than TQ. We also demonstrated TQFL12 affects different aspects in breast cancer development including cell proliferation, migration, invasion and apoptosis. Moreover, TQFL12 inhibited tumour growth and metastasis in cancer cell–derived xenograft mouse model, with less toxicity compared with TQ. Finally, mechanism research indicated that TQFL12 increased AMPK/ACC activity by stabilizing AMPKα, while molecular docking supported the direct interaction between TQFL12 and AMPKα. Taken together, our findings suggest that TQFL12, as a novel chemical entity, possesses a better inhibitory effect on TNBC cells and less toxicity in both in vitro and in vivo studies. As such, TQFL12 could serve as a potential therapeutic agent for breast cancer.  相似文献   

14.
Perspectives of bacterial ACC deaminase in phytoremediation   总被引:3,自引:0,他引:3  
Phytoremediation of contaminated soil and water environments is regulated and coordinated by the plant root system, yet root growth is often inhibited by pollutant-induced stress. Prolific root growth could maximize rates of hyperaccumulation of inorganic contaminants or rhizodegradation of organic pollutants, and thus accelerate phytoremediation. Accelerated ethylene production in response to stress induced by contaminants is known to inhibit root growth and is considered as a major limitation in improving phytoremediation efficiency. Recent work shows that bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase regulates ethylene levels in plants by metabolizing its precursor ACC into alpha-ketobutyric acid and ammonia. Plants inoculated with ACC deaminase bacteria or transgenic plants that express bacterial ACC deaminase genes can regulate their ethylene levels and consequently contribute to a more extensive root system. Such proliferation of roots in contaminated soil can lead to enhanced uptake of heavy metals or rhizodegradation of xenobiotics.  相似文献   

15.
There is currently considerable interest in the use of the endogenous oestrogen metabolite, 2-methoxyoestradiol (2-MeOE2) for the treatment and prevention of breast cancer. We have previously shown that sulphamoylation of 2-MeOE2 and related derivatives greatly enhances their ability to inhibit the proliferation of ER+ and ER- breast cancer cells. In this study, we have compared the abilities of 2-methoxyoestradiol-bis-sulphamate (2-MeOE2bisMATE) and 2-ethyloestradiol-bis-sulphamate (2-EtE2bisMATE) with that of 2-MeOE2 to inhibit the proliferation of breast cancer cells when grown on three different substrata: plastic, collagen I and Matrigel. The human breast cell line MCF-7 was utilised for these studies together with its doxorubicin resistant variant, MCF-7 DOX40 and mitoxantrone resistant variant, MCF-7 MR, as a longitudinal model of in vitro drug resistance. On a plastic substratum all three cell lines were sensitive to the effects of 2-MeOE2bisMATE and 2-EtE2bisMATE whereas MCF-7 cells and the MCF-MR variant cells were resistant to the effects of 2-MeOE2 at 1 microM. The sensitivity of the cell lines to those compounds also remained significant when grown on more physiological substrata. All of the drugs tested arrested cells in the G2/M phase of the cell cycle. The finding that breast cancer cells that are resistant to conventional chemotherapeutic agents remain sensitive to 2-substituted oestrogen sulphamates offers considerable potential for the treatment of women with drug-resistant breast cancer.  相似文献   

16.
从番茄品种强力米寿的总DNA中克隆番茄果实特异启动子2A11,以番茄成熟果实的RNA为模板,进行RT-PCR扩增,克隆番茄全长的ACC氧化酶基因和ACC合成酶基因片段。完成两个基因的克隆和测序后,将888bp的番茄ACC氧化酶基因和943bp的ACC合成酶基因片段串联,构成全长1837bp的融合基因。将该融合基因以反义的方向插入植物双元载体pYPX145中番茄果实表达特异启动子下游,获得ACC氧化酶基因和ACC合成酶基因融合的植物双元载体pOSACC。该载体外源基因表达单元的两端含两个烟草SAR序列,利于转基因的稳定遗传。以番茄栽培品种合作903子叶和下胚轴为外植体,利用根癌农杆菌进行基因转化,通过200mg/L卡那霉素选择和GUS检测,获得了105株番茄GUS阳性植株,转基因番茄果实在当代表现明显耐贮特点。经过4代的耐贮和果实农艺性状的综合选择,获得了两个表现良好的株系DR-1和DR-2,两株系果实乙烯释放量显著下降,是未转基因材料的9.5%,番茄的贮存期在50天以上。  相似文献   

17.
Jannie KM  Stipp CS  Weiner JA 《PloS one》2012,7(6):e39330
ALCAM, a member of the immunoglobulin superfamily, has been implicated in numerous developmental events and has been repeatedly identified as a marker for cancer metastasis. Previous studies addressing ALCAM's role in cancer have, however, yielded conflicting results. Depending on the tumor cell type, ALCAM expression has been reported to be both positively and negatively correlated with cancer progression and metastasis in the literature. To better understand how ALCAM might regulate cancer cell behavior, we utilized a panel of defined uveal melanoma cell lines with high or low ALCAM levels, and directly tested the effects of manipulating these levels on cell motility, invasiveness, and adhesion using multiple assays. ALCAM expression was stably silenced by shRNA knockdown in a high-ALCAM cell line (MUM-2B); the resulting cells displayed reduced motility in gap-closure assays and a reduction in invasiveness as measured by a transwell migration assay. Immunostaining revealed that the silenced cells were defective in the formation of adherens junctions, at which ALCAM colocalizes with N-cadherin and ?-catenin in native cells. Additionally, we stably overexpressed ALCAM in a low-ALCAM cell line (MUM-2C); intriguingly, these cells did not exhibit any increase in motility or invasiveness, indicating that ALCAM is necessary but not sufficient to promote metastasis-associated cell behaviors. In these ALCAM-overexpressing cells, however, recruitment of ?-catenin and N-cadherin to adherens junctions was enhanced. These data confirm a previously suggested role for ALCAM in the regulation of adherens junctions, and also suggest a mechanism by which ALCAM might differentially enhance or decrease invasiveness, depending on the type of cadherin adhesion complexes present in tissues surrounding the primary tumor, and on the cadherin status of the tumor cells themselves.  相似文献   

18.
19.
Oxidative stress contributes to cancer pathologies and to apoptosis. Marine algae exhibit cytotoxic, antiproliferative and apoptotic effects; their metabolites have been used to treat many types of cancer. We investigated in culture extracts of Petalonia fascia, Jania longifurca and Halimeda tuna to determine their effects on mouse neuroblastoma cell line, NA2B. NA2B cells were treated with algae extracts, and the survival and proliferation of NA2B cells were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of algae extracts on oxidative stress in NA2B cells also were investigated using nitric oxide synthase (NOS) immunocytochemistry and apoptosis was assessed using terminal deoxynucleotidyl transferase dUTP nick end labeling. We observed significant neurite inhibition with moderate damage by the neurotoxicity-screening test (NST) at IC50 dilutions of the extracts. MTT demonstrated that J. longifurca extracts were more toxic than P. fascia and H. tuna extracts. We found an increase of endothelial and inducible NOS immunostaining for oxidative stress and TUNEL analysis revealed increased apoptosis after application of extract. Our findings suggest that the algae we tested may have potential use for treatment of cancer.  相似文献   

20.
Notch signaling involves the processes that govern cell proliferation, cell fate decision, cell differentiation and stem cell maintenance. Due to its fundamental role in stem cells, it has been speculated during the recent years that Notch family may have critical functions in cancer stem cells or cancer cells with a stem cell phenotype, therefore playing an important role in the process of oncogenesis. In this study, expression of Notch family in KYSE70, KYSE140 and KYSE450 squamous esophageal cancer cell lines and virus transformed squamous esophageal epithelial cell line Het-1A was examined by quantitative RT-PCR. Compared to the Het-1A cells, higher levels of Nocth1 and Notch3 expression in the cancer cell lines were identified. Due to the finding that NOTCH3 mainly mediates squamous cell differentiation, NOTCH1 expression was further studied in these cell lines. By Western blot analyses, the KYSE70 cell line which derived from a poorly differentiated tumor highly expressed Notch1, and the Notch1 expression in this cell line was hypoxia inducible, while the KYSE450 cell line which derived from a well differentiated tumor was always negative for Notch1, even in hypoxia. Additional studies demonstrated that the KYSE70 cell line was more 5-FU resistant than the KYSE450 cell line and such 5-FU resistance is correlated to Notch1 expression verified by Notch1 knockdown experiments. In clinical samples, Notch1 protein expression was detected in the basal cells of human esophagus epithelia, and its expression in squamous cell carcinomas was significantly associated with higher pathological grade and shorter overall survival. We conclude that Notch1 expression is associated with cell aggressiveness and 5-FU drug resistance in human esophageal squamous cell carcinoma cell lines in vitro and is significantly associated with a poor survival in human esophageal squamous cell carcinomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号