首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The MYH (MutY glycosylase homologue) increases replication fidelity by removing adenines or 2-hydroxyadenine misincorporated opposite GO (7,8-dihydro-8-oxo-guanine). The 9-1-1 complex (Rad9, Rad1 and Hus1 heterotrimer complex) has been suggested as a DNA damage sensor. Here, we report that hMYH (human MYH) interacts with hHus1 (human Hus1) and hRad1 (human Rad1), but not with hRad9. In addition, interactions between MYH and the 9-1-1 complex, from both the fission yeast Schizosaccharomyces pombe and human cells, are partially interchangeable. The major Hus1-binding site is localized to residues 295-350 of hMYH and to residues 245-293 of SpMYH (S. pombe MYH). Val315 of hMYH and Ile261 of SpMYH play important roles for their interactions with Hus1. hHus1 protein and the 9-1-1 complex of S. pombe can enhance the glycosylase activity of SpMYH. Moreover, the interaction of hMYH-hHus1 is enhanced following ionizing radiation. A significant fraction of the hMYH nuclear foci co-localizes with hRad9 foci in H2O2-treated cells. These results reveal that the 9-1-1 complex plays a direct role in base excision repair.  相似文献   

2.
Oxidative DNA damage is repaired primarily by the base excision repair (BER) pathway in a process initiated by removal of base lesions or mismatched bases by DNA glycosylases. MutY homolog (MYH, MUTYH, or Myh1) is a DNA glycosylase which excises adenine paired with the oxidative lesion 8-oxo-7,8-dihydroguanine (8-oxoG, or G°), thus reducing G:C to T:A mutations. The resulting apurinic/apyrimidinic (AP) site is processed by an AP-endonuclease or a bifunctional glycosylase/lyase. We show here that the major Schizosaccharomyces pombe AP endonuclease, Apn2, binds to the inter-domain connector located between the N- and C-terminal domains of Myh1. This Myh1 inter-domain connector also interacts with the Hus1 subunit of the Rad9–Rad1–Hus1 checkpoint clamp. Mutagenesis studies indicate that Apn2 and Hus1 bind overlapping but different sequence motifs on Myh1. Mutation on I261 of Myh1 reduces its interaction with Hus1, but only slightly attenuates its interaction with Apn2. However, E262 of Myh1 is a key determinant for both Apn2 and Hus1 interactions. Like human APE1, Apn2 has 3′-phosphodiesterase activity. However, unlike hAPE1, Apn2 has a weak AP endonuclease activity which cleaves the AP sites generated by Myh1 glycosylase. Functionally, Apn2 stimulates Myh1 glycosylase activity and Apn2 phosphodiesterase activity is stimulated by Myh1. The cross stimulation of Myh1 and Apn2 enzymatic activities is dependent on their physical interaction. Thus, Myh1 and Apn2 constitute an initial BER complex.  相似文献   

3.
The DNA glycosylase MutY homologue (MYH or MUTYH) removes adenines misincorporated opposite 8-oxoguanine as part of the base excision repair pathway. Importantly, defects in human MYH (hMYH) activity cause the inherited colorectal cancer syndrome MYH-associated polyposis. A key feature of MYH activity is its coordination with cell cycle checkpoint via interaction with the Rad9-Rad1-Hus1 (9-1-1) complex. The 9-1-1 complex facilitates cell cycle checkpoint activity and coordinates this activity with ongoing DNA repair. The interdomain connector (IDC, residues 295-350) between the catalytic domain and the 8-oxoguanine recognition domain of hMYH is a critical element that maintains interactions with the 9-1-1 complex. We report the first crystal structure of a eukaryotic MutY protein, a fragment of hMYH (residues 65-350) that consists of the catalytic domain and the IDC. Our structure reveals that the IDC adopts a stabilized conformation projecting away from the catalytic domain to form a docking scaffold for 9-1-1. We further examined the role of the IDC using Schizosaccharomyces pombe MYH as model system. In vitro studies of S. pombe MYH identified residues I261 and E262 of the IDC (equivalent to V315 and E316 of the hMYH IDC) as critical for maintaining the MYH/9-1-1 interaction. We determined that the eukaryotic IDC is also required for DNA damage selection and robust enzymatic activity. Our studies also provide the first evidence that disruption of the MYH/9-1-1 interaction diminishes the repair of oxidative DNA damage in vivo. Thus, preserving the MYH/9-1-1 interaction contributes significantly to minimizing the mutagenic potential of oxidative DNA damage.  相似文献   

4.
Cell cycle checkpoints provide surveillance mechanisms to activate the DNA damage response, thus preserving genomic integrity. The heterotrimeric Rad9–Rad1–Hus1 (9–1–1) clamp is a DNA damage response sensor and can be loaded onto DNA. 9–1–1 is involved in base excision repair (BER) by interacting with nearly every enzyme in BER. Here, we show that individual 9–1–1 components play distinct roles in BER directed by MYH DNA glycosylase. Analyses of Hus1 deletion mutants revealed that the interdomain connecting loop (residues 134–155) is a key determinant of MYH binding. Both the N-(residues 1–146) and C-terminal (residues 147–280) halves of Hus1, which share structural similarity, can interact with and stimulate MYH. The Hus1K136A mutant retains physical interaction with MYH but cannot stimulate MYH glycosylase activity. The N-terminal domain, but not the C-terminal half of Hus1 can also bind DNA with moderate affinity. Intact Rad9 expressed in bacteria binds to and stimulates MYH weakly. However, Rad91−266 (C-terminal truncated Rad9) can stimulate MYH activity and bind DNA with high affinity, close to that displayed by heterotrimeric 91−266–1–1 complexes. Conversely, Rad1 has minimal roles in stimulating MYH activity or binding to DNA. Finally, we show that preferential recruitment of 91−266–1–1 to 5′-recessed DNA substrates is an intrinsic property of this complex and is dependent on complex formation. Together, our findings provide a mechanistic rationale for unique contributions by individual 9–1–1 subunits to MYH-directed BER based on subunit asymmetry in protein–protein interactions and DNA binding events.  相似文献   

5.
The paradigm for repair of oxidized base lesions in genomes via the base excision repair (BER) pathway is based on studies in Escherichia coli, in which AP endonuclease (APE) removes all 3' blocking groups (including 3' phosphate) generated by DNA glycosylase/AP lyases after base excision. The recently discovered mammalian DNA glycosylase/AP lyases, NEIL1 and NEIL2, unlike the previously characterized OGG1 and NTH1, generate DNA strand breaks with 3' phosphate termini. Here we show that in mammalian cells, removal of the 3' phosphate is dependent on polynucleotide kinase (PNK), and not APE. NEIL1 stably interacts with other BER proteins, DNA polymerase beta (pol beta) and DNA ligase IIIalpha. The complex of NEIL1, pol beta, and DNA ligase IIIalpha together with PNK suggests coordination of NEIL1-initiated repair. That NEIL1/PNK could also repair the products of other DNA glycosylases suggests a broad role for this APE-independent BER pathway in mammals.  相似文献   

6.
Mammalian MutY homologue (MUTYH) is an adenine DNA glycosylase that excises adenine inserted opposite 8-oxoguanine (8-oxoG). The inherited variations in human MUTYH gene are known to cause MUTYH-associated polyposis (MAP), which is associated with colorectal cancer. MUTYH is involved in base excision repair (BER) with proliferating cell nuclear antigen (PCNA) in DNA replication, which is unique and critical for effective mutation-avoidance. It is also reported that MUTYH has a Zn-binding motif in a unique interdomain connector (IDC) region, which interacts with Rad9–Rad1–Hus1 complex (9–1–1) in DNA damage response, and with apurinic/apyrimidinic endonuclease 1 (APE1) in BER. However, the structural basis for the BER pathway by MUTYH and its interacting proteins is unclear. Here, we determined the crystal structures of complexes between mouse MUTYH and DNA, and between the C-terminal domain of mouse MUTYH and human PCNA. The structures elucidated the repair mechanism for the A:8-oxoG mispair including DNA replication-coupled repair process involving MUTYH and PCNA. The Zn-binding motif was revealed to comprise one histidine and three cysteine residues. The IDC, including the Zn-binding motif, is exposed on the MUTYH surface, suggesting its interaction modes with 9–1–1 and APE1, respectively. The structure of MUTYH explains how MAP mutations perturb MUTYH function.  相似文献   

7.
Base excision repair (BER) is the primary pathway by which eukaryotic cells resolve single base damage. One common example of single base damage is 8-oxo-7,8-dihydro-2ʹ-deoxoguanine (8-oxoG). High incidence and mutagenic potential of 8-oxoG necessitate rapid and efficient DNA repair. How BER enzymes coordinate their activities to resolve 8-oxoG damage while limiting cytotoxic BER intermediates from propagating genomic instability remains unclear. Here we use single-molecule Förster resonance energy transfer (smFRET) and ensemble-level techniques to characterize the activities and interactions of consecutive BER enzymes important for repair of 8-oxoG. In addition to characterizing the damage searching and processing mechanisms of human 8-oxoguanine glycosylase 1 (hOGG1), our data support the existence of a ternary complex between hOGG1, the damaged DNA substrate, and human AP endonuclease 1 (APE1). Our results indicate that hOGG1 is actively displaced from its abasic site containing product by protein–protein interactions with APE1 to ensure timely repair of damaged DNA.  相似文献   

8.
Human apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is a multifunctional enzyme involved in base excision repair (BER). APE1 cleaves DNA 5′ of an AP site to produce a single-strand break with 5′-OH and 3′-deoxyribose phosphate. In addition to its AP-endonucleolytic function, APE1 possesses 3′-phosphodiesterase, 3′–5′ exonuclease, and 3′-phosphatase activities. Independently of its function as a repair protein, APE1 was identified as a redox factor (Ref-1). The review summarizes the published and original data on the role of the additional functions of APE1 in DNA repair and apoptosis and regulation of the BER system via APE1 interaction with DNA and other repair proteins.  相似文献   

9.
Adenines mismatched with guanines or 7,8-dihydro-8-oxo-deoxyguanines that arise through DNA replication errors can be repaired by either base excision repair or mismatch repair. The human MutY homolog (hMYH), a DNA glycosylase, removes adenines from these mismatches. Human MutS homologs, hMSH2/hMSH6 (hMutSalpha), bind to the mismatches and initiate the repair on the daughter DNA strands. Human MYH is physically associated with hMSH2/hMSH6 via the hMSH6 subunit. The interaction of hMutSalpha and hMYH is not observed in several mismatch repair-defective cell lines. The hMutSalpha binding site is mapped to amino acid residues 232-254 of hMYH, a region conserved in the MutY family. Moreover, the binding and glycosylase activities of hMYH with an A/7,8-dihydro-8-oxo-deoxyguanine mismatch are enhanced by hMutSalpha. These results suggest that protein-protein interactions may be a means by which hMYH repair and mismatch repair cooperate in reducing replicative errors caused by oxidized bases.  相似文献   

10.
Spontaneous deamination of DNA is mutagenic, if it is not repaired by the base excision repair (BER) pathway. Crystallographic data suggest that each BER enzyme has a compact DNA binding site. However, these structures lack information about poorly ordered termini, and the energetic contributions of specific protein–DNA contacts cannot be inferred. Furthermore, these structures do not reveal how DNA repair intermediates are passed between enzyme active sites. We used a functional footprinting approach to define the binding sites of the first two enzymes of the human BER pathway for the repair of deaminated purines, alkyladenine DNA glycosylase (AAG) and AP endonuclease (APE1). Although the functional footprint for full-length AAG is explained by crystal structures of truncated AAG, the footprint for full-length APE1 indicates a much larger binding site than is observed in crystal structures. AAG turnover is stimulated in the presence of APE1, indicating rapid exchange of AAG and APE1 at the abasic site produced by the AAG reaction. The coordinated reaction does not require an extended footprint, suggesting that each enzyme engages the site independently. Functional footprinting provides unique information relative to traditional footprinting approaches and is generally applicable to any DNA modifying enzyme or system of enzymes.  相似文献   

11.
Interstrand crosslinks (ICLs) are covalent lesions formed by cisplatin. The mechanism for the processing and removal of ICLs by DNA repair proteins involves nucleotide excision repair (NER), homologous recombination (HR) and fanconi anemia (FA) pathways. In this report, we monitored the processing of a flanking uracil adjacent to a cisplatin ICL by the proteins involved in the base excision repair (BER) pathway. Using a combination of extracts, purified proteins, inhibitors, functional assays and cell culture studies, we determined the specific BER proteins required for processing a DNA substrate with a uracil adjacent to a cisplatin ICL. Uracil DNA glycosylase (UNG) is the primary glycosylase responsible for the removal of uracils adjacent to cisplatin ICLs, whereas other uracil glycosylases can process uracils in the context of undamaged DNA. Repair of the uracil adjacent to cisplatin ICLs proceeds through the classical BER pathway, highlighting the importance of specific proteins in this redundant pathway. Removal of uracil is followed by the generation of an abasic site and subsequent cleavage by AP endonuclease 1 (APE1). Inhibition of either the repair or redox domain of APE1 gives rise to cisplatin resistance. Inhibition of the lyase domain of Polymerase β (Polβ) does not influence cisplatin cytotoxicity. In addition, lack of XRCC1 leads to increased DNA damage and results in increased cisplatin cytotoxicity. Our results indicate that BER activation at cisplatin ICLs influences crosslink repair and modulates cisplatin cytotoxicity via specific UNG, APE1 and Polβ polymerase functions.  相似文献   

12.
Using isogenic mouse embryonic fibroblasts and human cancer cell lines, we show that cells defective in base excision repair (BER) display a cisplatin-specific resistant phenotype. This was accompanied by enhanced repair of cisplatin interstrand cross-links (ICLs) and ICL-induced DNA double strand breaks, but not intrastrand adducts. Cisplatin induces abasic sites with a reduced accumulation in uracil DNA glycosylase (UNG) null cells. We show that cytosines that flank the cisplatin ICLs undergo preferential oxidative deamination in vitro, and AP endonuclease 1 (APE1) can cleave the resulting ICL DNA substrate following removal of the flanking uracil. We also show that DNA polymerase β has low fidelity at the cisplatin ICL site after APE1 incision. Down-regulating ERCC1-XPF in BER-deficient cells restored cisplatin sensitivity. Based on our results, we propose a novel model in which BER plays a positive role in maintaining cisplatin cytotoxicity by competing with the productive cisplatin ICL DNA repair pathways.  相似文献   

13.
Abasic (AP) sites in DNA arise either spontaneously, or through glycosylase-catalyzed excision of damaged bases. Their removal by the base excision repair (BER) pathway avoids their mutagenic and cytotoxic consequences. XRCC1 coordinates and facilitates single-strand break (SSB) repair and BER in mammalian cells. We report that XRCC1, through its NTD and BRCT1 domains, has affinity for several DNA intermediates in BER. As shown by its capacity to form a covalent complex via Schiff base, XRCC1 binds AP sites. APE1 suppresses binding of XRCC1 to unincised AP sites however, affinity was higher when the DNA carried an AP-lyase- or APE1-incised AP site. The AP site binding capacity of XRCC1 is enhanced by the presence of strand interruptions in the opposite strand. Binding of XRCC1 to BER DNA intermediates could play an important role to warrant the accurate repair of damaged bases, AP sites or SSBs, in particular in the context of clustered DNA damage.  相似文献   

14.
The base excision repair pathway removes damaged DNA bases and resynthesizes DNA to replace the damage. Human alkyladenine DNA glycosylase (AAG) is one of several damage-specific DNA glycosylases that recognizes and excises damaged DNA bases. AAG removes primarily damaged adenine residues. Human AP endonuclease 1 (APE1) recognizes AP sites produced by DNA glycosylases and incises the phophodiester bond 5' to the damaged site. The repair process is completed by a DNA polymerase and DNA ligase. If not tightly coordinated, base excision repair could generate intermediates that are more deleterious to the cell than the initial DNA damage. The kinetics of AAG-catalyzed excision of two damaged bases, hypoxanthine and 1,N6-ethenoadenine, were measured in the presence and absence of APE1 to investigate the mechanism by which the base excision activity of AAG is coordinated with the AP incision activity of APE1. 1,N6-ethenoadenine is excised significantly slower than hypoxanthine and the rate of excision is not affected by APE1. The excision of hypoxanthine is inhibited to a small degree by accumulated product, and APE1 stimulates multiple turnovers by alleviating product inhibition. These results show that APE1 does not significantly affect the kinetics of base excision by AAG. It is likely that slow excision by AAG limits the rate of AP site formation in vivo such that AP sites are not created faster than can be processed by APE1.  相似文献   

15.
Human (h) DNA repair enzyme thymine DNA glycosylase (hTDG) is a key DNA glycosylase in the base excision repair (BER) pathway that repairs deaminated cytosines and 5-methyl-cytosines. The cell cycle checkpoint protein Rad9–Rad1–Hus1 (the 9-1-1 complex) is the surveillance machinery involved in the preservation of genome stability. In this study, we show that hTDG interacts with hRad9, hRad1 and hHus1 as individual proteins and as a complex. The hHus1 interacting domain is mapped to residues 67–110 of hTDG, and Val74 of hTDG plays an important role in the TDG–Hus1 interaction. In contrast to the core domain of hTDG (residues 110–308), hTDG(67–308) removes U and T from U/G and T/G mispairs, respectively, with similar rates as native hTDG. Human TDG activity is significantly stimulated by hHus1, hRad1, hRad9 separately, and by the 9-1-1 complex. Interestingly, the interaction between hRad9 and hTDG, as detected by co-immunoprecipitation (Co-IP), is enhanced following N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) treatment. A significant fraction of the hTDG nuclear foci co-localize with hRad9 foci in cells treated with methylating agents. Thus, the 9-1-1 complex at the lesion sites serves as both a damage sensor to activate checkpoint control and a component of the BER.  相似文献   

16.
The human MutY homolog (hMYH) is a DNA glycosylase involved in the removal of adenines or 2-hydroxyadenines misincorporated with template guanines or 7,8-dihydro-8-oxodeoxyguanines. hMYH is associated in vivo with apurinic/apyrimidinic endonuclease (APE1), proliferating cell nuclear antigen (PCNA), and replication protein A (RPA) in HeLa nuclear extracts as shown by immunoprecipitation and Western blotting. However, binding of hMYH to DNA polymerases beta and delta was not detected. By using constructs containing different portions of hMYH fused to glutathione S-transferase, we have demonstrated that the APE1-binding site is at a region around amino acid residue 300, that the PCNA binding activity is located at the C terminus, and that RPA binds to the N terminus of hMYH. A peptide consisting of residues 505-527 of hMYH that contains a conserved PCNA-binding motif binds PCNA, and subsequent amino acid substitution identified Phe-518 and Phe-519 as essential residues required for PCNA binding. RPA binds to a peptide that consists of residues 6-32 of hMYH and contains a conserved RPA-binding motif. The PCNA- and RPA-binding sites of hMYH are further confirmed by peptide and antibody titration. These results suggest that hMYH repair is a long patch base excision repair pathway.  相似文献   

17.
Repair of chemically modified bases in DNA is accomplished through base excision repair (BER). This pathway is initiated by a specific DNA glycosylase that recognizes and excises the altered base to yield an abasic (AP) site. After cleavage of the AP site by APE1, repair proceeds through re-synthesis and ligation steps. In mammalian cells, the XRCC1 protein, essential for the maintenance of genomic stability, is involved in both base excision and single-strand break repair. XRCC1 participates in the first step of BER by interacting with the human DNA glycosylases hOGG1 and NEIL1. To analyze the possibility of a general mechanism involving the interaction of XRCC1 with DNA glycosylases we used XRCC1 to pull-down DNA glycosylases activities from human cell extracts. XRCC1 co-purifies with DNA glycosylase activities capable of excising hypoxanthine and dihydrothymine, in addition to 8-oxoguanine, but not uracil. Biochemical analyses with the purified proteins confirmed the interactions between XRCC1 and MPG, hNTH1 or hNEIL2. Furthermore, XRCC1 stimulates the activities of these enzymes. In vivo localization studies show that after genotoxic treatments these DNA glycosylases can be found associated with XRCC1 foci. Our results support a BER model in which XRCC1 is recruited to the repair of alkylated or oxidized bases by the enzyme recognizing the lesion. XRCC1 would then coordinate the subsequent enzymatic steps and modulate the activities of all the proteins involved.  相似文献   

18.
DNA glycosylases initiate base excision repair (BER) through the generation of potentially harmful abasic sites (AP sites) in DNA. Human thymine-DNA glycosylase (TDG) is a mismatch-specific uracil/thymine-DNA glycosylase with an implicated function in the restoration of G*C base pairs at sites of cytosine or 5-methylcytosine deamination. The rate-limiting step in the action of TDG in vitro is its dissociation from the product AP site, suggesting the existence of a specific enzyme release mechanism in vivo. We show here that TDG interacts with and is covalently modified by the ubiquitin-like proteins SUMO-1 and SUMO-2/3. SUMO conjugation dramatically reduces the DNA substrate and AP site binding affinity of TDG, and this is associated with a significant increase in enzymatic turnover in reactions with a G*U substrate and the loss of G*T processing activity. Sumoylation also potentiates the stimulatory effect of APE1 on TDG. These observations implicate a function of sumoylation in the controlled dissociation of TDG from the AP site and open up novel perspectives for the understanding of the molecular mechanisms coordinating the early steps of BER.  相似文献   

19.
DNA glycosylases initiate base excision repair by removing damaged or mismatched bases, producing apurinic/apyrimidinic (AP) DNA. For many glycosylases, the AP-DNA remains tightly bound, impeding enzymatic turnover. A prominent example is thymine DNA glycosylase (TDG), which removes T from G.T mispairs and recognizes other lesions, with specificity for damage at CpG dinucleotides. TDG turnover is very slow; its activity appears to reach a plateau as the [product]/[enzyme] ratio approaches unity. The follow-on base excision repair enzyme, AP endonuclease 1 (APE1), stimulates the turnover of TDG and other glycosylases, involving a mechanism that remains largely unknown. We examined the catalytic activity of human TDG (hTDG), alone and with human APE1 (hAPE1), using pre-steady-state kinetics and a coupled-enzyme (hTDG-hAPE1) fluorescence assay. hTDG turnover is exceedingly slow for G.T (k(cat)=0.00034 min(-1)) and G.U (k(cat)=0.005 min(-1)) substrates, much slower than k(max) from single turnover experiments, confirming that AP-DNA release is rate-limiting. We find unexpectedly large differences in k(cat) for G.T, G.U, and G.FU substrates, indicating the excised base remains trapped in the product complex by AP-DNA. hAPE1 increases hTDG turnover by 42- and 26-fold for G.T and G.U substrates, the first quantitative measure of the effect of hAPE1. hAPE1 stimulates hTDG by disrupting the product complex rather than merely depleting (endonucleolytically) the AP-DNA. The enhancement is greater for hTDG catalytic core (residues 111-308 of 410), indicating the N- and C-terminal domains are dispensable for stimulatory interactions with hAPE1. Potential mechanisms for hAPE1 disruption of the of hTDG product complex are discussed.  相似文献   

20.
Human apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is multifunctional enzyme. APEI is involved in the DNA base excision repair process (BER). APE1 participates in BER by cleaving the DNA adjacent to the 5' side of an AP site to produce a hydroxyl group at the 3' terminus of an unmodified nucleotide upstream of the nick and a 5' deoxyribose phosphate moiety downstream. In addition to its AP-endonucleolytic function, APE1 possesses 3' phosphodiesterase, 3'-5' exonuclease and 3' phosphatase activities. Independently of being characterized as DNA repair protein, APE1 was identified as redox-factor (Ref-1). Our own and literature data on the role of APE1 additional functions in cell metabolism and on interactions of APE1 with DNA and other proteins that participate in BER are analyzed in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号